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Abstract: Terpenes are high-value chemicals which can be produced by engineered cyanobacteria
from sustainable resources, solar energy, water and CO2. We previously reported that the euryhaline
unicellular cyanobacteria Synechocystis sp. PCC 6803 (S.6803) and Synechococcus sp. PCC 7002 (S.7002)
produce farnesene and limonene, respectively, more efficiently than other terpenes. In the present
study, we attempted to enhance farnesene production in S.6803 and limonene production in S.7002.
Practically, we tested the influence of key cyanobacterial enzymes acting in carbon fixation (RubisCO,
PRK, CcmK3 and CcmK4), utilization (CrtE, CrtR and CruF) and storage (PhaA and PhaB) on terpene
production in S.6803, and we compared some of the findings with the data obtained in S.7002. We
report that the overproduction of RubisCO from S.7002 and PRK from Cyanothece sp. PCC 7425
increased farnesene production in S.6803, but not limonene production in S.7002. The overexpression
of the crtE genes (synthesis of terpene precursors) from S.6803 or S.7002 did not increase farnesene
production in S.6803. In contrast, the overexpression of the crtE gene from S.6803, but not S.7002,
increased farnesene production in S.7002, emphasizing the physiological difference between these
two model cyanobacteria. Furthermore, the deletion of the crtR and cruF genes (carotenoid synthesis)
and phaAB genes (carbon storage) did not increase the production of farnesene in S.6803. Finally,
as a containment strategy of genetically modified strains of S.6803, we report that the deletion of
the ccmK3K4 genes (carboxysome for CO2 fixation) did not affect the production of limonene, but
decreased the production of farnesene in S.6803.

Keywords: Synechocystis PCC 6803; Synechococcus PCC 7002; genome editing; farnesene; limonene;
RubisCO; phosphoribulokinase; carboxysome; geranylgeranyl pyrophosphate synthase; β-carotene
hydroxylase; γ-carotene hydroxylase

1. Introduction

Terpenes constitute a large family of chemicals often produced by plants (attraction
of pollinators and/or protection against pathogens) in low quantities and at high prices.
They are used for the production of fragrances, pharmaceuticals, pesticides, solvents
and potentially biofuels [1–3]. All terpenes (general formula (C5H8)n) derive from the
five-carbon (C5) building blocks dimethylallyl pyrophosphate (DMAPP) and isopentenyl
pyrophosphate (IPP). The head-to-tail covalent linkage of DMAPP and IPP catalyzed by
the geranyl diphosphate synthase (GPPS) enzyme generates the geranyl diphosphate (GPP)
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precursor of monoterpenes (C10H16), such as limonene. Then, the addition of another IPP
unit on GPP catalyzed by the farnesyl diphosphate synthase (FPPS) forms the farnesyl
pyrophosphate (FPP) precursor of sesquiterpenes (C15H24), such as farnesene (Figure 1).
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[9]. To increase the odds of improving RubisCO activity in S.6803, we used extra RubisCO 
genes from not only S.6803, but also physiologically diverse cyanobacteria studied in our 

Figure 1. Schematic representation of the metabolic pathway and key compounds in-
volved in the synthesis of terpenes from CO2. Abbreviations: CA carbonic anhydrase;
CBBC: Calvin–Benson–Bassham cycle (consuming 1 NADPH, 1 ATP); CrtE: geranylgeranyl py-
rophosphate synthase; DMAPP: dimethylallyl pyrophosphate; DXP: 1-deoxy-D-xylulose-5-phosphate;
Fed: ferredoxin; FPP: farnesyl pyrophosphate; FS: farnesene synthase; GAPDH: glyceraldehyde-3P-
dehydrogenase; GPP: geranyl pyrophosphate; GPP: geranyl pyrophosphate; GGPP: geranylgeranyl
pyrophosphate; G3P: glyceraldehyde-3-phosphate; 3PGA: 3-phosphoglycerate; IPP: isopentenyl
pyrophosphate; IDI: isopentenyl-diphosphate isomerase; LS: limonene synthase; MEP: methylery-
thritol 4-phosphate (it consumes 2 NADPH, 1 ATP and 1 CTP); phaA: acetyl-CoA acetyltransferase;
phaB: Acetoacetyl-CoA reductase; phaC: PHB synthase; PRK: phosphoribulokinase; Rbc: ribulose
biphosphate carboxylase (RubisCO); RuBP: ribulose-1,5-bisphosphate. The genes manipulated in this
study encode the CrtE, CrtR, CruF, PhaA, PhaB, PRK and RubisCO enzymes, as well as the CcmK3
and CcmK4 carboxysome shell proteins.

