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Arredondo et al. (2021)
Steux et al. (2024) (in prep.)

Most current genetic methods infer only 
ancient changes in connectivity

Years before present

Connectivity (M
)

Using a French human genome



but human activities have 

created very recent 
possible barriers to gene 
flow (< 10 generations ago)
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A study using simulations
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TfMfrag 15 inds       15 15     15sampling:
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Manc Manc
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2,500 simulated 
genetic data per model

G=5✕25 Mbp
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Test the performance to infer underlying models
using ABC with random forests

constant

fragm.

~ S(           ) + S(          ) + …

summary
statistics

train



11

constant

fragm.

S(           ) + …

test

constant

fragm.

compare

RF “          ”

Test the performance to infer underlying models
using ABC with random forests



using different
types of
genomic data
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genotypic
statistics

genealogical
statistics

➔ 2D-jAFS (Allele Frequency Spectrum)

➔ Tajima’s D
➔ Nucleotide diversity/divergence
➔ FST

➔ Distributions of (Tk)k 
➔ Distributions of (Tc)k
➔ PLFT (Proportion of Lineages as a Function of Time)

+ subtracted
Maruvka et al. (2011)

between - E(within1, within2)



within-pop                      betweenwithin-pop                      between
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genotypic
statistics

genealogical
statistics

➔ Genomic correlations in pairwise 
coalescences + Tk + Tc + PLFT

➔ Distribution of IBD lengths

➔ ASCEND

+ subtracted Genetic length
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Tournebize, Chu, Moorjani (2022)



?
how well ≠ sumr 
                      satsics    

can help us

detect
very    recent fragmentation



21

Detection power

generally a great 
power to detect 
fragmentation

+
genotypic genealogical

age of fragmentation

fragmentation

stationary
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Detection power

limited power to 
detect 

weak reduction when 
pops already weakly 

connected

+
genotypic genealogical

age of fragmentation

fragmentation

stationary
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concern
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likely to underdetect weak fragmentation
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Detection power

yet power increases 
as fragmentation 

intensity increases

+
genotypic genealogical

age of fragmentation

fragmentation

stationary



Variable 
importance

genotypic

genealogical

Correlation in pairwise coalescence - between - Error
Tajima’s D - subtracted - Median

Tajima’s D - metapop - Mean
Tajima’s D - metapop - Median

PLFT - subtracted - Error
Correlation in pairwise coalescence - between - Error
Correlation in pairwise coalescence - between - Error

Tajima’s D - subtracted - CV
Tajima’s D - metapop - CV
PLFT - subtracted - Error
Tajima’s D - pop2 - Mean

PLFT - subtracted - Decay rate
Tajima’s D - pop1 - Mean

Correlation in pairwise coalescence - between - Decay rate
Tajima’s D - metapop - P97.5%

Correlation in pairwise coalescence - subtracted - Amplitude
ASCEND - between - Error

Correlation in pairwise coalescence - subtracted - Error
dxy - between - Mean-Median

Tajima’s D - subtracted - P2.5%

Importance % Noise
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Conclusions
Genomic data useful to detect recent fragm°

Genotypic statistics already sufficient

Genealogical data improve detection accuracy

Still problematic to identify fragmentation if:
weak &
very recent (< 10 gen°)  &
pops were already poorly connected 

But alternatives possible… i.e. M in other 
non-fragmented pops as a proxy to Manc
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likely to underdetect weak fragmentation
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Detection power

power tends to 
increase with 

founder intensity

+
genotypic genealogical

age of fragmentation

fragmentation

stationary
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Detection power

power to detect 
stationary model 

decreases with 
migration rate

+
genotypic genealogical

age of fragmentation

fragmentation

stationary
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GT GT + GL



      Hudson    DTWF
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