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Using structural class pairing to address the spatial
mismatch between GEDI measurements and NFI

plots
Nikola Besic , Sylvie Durrieu , Anouk Schleich , and Cédric Vega

Abstract—The Global Ecosystem Dynamics Investigation
(GEDI) mission can significantly enhance Multi-Source National
Forest Inventories (MSNFI) by improving the spatio-temporal
resolution of forest attributes while preserving the statistical
relevance of the design-based inference approach. The main
challenge is the lack of systematic spatial alignment between
GEDI footprints and NFI plots, which is necessary to accurately
link in situ forest measurements with GEDI data. In this
study, we aim to tackle the aforementioned issue by introducing
a methodology for interpolating GEDI measurements to NFI
plots, enabling the calibration of GEDI data using localized
NFI estimates. Our proposed method incorporates clustering,
classification, and regression techniques, and utilizes GEDI and
NFI data, along with Sentinel-2 images, land-use information,
and topographic data. Beginning with the prediction of profile
structural classes and shapes on NFI plots, the proposed method
ultimately projects actual measurements onto the NFI plot sites
through profile pairing within the predicted structural classes.
The method is conceived and validated using the data acquired
across the mountainous area of ∼ 500 kha, covered by > 500
NFI plots. Our validation framework shows that the method is
able to project relative height profiles at NFI plots, allowing to
partly interpolate the lower part of the profile and not only the
canopy top height. This enables the construction of models that
efficiently relate GEDI profiles and wood volume, demonstrating
the importance of incorporating lower relative height values when
linking forest attributes and lidar measurements (R2 = 0.65,
MBE = 2.31 m3/ha).

Index Terms—GEDI, NFI, Sentinel-2, machine learning, mod-
eling, wood volume

I. INTRODUCTION

A comprehensive and systematic observation of forests is
of utmost importance for a variety of reasons, ranging from
ecological to economic and societal concerns, especially in
light of the rapidly evolving climate emergency [1]. The scope
and speed of the climate crisis, along with its impacts on
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public policies, make it undeniably necessary to monitor forest
attributes on a large scale with higher spatial accuracy and
temporal frequency.

The design-based inferential approach is by far the most
established framework for forest observation and serves as
the backbone of National Forest Inventories (NFI) [2]. In
its conventional form this approach principally relies on the
ground measurements i.e. the inventory plots, and allows
to infer without bias both quantitative and qualitative forest
attributes. The inference is performed following a beforehand
defined stratification pattern across a particular territory, and
in the time frame spanning typically over several years. The
classical NFI approach indeed represents a way to ensure a
comprehensive and systematic forest observation at a broad
scale, but it does not respond to the previously mentioned
and increasingly important requirement concerning the higher
spatial accuracy. The latter can be addressed only by involving
remote sensing data [3]–[6].

When ground measurements are enhanced with auxiliary
remote sensing data within an inferential framework, this
approach is referred to as the Multi-Source National Forest
Inventory (MSNFI) [7]. There are several ways of introducing
remote sensing data into a design-based inferential approach,
with all of them requiring to first establish a model able
to link ground measurements and remote sensing data [8].
The former is true whether we deal with the model-assisted
methods, where ground measurements are still driving the
estimation, or with the model-based methods, where the role of
ground measurements ends with establishing the model and the
estimation is somehow principally driven by remote sensing
data.

To construct a model that links ground measurements with
remote sensing data, the remote sensing data must have the
physical capability to replicate some of the variance observed
in the in situ measured or locally estimated forest attributes.
The optimal remote sensing dataset is chosen based on the
complexity of the forest, considering both its composition and
structure. Optical and radar images cover repeatedly large
surfaces at high to medium spatial resolution, but do not
contain an elaborated vertically resolved information about
the forest stand, making them less suitable to face a more
complex forested environment. The airborne lidar and to a
degree photogrammetric sensors [9], [10] acquire a vertically
resolved information and have thus the potential to tell on quite
a bit of parameters describing a more complex environment,
but do not cover large areas on a regular basis. The high
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energy spaceborne lidar data, as the one acquired by the Global
Ecosystem Dynamics Investigation (GEDI) mission, represents
a sort of compromise. It namely offers broad and repeated cov-
erage, coupled with slightly less vertical resolution compared
to airborne lidar, but lack the spatial continuity characterizing
optical and radar imagers.

From aboard the International Space Station (ISS), the
GEDI mission [11] is densely sampling, through the acquisi-
tion of full-waveform lidar data, a big part of world’s forests,
and has therefore the remarkable potential to contribute achiev-
ing MSNFI ambitions of countries situated between 51.6◦N
and 51.6◦S latitudes. However, despite the high resolution
and the dense sampling strategy, as suggested above, GEDI
remains a non-imaging sensor and thus does not allow to
provide the wall-to-wall coverage of entire forest areas. There
has been hence an intense development of techniques aiming at
interpolating/extrapolating spatially and temporally forest at-
tributes derived from GEDI measurements [12]. Most of these
address the interpolation or extrapolation of the canopy height
[13]–[18], without necessarily involving the field information.