In addition to plants, which are better used for food, cyanobacteria, the robust photo-
synthetic prokaryotes colonizing our planet, can be used for the ecologically responsible
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production of terpenes from sunlight and CO2 (for reviews see [1–3]). Cyanobacteria fix
CO2 using the Calvin–Benson–Bassham (CBB) pathway in which the key enzyme ribulose
bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the addition of one molecule
of CO2 to one molecule of ribulose biphosphate produced by the other key enzyme phos-
phoribulokinase (PRK). In parallel, they have developed the carboxysome subcellular
compartment (assembled from various shell proteins such as CcmK3 and CcmK4) to en-
capsulate RubisCO in a CO2-rich environment that favors its carbon-fixing (carboxylase)
activity over its detrimental oxygenase activity (for reviews see [4,5]). A part of the photo-
synthetically fixed carbon is used by the methylerythritol-4-phosphate (MEP) pathway to
produce DMAPP and IPP (Figure 1), which are transformed by a geranylgeranyl pyrophos-
phate synthase (CrtE) into GPP, FPP and GGPP, which is used by the carotene hydroxylases
(CrtR and CruF) to produce chlorophyll and carotenoids [2,3,6]. GPP and FPP can also
be transformed into terpenes, following introduction and expression in cyanobacteria of
synthetic terpene-synthase encoding genes adapted to the cyanobacterial codon usage [2,3].
The unicellular euryhaline cyanobacteria Synechocystis sp. PCC 6803 (hereafter S.6803) and
Synechococcus sp. PCC 7002 (S.7002, coastal organism) are interesting for this purpose. They
have good genetics (one can easily delete or overexpress genes of interests) and they grow
well in sea and brackish waters to preserve freshwater resources for agriculture [7].

In the frame of our exploration of the ability of physiologically different cyanobacteria
for the photoproduction of chemically different terpenes, we previously codon-adapted
several genes encoding terpene synthases, in an RSF1010-derived replicative plasmid or in
a neutral chromosome site [8–11]. The results showed that S.6803 produces farnesene better
than bisabolene, limonene, santalene and pinene, whereas S.7002 produces limonene more
efficiently than bisabolene and pinene [9]. In the present study, we tested and compared
several genetic strategies to address the improvement of farnesene production in S.6803
and limonene production in S.7002 [11].

2. Results and Discussion
2.1. The Overexpression of the RubisCO Genes from Synechococcus PCC 7002 Increases Farnesene
Production in Synechocystis PCC 6803

Previous studies showed that overexpressing the RubisCO-encoding genes can im-
prove cell growth and/or the photosynthetic production of high value chemicals in S.6803
and/or S.7002 [12–15]. In this study, we attempted to improve farnesene production in
S.6803 by introducing an extra copy of the RubisCO-encoding genes in the S.6803-ChrFS ex-
pressing the Picea abies α-farnesene synthase gene from a neutral site of its chromosome [9].
To increase the odds of improving RubisCO activity in S.6803, we used extra RubisCO
genes from not only S.6803, but also physiologically diverse cyanobacteria studied in our
laboratory. These are Cyanothece sp. PCC 7425 (hereafter C.7425) and S.7002 where their
RubisCO genes constitute the rbcLXS operon encoding the large (RbcL) and small (RbcS)
RubisCO subunits, and the RbcX chaperon (See Cyanobase). We also used the rbcLS operon
of Synechococcus elongatus PCC 7942 (S.7942) where rbcX is located away from rbcLS [16,17].

These RubisCO operons were PCR amplified from their respective cyanobacterial
genomes (Figure S1) using oligonucleotides (Table S1) that introduced convenient restriction
site upstream of the ATG start codon of rbcL (NdeI for S.6803, S.7002 and S.7942, and XhoI
for C.7425) and downstream of the TAA stop codon of rbcS (EcoRI for S.6803, PvuII for
both S.7002 and S.7942, and BspEI for C.7425). After restriction, the RubisCO operons
were cloned downstream of the strong pR promoter of the RSF1010-derived replicative
pC plasmid vector [9] opened with the same enzymes. The resulting SmR/SpR plasmids,
pCrbc6803, pCrbc7002, pCrbc7942 and pCrb7425 (Figure S1 and Table S2) and the (empty)
pC control vector were introduced by conjugation in the S.6803-ChrFS engineered strain
that produces farnesene [9]. In each case, two independent SmR/SpR clones were selected
and analyzed by PCR and DNA sequencing (Figure S1). The data showed that all these
pC-derived plasmids, pCrbC7425, pCrbc7942, pCrbc6803 and pCrbc7002, replicate stably
in S.6803 with no impact on cell growth (Figure 2), similar to the pC control vector 7002 [11].
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The resulting recombinant strains, which also produce RubisCO from their indigenous
chromosomal RubisCO genes, are represented in Figure S2.
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PCC 6803 strains harboring the strongly expressed genes encoding farnesene-synthase (FS) in a 
Figure 2. Simultaneous analysis of growth (A) and farnesene production (B) of the Synechocystis PCC
6803 strains harboring the strongly expressed genes encoding farnesene-synthase (FS) in a neutral
chromosomal site (chrFS) and the RubisCO (rbc) genes, in a pC-derived replicative plasmid (pCrbc).
These plasmids encode the RubisCO enzymes from the distantly related unicellular cyanobacteria
Cyanothece PCC 7425 (pCrbc7425), Synechococcus PCC 7002 (pCrbc7002), Synechococcus PCC 7942
(pCrbc7942) and Synechocystis PCC 6803 (pCrbc6803). Cells were grown under standard photoau-
totrophic conditions in the presence of a dodecane overlay (20% v/v) to assay terpene production
for 21 days. Error bars represent standard deviation from biological triplicates. They are too small
to be visible in panel (A). The hooks < indicate a significant difference between the two compared
experiments (t-test, p < 0.05, symbolized by *).