Since the primary goal of the GEDI mission is above-
ground biomass (AGB) estimation [19], it is essential to have
at least some collocated lidar footprint acquisitions and in situ
measurements [20] to parameterize the GEDI waveform-AGB
models [21]. The same condition must be fulfilled to allow the
integration of GEDI waveforms into the MSNFI framework.
Nearly all the methods allowing to respond to this requirement
assume the simulation of the GEDI relative height profile at
the plot starting from the coinciding airborne lidar point cloud
[22]–[24]. The exception is the method recently proposed
by [25], which is based on a spatial model for waveform
prediction using the principal components of the GEDI relative
height (RH) metrics space. Adhering to a similar approach
and building upon the matching strategies introduced by [26],
[27], we propose an alternative method for the interpolation of
the GEDI measurements to the French NFI plots. This method
also does not require simulation from locally acquired airborne
lidar data, and aims to interpolate the entire relative height
profile to the NFI plots and not only the canopy height.

The method presented in this article relies on using Sentinel-

2, the forest stand type map and the digital terrain model as
auxiliary input data. It combines the machine learning routines
of time series K-means clustering, Multi-Layer Perceptron
(MLP) classification and MLP regression in a way that allows
to project at every considered NFI plot, through the profile
pairing effectuated by structural classes, GEDI RH vegetation
cumulative energy profiles issued from the corresponding
GEDI full-waveforms. The proposed pairing routine stands
out for its focus on balancing geographical space (distance
between NFI plots and GEDI footprints) and feature space
(similarity between GEDI RH vegetation cumulative energy
profiles predicted at NFI plots and GEDI footprint loca-
tions). A model, based on the Random Forest Regressor, is
then used to link projected GEDI RH vegetation cumulative
energy profiles and locally estimated wood volume stocks.
The originality of the approach relies also on its scalability
and flexibility: while classification alone could be used for
post-stratification purposes, regression and pairing could be
used for downscaling further estimates though model assisted
estimation.

As depicted to some extent in Fig. 1, the article is organized
as follows: In Section II we describe the study area, introduce
the employed data and describe the transformation of GEDI
waveforms leading to the vegetation cumulative energy profiles
used in the method development. In Section III, we provide a
detailed explanation of the main steps of the method (Fig. 2):
clustering, classification, and regression (collectively referred
to as Step I), along with the concept of profile pairing (referred
to as Step II) and the volume model. Section IV provides the
description of the validation framework, and the results of the
validation both in terms of the profile matching and the wood
volume estimation. Sections V and VI discuss the content and
conclude the article, respectively, with the latter also offering
additional perspectives on the presented work.

II. STUDY AREA AND DATA

The area chosen for the development and the validation
of the method principally corresponds to the French sylvo-
ecological region named ”Central Vosges Mountains”, located
in the eastern part of the continental metropolitan France. Up

Fig. 1. The diagram presenting the organization of the central part of the manuscript.
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to 75% of this mountainous area is covered by forest, which is
broad-leaved below 500m of altitude - mostly the European
beech (Fagus sylvatica), towards the geographical limits of
the study area; and coniferous above 500m - mostly silver fir
(Abies alba) and the European spruce (Picea abies), towards
the center of the depicted study area. The area is known for the
important wood industry and trade, which have been seriously
affected by the bark-beetle epidemic driven by climate change
[28], making this region a representative example of the need
for the forest monitoring at higher spatio-temporal resolution,
in the light of the climate crisis.

A. NFI data

The French National Forest Inventory (NFI) is continuous
in both space and time, employing a two-phase stratified
sampling design [29], [30]. This design uses a 1 km grid
defined for a 10-year period, with 1/10 of the grid surveyed
each year. In the first phase, one point is randomly selected
from the yearly grid sample (approximately 100 000 points
total). The land use and land cover around these points are
photo-interpreted using aerial photographs to estimate forest
area. The second phase involves a sub-sample of the first
phase’s forest points (around 7 000 points), which are surveyed
in the field to estimate forest attributes. Field measurements
are conducted in four circular concentric plots with radii of
6m, 9m, 15m, and 25m, allowing to derive among a number
of NFI attributes the two parameters used in this study:

• the maximum height (HNFI ) - defined as the maximum
height at the NFI plot. Since height is measured for
only a sample of trees (one per diameter class and
species), missing values were imputed using a random
forest method (MissForest [31]). This method was applied
separately for each species and sylvo-ecological region,
utilizing species, diameter at breast height, height, and
plot-level variables (density, basal area, and volume). The
imputation was validated using older data and resulted in
a relative root mean square error (RMSE) of 13%.

• wood volume per hectare (VNFI ) - estimated from the
circumference at breast height, the height, the timber
height, and the tree inclusion probability, by accounting
trees having the circumference at breast height superior
to 7.5 cm.

The fundamental NFI measurements, such as wood volume
per hectare, are subsequently post-stratified based on an ex-
ternal criterion (the forest stand type map). This approach
enables the estimation of wood volume per hectare values
for specific areas over a five-year period. As discussed in the
introduction, our overall goal is to reduce both this surface
and the 5-year time span, without compromising the estimation
accuracy, by incorporating remote sensing measurements. This
article specifically focuses on the objective of projecting GEDI
profiles to the NFI plots, an essential step in order to be able
to utilize GEDI measurements to achieve this goal.

In the presented study we therefore use HNFI and VNFI

estimations from 529 NFI plots across the study region,
acquired between 2017 and 2020.

B. GEDI data

GEDI contains three lasers, two operating in the full power
mode (one beam per laser) and one operating in the coverage
mode (split into two beams) [11]. These four beams, operating
at 1064 nm wavelength, produce footprints averaging 25m in
diameter on the ground, which are separated by 600m across
track and by 60m along track.

We are using GEDI level 2A products, providing: ground el-
evation, canopy top height and relative height metrics. Relative
height metrics indicate the height at which a specific percentile
of returned energy is reached relative to the detected ground,
specifically from the center of the ground peak. These metrics
describe the shape of the normalized cumulative return energy,
starting from the bottom of the ground return (with the center
of the ground peak normalized to zero) to the top of the canopy
(normalized to one).

The original GEDI Relative Height (RH) profiles, apart
from the vegetation segment, also include the ground echo
component. Since the latter was deemed irrelevant to the
objectives of this article, we opted to remove it and base our
method on profiles intended to solely capture the above-ground
vegetation portion. To remove bad quality data both quality
and degrade flags available in GEDI products were used [11].
Footprints with a quality flag of one (according to the L2A
criterion, although the stricter L4A threshold could be applied
if necessary, which was not the case for the ecosystems under
study) and a degrade flag of zero were selected. GEDI RH
profiles were further transformed into vegetation cumulative
energy profiles, addressed as vegetation profiles across this
manuscript (RHv). The latter represent the relative height
metrics at 1% intervals for the vegetation component of the
backscattered signal. To that aim, a simplified waveform was
reconstructed from RH values and the ground component of
the signal was removed by adjusting a Gaussian function to
the ground return before subtracting this function from the
waveform. Finally, the resulting vegetation waveform was back
transformed into a RH type of profile. An assessment of the
cover rate was obtained through the comparison of original
GEDI RH profiles and corresponding vegetation profiles.

In this study, after filtering, we have access to 185,725 GEDI
footprints, each accompanied by vegetation profiles, obtained
from areas designated as forest according to the forest stand
type map [32]. 100 750 out of these are issued from ”Full
Power” beams and 84 975 are acquired in the ”Coverage”
mode, in the period ranging from 2019 to 2021.

C. Other data

Aside from NFI and GEDI data, the study uses multi-
spectral Sentinel-2 summer and winter acquisitions (year
2021), as well as the Digital Terrain Model (DTM) mean
elevation, slope and aspect. Regarding Sentinel-2 data, we
used Theia level 3A products. These products, generated
using the Weighted Average Synthesis Processor (WASP) [33],
offer monthly cloud-free syntheses of the Sentinel level 2A
product. The employed DTM is generated at a 1m resolution
using Triangulated Irregular Network algorithm applied on the
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(a)

(b)
Fig. 2. The schemes presenting: (a) Step I, (b) Step II, of the proposed method.

Airborne Laser Scanning (ALS) data acquired by the French
National Mapping Agency over the study area in 2014 [34].

As previously mentioned, we also included the vector forest
stand type map, which is used in both the development of
the method (partially relying on polygon surfaces) and the
validation framework (utilizing polygon classes) [32].

All three mentioned auxiliary datasets cover both NFI plots
and GEDI footprints.

III. METHOD

When a GEDI footprint that corresponds geographically to
an NFI plot location is absent, it becomes necessary to identify

an alternative representative GEDI footprint. According to the
criteria discussed in Sec. IV-A, this applies to 94% of the NFI
data used in this study. This task is achieved by training an
encoder model to predict a structural class and to map predic-
tor variables into a ten-dimensional feature space consisting
of RH metrics (see Fig. 2a). Within this feature space and a
specific class, samples demonstrating similarity (i.e., forests
with similar structures) are positioned close to each other (see
Fig. 2b). Subsequently, we can encode the predictor data at the
NFI plot location into the feature space and conduct a search
for nearby GEDI samples based on both feature similarity and
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Fig. 3. Defining the structural class of the vegetation profile through the clustering of its sub-sample. The vegetation profiles are depicted in gray, while the
mean vegetation profiles representing different clusters/structural classes are traced in non-gray nuances.

geographical proximity. This methodology has been developed
in two steps.

A. Step I

This part of the method, depicted in Fig. 2a, starts by
defining vegetation profile structural classes (Sec. III-A1). It
further relies on the auxiliary datasets introduced in the previ-
ous section to predict the class among the beforehand defined
ones (Sec. III-A2) at locations corresponding to every NFI
plot in the area, as well as at locations corresponding to every
footprint of a sub-sample of vegetation profiles. Aside from the
structural class, we as well predict at the very same locations
the shape of the vegetation profile (Sec. III-A3) - consisting
of 10 RH values (RHv = [RHv10, RHv20, · · · RHv100]).

1) Clustering: defining profile structural classes: The veg-
etation profile structural classes are defined thought the unsu-
pervised clustering of randomly selected vegetation profiles -
the sub-sample ”training n◦1” (Fig. 3). The method we apply
is the time series k-means clustering based on the Dynamic
Time Warping (DTW) principle [35]–[37]. We basically treat
the vegetation profile composed of ten relative height values
as the time series, with the idea of the DTW being to align
profiles such that their Euclidean distance (||·||) is minimal.