The production of farnesene by the S.6803-chrFS strains propagating the RubisCO-
producing plasmids pCrbc6803, pCrbc7002, pCrbc7425 and pCrbc7942 was measured over
21-day periods of photoautotrophic growth, as previously described [9]. GC–MS analysis
of the terpene-trapping dodecane overlay samples from all tested strains showed a peak
with similar retention time and ion chromatogram as a pure standard of α-farnesene. As
compared to the S.6803-chrFS control strain, which has a natural level of RubisCO, the
level of farnesene production driven by the pCrbc7002 plasmid showed that high-level
expression of the RubisCO genes from S.7002 enhanced farnesene production (about 2-fold
at day 21, Figure 2). Unlike pCrbc7002, the pCrbc6803, pCrbc7425 and pCrbc7942 plasmids
did not increase farnesene production, though they express their RubisCO genes from the
same strong promoter and ribosome binding site as pCrbc7002. Together, these findings
suggest that the RubisCO of S.7002 is more active in S.6803 than the other tested RubisCO,
including the endogenous enzyme of S.6803, which cannot be degraded by a possible
protease recognizing foreign proteins.

2.2. The Overexpression of the Phosphoribulokinase Gene from Cyanothece PCC 7425 Increases
Farnesene Production in Synechocystis PCC 6803

As the elimination of the CP12 negative regulator of the phosphoribulokinase (PRK)
enzyme was shown to improve terpene production in S.6803 [10], we decided to overexpress
the prk gene as an attempt to enhance farnesene production. To increase the odds of
enhancing PRK activity, we decided to clone in the pC plasmid vector an extra copy of
prk from not only S.6803, but also C.7425, S.7002 and S.7942. These prk genes were PCR
amplified from their respective cyanobacterial genome using oligonucleotide primers
(Table S1) that embedded their ATG start codon in a NdeI restriction site (CATATG), and
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introduced an EcoRI site downstream of their stop codons: TAA (S.6803) or TAG (S.7002,
S.7942 and C.7425). After restriction with both NdeI and EcoRI, these genes were cloned
in pC opened with the same enzymes, and transformed to E. coli. All attempts to clone
the prk genes from S.6803, S.7002 and S.7942 in pC were unsuccessful, indicating that
cyanobacterial PRKs are toxic to E. coli. Supporting this interpretation, previous cloning in
E.coli of the prk gene from S.7942 [18] and S.6803 [19], for in vitro analysis of PRK, employed
an inducible promoter system that allowed for the decoupling of E.coli growth from the
production of PRK.

Nevertheless, we were able to clone the prk gene from C.7425 (prk7425) downstream of
the strong constitutive pR promoter of the pC plasmid (Table S2), suggesting that PRK7425
is somehow less active in E. coli than the other cyanobacterial PRKs presently tested. The
resulting plasmid, pCprk7425 (Table S2), was introduced by conjugation in the S.6803-chrFS
strain expressing the farnesene synthase gene from its chromosome [9]. A SmR/SpR clone
(Figure S2) was analyzed. It showed that pCprk7425 does not alter the growth of S.6803
(Figure 3). The production of farnesene during the photoautotrophic growth of the S.6803-
chrFS-pCprk7425 reporter strain (Figure S2) was analyzed for 21 days and compared to
that of the S.6803-chrFS control strain. The data showed that increasing the expression
of prk enhances (about three-fold) the production of farnesene in S.6803 (Figure 3). This
result is consistent with both our previous report on the CP12-deleted mutant [10] and
the above finding that overexpressing RubisCO genes improved farnesene production in
S.6803 (Figure 2). Collectively, these data indicate that increasing CO2 fixation enhances
terpene production in S.6803.
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(20% v/v) to assay terpene production for 21 days. Error bars represent standard deviation from
biological triplicates. They are too small to be visible in panel (A). The hooks < indicate a significant
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2.3. The Overexpression of the Genes Encoding RubisCO and PRK Enzymes Does Not Increase
Limonene Production in Synechococcus PCC 7002

We also attempted to improve limonene production in the previously described S.7002-
chrLS strain that carries the Mentha spicata 4S-limonene synthase gene in a neutral chromo-
some site [11]. Therefore, the above-described plasmids overexpressing the studied phos-
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phoribulokinase gene (pCprk7425) or RubisCO operons (pCrbc6803, pCrbc7002, pCrbC7425
and pCrbc7942) were introduced by conjugation in S.7002-chrLS. The growth and limonene
production of the resulting reporter strains (Figure S3) appeared to be similar to that of the
S.7002-chrLS control strain (Figure 4).
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7002 strains harboring the strongly expressed limonene-synthase gene (LS) in a neutral chromosomal
site (chrLS) and a pC-derived plasmid expressing either the phoshoribulokinase gene from Cyanothece
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PCC 7002 (pCrbc7002), Synechococcus PCC 7942 (pCrbc7942) or Synechocystis PCC 6803 (pCrbc6803).
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(20% v/v) to assay terpene production for 21 days. Error bars represent standard deviation from
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Collectively, the present findings show that the photoautotrophic growth of both S.6803
and S.7002 is not limited by the natural abundance of their indigenous enzymes RubisCO
and PRK. In contrast, the production of terpenes is limited by the natural abundance of both
RubisCO and PRK in S.6803 (Figures 2 and 3), but not in S.7002 (Figure 4). These differences
remind us that a model cyanobacterium is essentially a model of itself. Consequently, it is
therefore important to study several cyanobacteria in parallel (in the same laboratory)
to better understand their common and specific properties, and exploit the resulting
knowledge for biotechnological purposes.

2.4. The Overexpression of the crtE Genes from Synechocystis PCC 6803 or Synechococcus PCC
7002 Decreases the Production of Both Farnesene and Limonene in Synechocystis PCC 6803

One of the challenges in using cyanobacteria for terpene production is the competition
for prenyl pyrophosphates (GPP, FPP and GGPP) between the synthesis of photosynthetic
pigments and the intended terp [20] ene (Figure 1). As most cyanobacteria, such as S.6803
and S.7002, use a single GGPP synthase (named CrtE) for the sequential synthesis of GPP,
FPP and GGPP [6,21–23], several authors overexpressed synthetic genes encoding FPPS
(IspA) from E. coli [24–26] or GPPS from plants [27–30] to improve (2–3 fold) terpene
production in S.6803, S.7942 (S.7002 was not tested) or Synechococcus elongatus UTEX 2973.
These moderate improvements could result from these heterologous enzymes having a
low activity and/or stability in cyanobacteria. This eventuality prompted us to test the
influence on terpene production of the CrtE enzymes from both S.6803 and S.7002, which
have structural differences [6,23]. Therefore, the protein coding sequences of the crtES.6803
and crtES.7002 genes were PCR amplified from the genomes of S.6803 or S.7002 using specific
oligonucleotides (Table S1) which flanked them with a unique restriction site upstream of
their start codon, and another unique restriction site behind their stop codon (Table S2).
After restriction, these DNA fragments were cloned downstream the Picea abies α-farnesene
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synthase gene (FS) or Mentha spicata 4S-limonene synthase gene (LS) of our previously
described pCFS and pCLS plasmids [8,9] opened with the same enzymes (XhoI and EcoRI
for pCFS, and EcoRI and AclI for pCLS). The resulting plasmids (Table S2) pCFScrtE6803
and pCFScrtE7002 (expression of the FScrtE6803 and FScrtE7002 operons, respectively),
and pCLScrtE6803 and pCLScrtE7002 (expression of the LScrtE6803 or LScrtE7002 operons)
were introduced by conjugation in S.6803 (Figure S4), where they appeared to replicate
stably (Figure S5). The resulting S.6803 reporter strains (Figure S4), which also expressed
their indigenous crtE gene from their chromosome, grew similarly to the control strains
propagating the pCFS or pCLS control plasmids (Figure 5).
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Figure 5. Simultaneous analysis of growth (A,C) and terpene production (B,D) of Synechocystis
PCC 6803 strains harboring a pC-derived plasmid strongly expressing either the farnesene synthase
gene (pCFS; (A,B)) alone or transcriptionally fused to the crtE gene from either Synechocystis PCC
6803 (pCFScrtE6803) or Synechococcus PCC 7002 (pCFScrtE7002), or the limonene synthase gene (pCLS;
(C,D)) alone or transcriptionally fused to a crtE gene (pCLScrtE6803 or pCLScrtE7002). Several clones
were studied, as indicated by C1-C8. Cells were grown under standard photoautotrophic conditions
in the presence of a dodecane overlay (20% v/v) to assay terpene production for 21 days. Error
bars represent standard deviation from biological triplicates. They are too small to be visible in
panels (A, C). The hooks < indicate a significant difference between the two compared experiments
(t-test, p < 0.05, symbolized by *).

The production of farnesene directed by the pCFScrtE6803 and pCFScrtE7002 plasmids
was lower (about three-fold) than the level driven by the pCFS control plasmid (Figure 5).
Similarly, the production of limonene directed by the pCLScrtE6803 and pCLScrtE7002
plasmids were smaller (about six-fold and three-fold, respectively) than the level driven
by the pCLS control plasmid (Figure 5). Collectively, these data indicate that the natural
abundance of the CrtE enzyme is not limiting terpene production in S.6803. The present
finding that an increased level of CrtE actually decreases terpene production suggests that
the additional molecules of the GGPP metabolite synthesized by the extra molecules of
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CrtE might inhibit the MEP pathway and/or the studied terpene synthases, similarly to
the feedback inhibition caused by the accumulation of IPP [3]. In addition, the increased
level of CrtE might negatively influence the hypothetical metabolic pairing of CrtE with
the GGPP phosphatase [23], which could somehow act in terpene synthesis.

2.5. The Overexpression of the crtE Gene from Synechocystis PCC 6803, but Not Synechococcus
PCC 7002, Increases Farnesene Production in Synechococcus PCC 7002