If two considered vegetation profiles are annotated as:

RH(1)
v =

[
RH(1)

v 10, RH(1)
v 20, · · · RHv(1)100

]
,

with [10, 20, · · · 100] being n1, and

RH(2)
v =

[
RH(2)

v 10, RH(2)
v 20, · · · RHv(2)100

]
,

with [10, 20, · · · 100] being n2, (1)

their DTW distance (D (100, 100)) is calculated recursively,
using the formula:

D (n1, n2) =
∣∣∣∣∣∣RH(1)

v n1 −RH(2)
v n2

∣∣∣∣∣∣
+ min

 D (n1 − 1, n2)
D (n1 − 1, n2 − 1)
D (n1, n2 − 1)

 , (2)

with the initial condition being D (10, 10) =∣∣∣∣∣∣RH
(1)
v 10−RH

(2)
v 10

∣∣∣∣∣∣.
The DTW k-means clustering is, unlike the approach based

on the Euclidean distance metric, therefore less sensitive to
shifts between profiles, meaning that it should be able to
assemble similar shapes of lidar returns even if the canopy
height (RHv100) varies among them. In practice, as shown
in Fig. 3, the canopy height still plays a significant role in
defining the clusters, although it is logically less important
than it would be with the conventional k-means Euclidean
approach.

The number of clusters (N = 15) is determined using
the elbow technique, which comes down to identifying the
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(a) (b) (c)
Fig. 4. MLP Classifier and Regressor: (a) the input data, (b) the classifier training and test data, as well as the confusion matrices for three different solvers,
(c) the regressor training and test data, as well as the point clouds for three different solvers.

elbow in the curve depicting the within-cluster sum of square
(WCSS) as a function of number of clusters [38].

The parallel effort to propose supervised model-based clus-
tering, which involves defining a sigmoid function with two
degrees of freedom—the translation for the canopy height and
the slope for the shape of the lidar return—resulted in fairly
good performance when clustering original GEDI RH profiles.
However, it proved to be less effective than the previously
described unsupervised approach for the vegetation profiles
used in this work.

2) Classification: predicting profile structural classes: The
classification step assumes predicting the vegetation profile
structural class using the auxiliary data available both at
locations of GEDI footprints and at NFI field plots. The
method we apply is the Multi-Layer Perceptron Classifier [39],
[40], which serves as the first part of the encoder, as shown in
Fig. 2a. The reference data consists of clustering labels (i.e.,
structural classes) from sub-sample ”training n◦1”. The input
data includes (Fig. 4a):

• The canopy height indicator: RHv98 is used during
the training and test when only vegetation profiles are
employed, and HNFI as defined in Sec. II-A when
predicting the structural classes at NFI plots.

• Sentinel-2 frequency bands (B2, B3, B4, B5, B6, B7, B8,
B9, B11 and B12) corresponding to the data acquired in
summer (June 2021) as well as to the data acquired in
winter (November 2021) [41].

• Size of the polygon in the forest stand type map that
contains the point of interest (whether it is GEDI the
footprint or the NFI plot) [32].

• The attributes of the DTM, which include: mean eleva-
tion, slope, and aspect.

At some point we tested a series of spectral indices at the
input instead of directly introducing values of different spectral
bands, but this did not produce any significant difference in
terms of classifying performances.

The employed MLP Classifier was parameterized separately,
through the optimization procedure, for each of three solvers
(Fig. 4b): limited-memory BFGS optimizer (lbfgs), stochastic
gradient descent (sgd) and stochastic gradient-based optimizer
(adam). This is done using vegetation profiles structural classes
(without NFI plots), more precisely using 80% of the data sub-
sample n◦1 (i.e. 16 000 profiles). When applied on 20% of the
used sub-sample, the first solver achieved the test accuracy
of 67% (percentage of well predicted classes), by slightly
outperforming the others, and was therefore applied further on
in the method. The retained classifier is therefore based on the
lbfgs solver, has three hidden layers, the rectified linear unit
function as activation function, and uses the adaptive learning
rate.

The classifier trained and tested using vegetation profile
classes is then applied at locations corresponding to NFI
plots (Fig. 5a) and GEDI footprints (Fig. 5b). It is important
to clarify here that the classifier is not applied to the sub-
sample used for its training (and testing), but rather to another
randomly selected sub-sample, referred to as the ”application”
sample, of the same size (20 000footprints).

3) Regression: predicting profile shapes: The regres-
sion step consists of predicting the vegetation pro-
file shape i.e. 10 relative height values (RHv =
[RHv10, RHv20, · · · RHv100]), using the auxiliary data
available both at locations of GEDI footprints and at NFI field
plots. The method we apply is the Multi-Layer Perceptron
Regressor [39], [40], designated as the second part of the
encoder in Fig. 2a. It uses a random sub-sample of vegetation
profiles (sub-sample ”training n◦2”) as the reference data and
shares the same composition of input data as the previously
described classifier (Fig. 4a).

In the nearly equivalent procedure as the one described in
the previous section, the regressor was parameterized simulta-
neously for three solvers (Fig. 4b): lbfgs, sgd and adam. The
first one achieved the best performances - model explaining
78% of the variance (R2 = 0.78) when applied on the test
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dataset (i.e. 20% of the dataset). The retained regressor is thus
based on the lbfgs solver, has three hidden layers, with the
hyperbolic tangent activation function, and uses the constant
learning rate.

The regressor trained and tested using vegetation profiles is
then applied at locations corresponding to NFI plots (Fig. 5c)
and GEDI fooprints (Fig. 5d), which were already character-
ized by a vegetation profile class (sub-sample ”application”
in the classification step).