The influence of an extra copy of the crtE gene on terpene production in S.7002
was tested as follows. The above-described pCFScrtE6803 and pCFScrtE7002 plasmids
overexpressing the operonic genes encoding the farnesene synthase and the CrtE enzyme
from either S.6803 or S.7002 were introduced by conjugation in S.7002, along with the
pCFS control plasmid expressing only the farnesene synthase gene (Figure S6). All three
plasmids appeared to replicate stably (Figure S7) without affecting cell growth (Figure 5). As
compared to pCFS, pCFScrtE6803 and pCFScrtE7002, respectively, increased and (slightly)
decreased farnesene production in S.7002 (Figure 6). These data suggest that the activity of
the CrtE6803 and CrtE7002 enzymes might be different in S.7002.
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Figure 6. Simultaneous analysis of growth (A) and farnesene production (B) of Synechococcus PCC
7002 strains harboring a pC-derived plasmid strongly expressing either the farnesene synthase
gene (pCFS) alone or transcriptionally fused to the crtE gene from either Synechocystis PCC 6803
(pCFScrtE6803) or Synechococcus PCC 7002 (pCFScrtE7002). Three clones were studied, as indicated by
C3, C6 and C9. Cells were grown under standard photoautotrophic conditions in the presence of a
dodecane overlay (20% v/v) to assay terpene production for 21 days. Error bars represent standard
deviation from biological triplicates. They are too small to be visible in panel (A), except in one case.
The hooks < indicate a significant difference between the two compared experiments (t-test, p < 0.05,
symbolized by *).

2.6. The Deletion of PHB Synthesis Genes Does Not Increase Terpene Production in Synechocystis
PCC 6803.

In S.6803, most of the photosynthetically fixed carbon is used for the production
of biomass and abundant carbon stores such as glycogen and polyhydroxybutyrates
(PHB) [31,32], while only 5% of the carbon is allocated to the MEP pathway for the synthesis
of photosynthetic pigments (carotenoids, chlorophyll and quinone) [2,33]. As an attempt
to redirect the carbon flux toward the MEP pathway to enhance terpene production in
S.6803, we deleted the two adjacent genes phaAB encoding the acetoacetyl-CoA thiolase
(PhaA) and acetoacetyl-CoA reductase (PhaB) enzymes, which catalyze the first step in
PHB synthesis [34–36]. Therefore, a ∆phaAB::KmR DNA cassette (Table S2) harboring a
transcription-terminator less KmR marker in place of most of the phaA and phaB genes
(from codon 93 of phaA to codon 141 of phaB) was constructed, as follows (Figure S8). The
two 300 bp chromosomal DNA regions flanking the phaAB DNA region to be deleted were
synthesized by TWIST Bioscience as a single DNA segment harboring an EcoRV restriction
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site in its middle where we cloned the KmR marker (a HincII segment from pUC4K) in
the same orientation as the phaAB genes that it replaced (Figure S8). The ∆phaAB::KmR

DNA cassette was verified by PCR and DNA sequencing. It was then transformed to
S.6803, where homologous DNA recombination integrated the KmR marker in place of
the phaAB gene, in all copies of the S.6803 chromosome (Figure S8). Then, the SmR/SpR

plasmids pCFS and pCLS [8,9] were introduced by conjugation in the ∆phaAB::KmR mutant
(Figure S8 and (Figure S9). In each case, several SmR/SpR/KmR clones were studied. The
data showed that the deletion of the phaAB genes did not increase the photoproduction of
farnesene or limonene in S.6803 (Figure 7).
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Figure 7. Simultaneous analysis of growth (A,C) and terpene production (B,D) of Synechocystis PCC
6803 strains WT or ∆phaAB mutant harboring a pC-derived plasmid strongly expressing either the
limonene synthase gene (pCLS; (A,B)) or the farnesene synthase gene (pCFS; (C,D)). Several clones
were studied, as indicated by C1–C5. Cells were grown under standard photoautotrophic conditions
in the presence of a dodecane overlay (20% v/v) to assay terpene production for 17 days. Error bars
represent standard deviation from biological triplicates. Most of them are too small to be visible in
panels (A,C).
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This approach of deleting PHB synthesis genes to redirect photosynthetically fixed car-
bons toward terpene production could not be tested in S.7002 because this cyanobacterium
does not synthesize PHB [37].

2.7. The Deletion of the Carotenoid Synthesis Genes crtR and cruF Decreases the Production of
Farnesene in Synechocystis PCC6803