(a) (b)

(c) (d)
Fig. 5. Prediction of: (a) vegetation profile structural classes at NFI plots,
(b) vegetation profile structural classes at locations corresponding to GEDI
footprints, (c) vegetation profile relative heights (RHv) at NFI plots, (d)
vegetation profile relative heights (RHv) at locations corresponding to GEDI
footprints.

B. Step II

Once we have the predicted class and shape for each plot
and footprint, we proceed to the pairing procedure. This
is performed within the given structural class, considering
both the geographical distance and the similarity between the
predicted shapes (at the NFI plot vs. the GEDI footprint). This
process results in projecting real vegetation profiles onto NFI
plots, using the predicted ones as a proxy (Fig. 2b).

Previously described predicting of the vegetation profile
class and shape at locations where we have actual GEDI mea-
surements (sub-sample ”application”), could seem counter-
intuitive. It is though presumed to be necessary given that the
core part of the proposed method refers to the pairing of the
predicted profiles within the common class. The assumption
is hence that it is more suitable to perform pairing among the
synthesized, predicted profiles than between the synthesized
and the real ones. This means that the predictions of both
class and shape serve only as an intermediary product, acting
as a proxy to associate a real vegetation profile with each NFI

plot. The predicted structural class could though find its utility
in the post-stratification in the NFI inference phase.

So, what would be the most suitable way of pairing the
predicted profiles within one structural class?

• Should one be very confident in the classification step
and therefore only consider the closest profile in terms of
geographical distance (nearest neighbor), assuming that
the classification sufficiently homogenized the profiles
(Fig. 6a)? Perhaps, even though we acknowledge that
neither the clustering (e.g., class 13 in Fig. 3) nor the
classification (with a test accuracy score of 67%) are
flawless in terms of performance.

• Alternatively, should one choose to entirely disregard the
intuitive proximity criterion and instead rely solely on
the similarity between predicted profiles i.e., the nearest
profile in the feature space, regardless of the geographical
distance separating them within the specified region and
class (Fig. 6b)? Perhaps, even if we know that the
regression (test R2 = 0.78) is not perfect either, and
that the vicinity nevertheless can be a strong indicator
of dealing with the very similar forest stand.

Unable to resolve this dilemma, we decided to take both into
account (Fig. 2b). Namely, we opted to explore the trade-off
between the geographical distance (dg) and the feature space
distance (dfs) by defining the weighted distance:

d = w · dfs + (100− w) · dg, (3)

with w being the weight ranging from 0 to 100. The ge-
ographical distance is the Euclidean distance between two
coordinates, while the feature space distance uses the DTW
principle introduced in Sec. III-A1. The latter implies that the
dfs is defined in the same way as D with the only difference
that we now compare the predicted rather than the original
vegetation profiles. The distance d is considered within a class
as predicted in Step I, meaning we calculate the distance and
perform pairing only between the NFI plots and the GEDI
footprints belonging to the same class. Due to the difference
in magnitude, both dg and dfs are normalized with respect to
their maximum values within a class.

On the example illustrated in Fig. 6c we can indeed see that
as we move from w = 0 (d = dg) to w = 100 (d = dfs),
we gradually release the geographical proximity constraint and
give more space to the similarity in the feature space.

As for the choice of using the DTW rather than the Eu-
clidean distance, we aim at reproducing the vegetation profile
and therefore prefer not to penalize the pairing of profiles very
similar in shape due to a potentially minor offset in terms of
total height.

Given the significance of geographical distance and the
geolocations of NFI plots and GEDI footprints, it is crucial to
note that the horizontal geolocation error of GEDI is estimated
at 10.2m [42]. In contrast, the relative mean error for the
French NFI plots is 3.7m, obtained by comparing the original
position estimate with the one determined during routine
quality control between 2008 and 2017. This estimate is
based on a combination of photo-interpretation, chainage, and
GPS, with the latter being particularly imprecise in forestry
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(a) (b) (c)

Fig. 6. An example of the GEDI-NFI pairing (within class 1): (a) locations of NFI plots (red) and GEDI footprints (blue), (b) predicted shape of vegetation
profiles (RHv) at locations corresponding to NFI plots (red) and GEDI footprints (blue), (c) six ways of pairing profiles corresponding to six different values
of w.

environments [43], [44].

To effectively utilize both geographical distance and feature
space distance using the weighted distance defined in Eq.
3, we must identify the optimal value of the weight w.
This basically involves determining the extent to which we
should depend on geographical distance versus feature space
distance, and inherently provides valuable information about
the homogeneity of the forest stand in the area of application.

Since Step II aims to enhance the performance of directly
estimated profiles from Step I, the optimization of w is
conducted within the validation framework (see Sec. IV-A)
used to evaluate the method’s performance. Essentially, this
involves using the pairing mechanism to improve the baseline
results achieved by the machine learning method in Step I.

The decision to base the method constitution phase (Steps
I and II) on a randomly selected sample of 20 000 footprints,
rather than using all available data (185 725 footprints), was
made primarily for time efficiency. Additionally, this approach

aims to demonstrate the potential of the proposed method by
highlighting its effectiveness with a sparser GEDI footprint
coverage.