The production of sesquiterpenes, such as farnesene, competes with the synthesis of
photosynthetic pigments (chlorophyll and carotenoids) because they use the same precursor
metabolite FPP [38] (Figure 1). To save FPP for a better farnesene production, we decided
to decrease the consumption of the FPP-derived metabolite GGPP used for carotenoid
synthesis (Figure 1). Therefore, we deleted the genes crtR (β-carotene hydroxylase) and
cruF (γ-carotene hydroxylase) acting in GGPP-consuming synthesis of carotenoids. For
crtR deletion, a ∆crtR::KmR DNA cassette (Table S2) was constructed by replacing the first
82 codons of crtR by a transcription-terminator-less KmR marker, as follows. The two
300 bp chromosomal DNA regions flanking the first 82 codons of crtR to be deleted were
synthesized by TWIST Bioscience as a single DNA segment harboring an EcoRV restriction
site in its middle, where we cloned the transcription-terminator-less KmR marker (a HincII
segment from the pUC4K plasmid) in the same orientation as crtR (Figure S10). The
∆crtR::KmR DNA cassette was verified by PCR and DNA sequencing. It was transformed
to S.6803, where homologous DNA recombination replaced crtR by the KmR marker in all
copies of the S.6803 chromosome (Figure S10). The resulting ∆crtR::KmR mutant grew as fit
as the WT strain under standard light. This finding showed that crtR is not essential for
the photoautotrophic growth of S.6803, in agreement with previous reports [39,40]. Then,
the SmR/SpR pCFS plasmid was introduced by conjugation in the ∆crtR::KmR mutant
(Figure S10), and the production of farnesene by two SmR/SpR/KmR clones was analyzed
during photoautotrophic growth (Figure 8). The data showed that the deletion of crtR does
not increase the photoproduction of farnesene in S.6803 (it was decreased), unlike what
was expected.
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Figure 8. Simultaneous analysis of growth (A) and farnesene production (B) of Synechocystis PCC
6803 WT strain and two clones (1 and 2) of each of the ∆crtR and ∆cruF mutants harboring the
farnesene synthase production pCFS plasmid. Cells were grown under standard photoautotrophic
conditions in the presence of a dodecane overlay (20% v/v) to assay farnesene production (measured
at day 10). Error bars represent standard deviation from biological triplicates. They are too small
to be visible in panel (A). The hooks < indicate a significant difference between the two compared
experiments (t-test, p < 0.05, symbolized by *).
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For cruF deletion, a ∆cruF::KmR DNA cassette (Table S2) was constructed (Figure S12)
by replacing an internal part of the cruF coding sequence (CS, from codon 100 to codon
271) by the KmR marker. The two 300 bp DNA regions flanking the 171 codons of cruF to
be deleted were synthesized by TWIST Bioscience as a single DNA segment harboring an
EcoRV site in its middle, where we cloned the KmR marker in the same orientation as cruF.
The ∆cruF::KmR DNA cassette was verified by PCR and nucleotide sequencing. It was then
transformed to S.6803 where homologous DNA recombination replaced the 171 codons of
cruF by the KmR marker in all copies of the S.6803 chromosome (Figure S12). The resulting
∆cruF::KmR mutant grew as fit as the WT strain under standard light showing, for the first
time, that cruF is not crucial for the photoautotrophic growth of S.6803.

Then, the SmR/SpR pCFS plasmid was introduced by conjugation in the ∆cruF::KmR

mutant (Figures S11 and S12), and the farnesene production of two independent SmR/SpR/
KmR clones was analyzed (Figure 8). As reported above in the case of crtR, the deletion of
cruF did not increase, but decreased, the photoproduction of farnesene in S.6803 (Figure 8).

Since the strategy of deleting the crtR and cruF genes did not increase the production
of farnesene in S.6803, it was not tested in S.7002.

2.8. Deletion of Both the ccmK3 and ccmK4 Genes Encoding Carboxysome Shell Proteins Does Not
Alter the Production of Limonene, but Decreases the Production of Farnesene in Synechocystis
PCC 6803

In addition to the engineering of genetically modified cyanobacterial organisms
(GMOs) for the photosynthetic production of high-value chemicals, it is important to
consider strategies to limit accidental release of these GMOs in natural environments. For
this purpose, an interesting target is the carbon concentrating mechanism (CCM) that
cyanobacteria use to grow in the low CO2 concentration of their natural aquatic biotopes.
The CCM system uses the carboxysome subcellular compartment, assembled from various
Ccm shell proteins, which encapsulates the RubisCO enzyme in a CO2-rich environment
favoring its carbon-fixing (carboxylase) activity over its detrimental oxygenase activity
(for reviews see [4,5]). As a biocontainment strategy, previous workers have deleted car-
boxysome genes of S.7002 and S.7942 GMO to impose a high-CO2 requirement phenotype
(HCR) preventing their escape from their cultivation photobioreactors [41,42]. Such a HCR
phenotype did not negatively impact L-lactate production in S.7002 [41], but it decreased
(about two-fold) farnesene production in S.7942 [42]. Since the HCR containment of GMO
has not yet been tested in S.6803, we decided to delete the ccmK3 and ccmK4 adjacent genes
encoding the CcmK3 and CcmK4 carboxysome shell proteins in S.6803 [43] and S.7942 [44].
These proteins were shown to be required for cell growth at low CO2 in S.7942 [44,45], and
for optimal photoautotrophic growth in S.6803 [46].

A ∆ccmK3K4::KmR DNA cassette (Table S2) was constructed to delete both the ccmK3
and ccmK4 colinear genes (from the start of ccmK3 coding sequence (CS) to the stop codon
of ccmK4). The 250 bp regions upstream the ccmK3 CS and downstream the ccmK4 CS were
synthesized by TWIST Bioscience as a single DNA segment harboring SwaI and a BamHI
restriction sites where we cloned the KmR marker (using the same enzymes) in the same
orientation as the ccmK3 and ccmK4 CS it replaced (Figure S13). The ∆ccmK3K4::KmR grew
as healthy as the WT strain in the Na2CO3-rich MM medium, but was unable to grow
under atmospheric (low) CO2 levels (MM0 medium), in agreement with previous findings
in S.7942 [44,45] and S.6803 [46].