At the end of this step we have therefore a projection of
actual vegetation profiles for each of the NFI plots in the area
of application.

C. Wood volume modeling

Once we have obtained projections of vegetation profiles at
NFI plots we can proceed to establishing a link between the
remotely sensed ”measurement” and various forest attributes
measured or estimated at the plot. As already mentioned
in Sec. I and II-A the forest attributes we are particularly
interested in are the wood volume and the above-ground
biomass. Waiting for the formalization of the novel biomass
estimation protocol at French NFI plots, we settled upon
the wood volume model for illustrating the benefits of the
proposed method.
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The method we apply in order to link the projected profiles
and the locally estimated wood volume (VNFI ) is the Random
Forest Regressor [39], [45]. The method is optimized for
two different variants, i.e. relating the in situ estimated wood
volume to:

a) GEDI-issued vegetation profiles - RHv (10 deciles),
b) GEDI profiles top value - RHv100.
Principal component analysis (PCA) is applied beforehand

to address the multicollinearity of RHv metrics, retaining 7
out of 10 components. The final regressor uses 400 trees, with
nodes expanding until all leaves are pure or contain fewer than
two samples, and bootstrap samples are used in building the
trees.

For every variant the resulting models are applied to all
available GEDI footprints in the considered area.

Fig. 7. Validation framework: almost coinciding NFI plots & GEDI footprints,
as well as the description of the forest stand in question [32].

IV. RESULTS

The results presented in this section pertain to the efficacy
demonstrated by the proposed method in interpolating accurate
vegetation profiles to the NFI plots, as well as the performance
of wood volume interpolation from the NFI plots to the GEDI
footprints. Both assessments are enabled by the validation
framework introduced in Sec. IV-A.

In Sec. IV-B, we verify the performance of predicted vege-
tation profiles, as detailed in Step I of the method presented in
Sec. III (dashed line trajectory in Fig. 1). Sec. IV-C describes
the optimization of the weight w necessary for the application
of Step II of the method, and finally presents the results of
validating the final projections, derived at the conclusion of
Step II of the method (full line trajectory in Fig. 1).

A. Validation framework

Validation framework is made possible by the fortuitous
spatio-temporal quasi-coincidence between certain NFI plots

and the portion of GEDI footprints. This allowed us to identify
32 NFI plots (6 %), addressed further as the validation plots,
where we can assume with a relative certainty that we know
what the projected vegetation profile should look like (Fig.
7). This identification is done by respecting the following
criteria establishing the coincidence between 32 plots and
corresponding footprints:

• distance: The geographical distance separating the plot
and the footprint should not exceed 40 m, which we
found to be a compromise between what would be the
expected forest stand spatial auto-correlation length and
the size of the validation sample. That is to say, more
than 40m would increase the risk of not dealing with
the extremely similar part of the stand, and less would
simply leave us with insufficient number of pairs in the
sample to allow a proper statistical analysis. The analysis
carried out in the forest of Sologne (Central France) and
presented in [27] shows that the semi-variogram of GEDI
measurements reached the horizontal asymptote at the
distance corresponding to 500 m, meaning that the 40m
maximum distance represents a fairly rigorous choice.

• forest stand type class: Both the plot and the footprint
should belong to the same polygon of the vector forest
stand type data base [32].

• height check: Due to the geo-localization issues which
can characterize GEDI footprints [42], [46], we included
an extra verification which refers to the height difference
|HNFI −RHv98| which should not exceed 4m.

Validation of profiles consists of observing the concordance
between the ensemble of vegetation profiles predicted (Sec.
IV-B) or projected (Sec. IV-C) at the NFI validation plots
(RHv predicted/projected) and the reference profiles coming
from the validation footprints (RHv ’observed’). We evaluate
this concordance globally, by comparing all relative height
values at all validation plots at once, and in the more stratified
manner, by comparing one relative height (RHvn) at a time
at all validation plots.

Validation of estimated wood volume refers to the com-
parison of the wood volume estimation at GEDI footprints
and the wood volume estimated locally at NFI plots for the
32 validation plot-footprint pairs. The GEDI footprints - NFI
wood volume pairs corresponding to the validation plots were
evidently kept out of the construction of the wood volume
models.

B. Validation of predicted profiles (Step I)

As what it concerns the validation of predicted profiles, i.e.,
before the pairing (Fig. 8a), the global evaluation demonstrates
the coefficient of determination scores (R2) rising up to the
value of 0.88. It is though the ”stratified” evaluation that
we found particularly interesting. Namely, the coefficients
of correlation (rRHvn) for the lower part of the considered
relative heights (RH10 − RH50) do not drop below 0.5.
Although there is some dependence between the metrics, a
slight decrease in correlation is observed as we move down
the profile. This is expected, considering the auxiliary data
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(a) (b) (c)
Fig. 8. Validation of predicted profiles (Step I): (a) validation of predicted profiles, (b) validation of estimated wood volume using predicted profiles, (c)
validation of estimated wood volume using only profile top values. Different point colors in the upper part of sub-figure (a) correspond to various metrics, as
indicated by the bar plot in the lower part.

used does not provide direct information about the lower part
of the stand.

The results for the so-called two variants of the final wood
volume estimation, introduced and enumerated from a to b in
Sec. III-C are presented in two panels of Fig. 8 ranging from
b to c. Depicted point clouds, as well as the corresponding
coefficients of determination (R2), normalized relative mean
square error (NRMSE), and mean bias error (MBE), allow
us to deduce the following:

• Step I of the method allows building the GEDI profiles-
based model explaining 53% of the wood volume vari-
ance (R2 = 0.53), with 44.99% of NRMSE and 21.43
m3/ha of MBE. One could rather say at least, knowing
that the employed random forest model was not subject
to an extensive optimization given its somewhat auxiliary
role as the demonstrator of the GEDI measurements
interpolation efficiency, the latter being the ”raison d’être”
of this article. However, these results are far from satis-
factory, particularly due to the notably high value of the
mean bias estimate.

• Even so, results are far better when using the ten relative
height values (Full RHv) than when having only the
canopy height (RHv100), where the employed random
forest regressor fails to do better than the mean estimate
- negative R2 (Fig. 8c).

C. Validation of projected profiles (Step I + Step II)

The method (Step I + Step II) is iteratively run for every
value of w ranging from 0 to 100, collecting scores based
on Pearson’s correlation coefficient between ’observed’ and
projected RHv , as well as the coefficient of determination
(R2), normalized relative mean square error (NRMSE), and
mean bias error (MBE) of the resulting wood volume model.
Displayed in Fig. 9, the scores indicate that the optimal values
of the wood volume R2 and NRMSE for the considered sub-
sample ”application” are located either in the midpoint of
the possible range of w values, halfway between the nearest

neighbor and the nearest profile, or towards the end of the
range, at the nearest profile. However, when we add the wood
volume MSE to the equation, we restrain the selection to the
former sub-range, ultimately choosing w = 47.

After performing the pairing with the optimal weight se-
lected in the previous section (w = 47), we repeat the same
analysis as in Sec. IV-B, but with actual vegetation profiles.
It is important to note that the matching of NFI plot and
GEDI footprint acquisition years did not significantly impact
the pairing procedure (e.g. out of 123 NFI plots from 2019,
only 40 (33 %) were paired with the GEDI shots from the
same year).

In the part concerning the validation of projected pro-
files (Fig. 10a), we observe results similar to those obtained
with the predicted profiles. Specifically, the global evalua-
tion coefficient of determination (R2) rises to 0.85, and the
’stratified’ evaluation shows that the correlation coefficients
(rRHvn) for the lower range of the considered relative heights
(RH10 − RH50) do not drop below 0.5.

The results for the two variants of the final wood volume
estimation are presented in two panels of Fig. 10 ranging from
b to c, allowing us to deduce the following:

• Step I + Step II of the method allows building the GEDI
profiles-based model explaining up to 65% of the wood
volume variance (R2 = 0.65), with 39.10% of NRMSE
and only 2.31 m3/ha of MBE. These results are far
better than the ones obtained after the direct predictions
(Sec. IV-B), especially in terms of the mean bias estimate
which is particularly relevant when dealing with the forest
resources estimation.

• Results are significantly better when using the ten relative
height values (Full RHv) compared to using only the
canopy height RHv100 (Fig. 10c).

V. DISCUSSION

Despite the loss of correlation in the lower RH values, our
approach has the key advantage of proposing a match for the
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Fig. 9. Weight w optimization (Step II), conducted using validation performance criteria: R2, NRMSE, and MBE, representing the coefficient of
determination, normalized relative mean square error, and mean bias error of the resulting wood volume model, respectively. r denotes the Pearson’s correlation
coefficient between ’observed’ and predicted RHv .

entire set of NFI plots. With our strict approach in building the
validation framework (Sec. IV-A), based on distance (i.e. 40m,
±4m, same forest polygon), only 32 matches were obtained,
representing 6% of the plots available in the area. Using a
200m distance and a 2m height thresholds, [26] matched 69%
of the NFI plots in their area. Using distance thresholds of
100m, 300m and 500m following a semi-variogram analysis,
[27] were able to match respectively 22%, 52% and 57%
of the NFI plots. Also, such result did not guarantee that
the matched data are representative of the distribution of
forest resources [27], with possible impact on models and
associated inferences. In this prospect, our approach could be
considered as a milestone for the development of models of
forest attributes using GEDI and NFI data.

The capability to predict field attributes at locations corre-
sponding to the entire set of GEDI footprints over an area
of interest, highlights the potential of the approach for post-
stratification purposes [47]. It is also of interest for grid-level
(i.e. 41 km2 hybrid-inference approaches [19], [48], in order to
estimate various forest attributes of interest for NFIs. Another
interesting application is related to the high resolution mapping

of forest attributes using deep learning approach. Indeed, by
generalizing the NFI information to the GEDI footprints, it is
possible to use deep learning approaches to directly map NFI
attributes using optical or radar data, instead of height, such as
in e.g. [13], [16], [17]. Such approach might be more efficient
than those attempting to predict either volume or biomass from
GEDI-based height maps [49]. Though this seems obvious,
we find it important to state clearly the necessity for the
community to focus less on the canopy height interpolation
or extrapolation which alone represents only a fraction of the
GEDI data potential. The presented results demonstrate this
clearly: as shown in Fig. 10, applying a similar random forest
regressor reveals that the use of 10 decile vegetation profiles
(Full RHv) significantly outperforms using only the RHv100.
This is evidenced by a gain of 0.3 in R2, a 14% reduction in
NRMSE, and an improvement of over 12 m3/ha in MBE.