Then, the SmR/SpR plasmids pCFS and pCLS were introduced by conjugation in
the ∆ccmK3K4::KmR double mutant, and the production of terpenes in the resulting re-
porter strains (Figures S13 and S14) was analyzed during photoautotrophic growth in the
Na2CO3-rich MM medium. The data showed that the deletion of ccmK3K4 did not alter
the photoproduction of limonene (monoterpene, C10) in S.6803 (Figure 9), as expected. In
contrast, the deletion of ccmK3K4 decreased the production of farnesene (sesquiterpene,
C15). Interestingly, these data showed that the more carbon atoms are used to produce the
studied terpene, the more the production is decreased by the ∆ccmK3K4::KmR deletion (the
production of farnesene (C15) is more important than that of limonene (C10)).
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Figure 9. Simultaneous analysis of growth (A,C) and terpene production (B,D) of Synechocystis
PCC 6803 strains WT or ∆ccmK3K4 mutant harboring a pC-derived plasmid strongly expressing
either the limonene synthase gene (pCLS; (A,B)) or the farnesene synthase gene (pCFS; (C,D)). Cells
were grown under standard photoautotrophic conditions in the presence of a dodecane overlay
(20% v/v) to assay terpene production for 17 or 21 days. Error bars represent standard deviation
from biological triplicates. They are too small to be visible in panels (A,C). The hooks < indicate a
significant difference between the two compared experiments (t-test, p < 0.05, symbolized by *).

3. Materials and Methods
3.1. Bacterial Strains and Growth Conditions

E. coli strains used for DNA manipulations (TOP10 and NEB10 beta, Table S2) or
conjugative transfer to S.6803 and S.7002 (CM404, Ref. [9]) of pC-derived replicative plas-
mids (Table S2) were grown at 37 ◦C (TOP10 and NEB10 beta) or 30 ◦C (CM404) on LB
medium containing the selective antibiotics: ampicillin (Amp) 100 µg·mL−1, kanamycin
(Km) 50 µg·mL−1, streptomycin (Sm) 25 µg·mL−1 or spectinomycin (Sp) 75 µg·mL−1.

S.6803 and S.7002 strains were grown at 30 ◦C under continuous white light (2500 lux;
31.25 µE·m−2·s−1) and agitation (140 rpm, Infors rotary shaker) in liquid mineral medium,
MM, i.e., BG11 [47] enriched with 3.78 mM Na2CO3 for S.6803 [9], or A+ supplemented
with B12 vitamin (4 µg·L−1) for S.7002 [48]. The terpene-producing strains were grown
in the presence of the selective antibiotics: Km 50 µg·mL−1 for both S.6803 and S.7002,
Sm 5 µg·mL−1 and Sp 5 µg·mL−1 for S.6803, and Sm 50 µg·mL−1 and Sp 50 µg·mL−1

for S.7002. Growth was monitored by regular measurements of optical density at 750 nm
(OD750) with a spectrophotometer (Jenway 6700).

3.2. Genetic Manipulations and Gene Transfer Techniques

The studied cyanobacterial genes were amplified by polymerase chain reaction (PCR)
from cyanobacterial DNA with specific oligonucleotide primers (Table S1) using Hot start
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Phusion polymerase (ThermoFisher Science France, Illkirch-Graffenstaden, France). PCR
products were digested with appropriate restriction enzymes and cloned either in the
RSF1010-derived autonomously replicating pC vector for high-level gene expression [9,11],
or a commercial E. coli plasmid for gene deletion. All DNA constructions were verified by
PCR and DNA sequencing (Mix2Seq Kit, Eurofins Genomics France, Nantes, France) using
appropriate oligonucleotide primers (Table S1). The pC-derived plasmids (Table S2) were
introduced in S.6803 and S.7002 by conjugation [9,11] using a triparental mating where each
cyanobacterial strain was coincubated for 72 h with the E. coli strains CM404 and a TOP10
(or NEB10 beta) strain propagating a pC-derived plasmid. The DNA deletion cassettes
were introduced in S.6803 by transformation [10]. Transformants and conjugants were
then plated on MM solidified with 1% Bacto Agar (Difco France, Saint-Ferréol, France),
which contained Km 50 µg·mL−1 or both Sp 5 µg·mL−1 and Sm 5 µg·mL−1, respectively,
and subsequently incubated at 30 ◦C under standard light for 7 to 10 days. The presence
of the gene deletion cassette, or the terpene-synthase-encoding gene propagated in pC-
derived plasmids or a neutral chromosomal site was verified by PCR and DNA sequencing
(Mix2Seq Kit, Eurofins Genomics) using appropriate oligonucleotide primers (Table S1).

3.3. Terpenes Collection, and Quantification by Gas Chromatography–Mass Spectrometry

S.6803 and S.7002 engineered strains were grown photoautotrophically in the presence
of selective antibiotics in 250 mL Erlenmeyer flasks containing 50 mL cell suspensions
covered with a nontoxic 20% (v/v) dodecane overlay (analytical grade, Sigma-Aldrich,
St. Louis, MO, USA) to trap terpenes [8,9,11,28,49]. At the specified time intervals, 300 µL
of these dodecane overlays was collected, and 1 µL of these samples was injected into a
GC–MS apparatus (Trace1300 (GC) + ISQ LT (MS), ThermoScientific) equipped with a TG-
5MS column (30 m × 0.25 mm × 0.25 µm) and operated with He carrier gas at 1.0 mL·min−1;
ionization voltage 70 eV, transfer line temperature 250 ◦C; ion source temperature 200 ◦C.
Analyses were carried out in the selected ion monitoring mode: m/z = 50–650, as we
previously described, using split modes of 10:1 (limonene) or 5:1 (farnesene). Terpenes
were quantified as we previously described [8,9,11].