One could notice that the method is indeed somehow
conditioned by the geographical limits of the study. This is
consistent with our ambition to expand the application of
the proposed work all across the metropolitan France, which
is split into 91 sylvo-eco regions (out of which 86 non-
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(a) (b) (c)
Fig. 10. Validation of the projected profiles (Step I + Step II): (a) validation of projected profile shapes, (b) validation of estimated wood volume using
projected profiles, (c) validation of estimated wood volume using only profile top values. Different point colors in the upper part of sub-figure (a) correspond
to various metrics, as indicated by the bar plot in the lower part.

alluvial), meaning that the method would be independently
parameterized i.e. locally adjusted in each of them.

As it makes sense to redo the weight optimization in
different sylvo-ecological regions, it is also sensible to redo it
after updating the GEDI dataset with upcoming measurements.
The new measurements could influence the observed balance
between geographical and feature space. The same principle
applies when using a different sample size or the entire set
of available GEDI footprints. Specifically, the curve used to
determine the value of w (as shown in Fig. 9) is influenced by
the sample size used in the study (sub-sample ”application”).
Employing a smaller or larger sample would lead to different
trade-offs between geographical and feature space.

Throughout the manuscript, we refer to the approach as an
interpolation of GEDI measurements, given that the NFI plots
are spatially situated between GEDI footprints and the datasets
roughly coincide temporally. However, this method could also
be used for extrapolation, especially in the temporal sense,
which is particularly relevant for its application in the MSNFI
framework.

Finally, we attempted to develop a model that does not
require the canopy height indicator at the input. Currently, the
inclusion of this indicator restricts the interpolation to NFI
plots. However, the auxiliary data used proved absolutely in-
sufficient for the model to reproduce the variance in vegetation
classes without this information, i.e. without the canopy height
indicator the employed classifier for example achieves the test
accuracy of only 18%. This inherent limitation of the proposed
method can be overcome by employing AI methods: either by
enhancing the complexity of the proposed encoder (Step I), or
by incorporating a spatially continuous height indicator such
as the combination of height maps mentioned throughout the
manuscript [50], or GEDI gridded RH100 metrics. The latter
therefore should not eclipse the added methodological value of
this work which dominantly consists in successfully merging
the feature and geographical space when interpolating GEDI
measurements. Additionally, the method offers scalability and

flexibility, meaning that while the whole method can be used
do downscale the estimates of forest attributes, one could also
use classification alone for post-stratification purposes.

VI. CONCLUSIONS AND PERSPECTIVES

In this article we sought to respond to the issue of the
spatial mismatch between GEDI footprints and NFI plots, rep-
resenting a major obstacle for the deeper integration of GEDI
data into the MSNFI frameworks of countries whose forest
ecosystems are covered by the mission. This was achieved by
proposing a method for interpolating GEDI measurements to
the NFI plots, which relies on the sequential use of clustering,
classification, and regression machine learning routines, all
integrated within a framework of profile pairing by structural
class. The latter means that we were able to project, through
the pretty much methodologically transparent pairing process,
real non-synthesized GEDI-issued vegetation profiles to each
NFI plot in the considered area. The fact that the method is
capable of associating GEDI measurements to each NFI plot in
the considered area makes it already distinctive with respect
to most of the state of the art approaches in dealing with
the mismatch without simulating GEDI profiles from the local
ALS data. This association allows further on to link GEDI data
and the wood volume, or any other forest attribute of interest,
by proposing GEDI-issued vegetation profile ↔ wood volume
models. The proposed method proves to be able to explain
85% of the variance of the projected profiles, allowing notably
to project reasonably well the lower part of the vegetation
profile. The resulting GEDI-wood volume ensemble model
is capable to reproduce at least 65% of the wood-volume
variance with a mean bias error of only 2.31 m3/ha, illustrating
the clear modeling benefit of using ten relative height values
rather than the canopy height only.

More generally the proposed method could be used in
improving the calibration of GEDI-forest attributes formulas,
notable the GEDI-AGB ones. The step of the proposed method
introducing the notion of the profile structural class could
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as well find its utility in the post-stratification step of the
(MS)NFI inference procedure.

Scanning the Earth surface from more than 400 km above
the ground is challenging, and therefore the principal asset of
the GEDI mission is not the level of stability and precision
usually required from national airborne lidar campaigns [51]–
[54], but its capacity to repeatedly cover extremely large areas.
Therefore, the most immediate short-term goal of this work is
to establish a framework that allows the simultaneous and, to
some extent, perpetual application of the method in the other
85 non-alluvial sylvo-ecological regions of France (in addition
to the Vosges mountains, which were used for the method’s
conception and presentation in this article), and its integration
into the MSNFI framework. We are simultaneously planning
to pursue the approach of reinforcing the validation step by
running the GEDI simulator [22] over a subset of NFI plots
with ALS data. The medium-term perspective would be to
work around the key limitation of the presented method which
currently projects profiles only to the NFI plots, and by doing
so to spatio-temporally densify the interpolation allowing the
forest attributes high-resolution mapping application, which
could further more improve the MSNFI spatial resolution. We
plan to achieve this by: (1) enhancing the complexity of the
proposed encoder, and (2) integrating a spatially continuous
height indicator from an external source.
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