3.4. Statistics

Unless otherwise stated, the data presented represent independent experimental tripli-
cates of the mean and are presented as mean ± standard deviation (SD). The differences
between means of the individual groups were analyzed using t-test (p < 0.05, symbolized
by *).

4. Conclusions

In this study, we have tested various genetic strategies to attempt to enhance farnesene
production in S.6803 and limonene production in S.7002 (Table 1). We report that the
overexpression of the genes encoding the key CO2-fixing enzymes RubisCO and phospho-
ribulokinase increase the production of terpenes in S.6803, but not in S.7002. Furthermore,
the overexpression of the crtE gene (synthesis of terpene precursors) from S.6803, but not
S.7002, increases farnesene production in S.7002. In contrast, the overexpression of the
crtE genes from S.6803 or S.7002 decreases farnesene production in S.6803. Collectively,
these results emphasize the physiological differences between S.6803 and S.7002, the two
model cyanobacteria that are often used for biotechnology projects [7]. These differences
remind us that a model cyanobacterium is essentially a model of itself. Consequently, it
is important to study several cyanobacteria in parallel (in the same laboratory) to better
understand and compare their common and specific properties, and exploit this knowl-
edge for biotechnological purposes. Here, we also showed that the deletion of the crtR
and cruF genes (carotenoid synthesis) and phaAB genes (carbon storage) did not increase
the production of farnesene in S.6803. Finally, we have tested a containment strategy for
genetically modified organisms (GMOs). We report that the deletion of the ccmK3K4 genes
(carboxysome for CO2 fixation) did not impact the production of limonene, but decreased
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the production of farnesene in S.6803. Collectively, these findings show that the influence
on terpene production of the presently tested genetic engineering strategies depends on the
nature of the studied cyanobacterial chassis and metabolic enzymes. It is clear from these
results and recent data in the literature [20] that one need better understand the metabolism
of cyanobacteria to engineer efficient strains for an economically viable photoproduction
of terpenes.

Table 1. Summary of the terpene producing strains engineered/studied in this study.

Host Strain Designation Relevant Features Terpene
and Figure

Yield
mg/L

S.6803 ChrFS Expression of the farnesene synthase gene (FS) cloned in a
neutral chromosomal site

Farnesene
Figure 2 2.7

ChrFS + pCrbc6803 ChrFS strain expressing the S.6803 RubisCO genes from the
pC plasmid 2.5

ChrFS + pCrbc7002 ChrFS expressing the S.7002 RubisCO genes from pC 5.2

ChrFS + pCrbc7942 ChrFS expressing the S.7942 RubisCO genes from pC 2.5

ChrFS + pCrbcC7425 ChrFS expressing the C.7425 RubisCO genes from pC 4.2

S.6803 ChrFS Expression of FS Farnesene
Figure 3 2.7

ChrFS + pCprk7425 ChrFS expressing the C.7425 prk gene from pC 10.2

S.7002 ChrLS Expression of the limonene synthase gene (LS) from a neutral
chromosomal site

Limonene
Figure 4 0.8

ChrLS + pCrbc6803 ChrLS expressing the S.6803 RubisCO genes from pC 0.9

ChrLS + pCrbc7002 ChrLS expressing the S.7002 RubisCO genes from pC 0.8–0.9

ChrLS + pCrbc7942 ChrLS expressing the S.7942 RubisCO genes from pC 0.8–0.9

ChrLS + pCrbcC7425 ChrLS expressing the C.7425 RubisCO genes from pC 0.8–0.9

ChrLS + pCprk7425 ChrLS expressing the C.7425 prk gene from pC 1.0

S.6803 pCFS Expression of FS from pC Farnesene
Figure 5 12.0

pCFScrtE6803 Expression of FS and the S.6803 crtE gene from pC ≤3.0

pCFScrtE7002 Expression of FS and the S.7002 crtE gene from pC ≤3.0

pCLS Expression of LS from pC Limonene
Figure 5 0.55

pCLScrtE6803 Expression of LS and the S.6803 crtE gene from pC 0.05

pCLScrtE7002 Expression of LS and S.7002 crtE from pC 0.2

S.7002 pCFS Expression of FS from pC Farnesene
Figure 6 2.2

pCFScrtE6803 Expression of LS and S.6803 crtE from pC 3.8

pCFScrtE7002 Expression of LS and S.7002 crtE from pC 1.8

S.6803 pCLS Expression of LS from pC Limonene
Figure 7 0.8

∆phAB pCLS Expression of LS from pC and deletion of the phaAB genes 0.9–1.2

pCFS Expression of FS from pC 22.0

∆phAB pCFS Expression of FS from pC and deletion of phaAB 20–25
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Table 1. Cont.

Host Strain Designation Relevant Features Terpene
and Figure

Yield
mg/L

S.6803 pCFS Expression of FS from pC Farnesene
Figure 8 12.5

∆crtR pCFS Expression of FS from pC and deletion of the crtR gene 3.7

∆cruF pCFS Expression of FS from pC and deletion of the cruF gene 4.5

S.6803 pCFS Expression of FS from pC Farnesene
Figure 9 7.0

∆ccmK3K4 pCFS Expression of FS from pC and deletion of the ccmK3K4 genes 5.5

pCLS Expression of LS from pC Limonene
Figure 9 0.35

∆ccmK3K4 pCLS Expression of the LS gene from pC and deletion of ccmK3K4 0.45
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