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Invasive species pose a major challenge

Negative impacts on :
• Biodiversity (Mollot et al., on 2017)

• Economy (Haubrock et al., 2021)

• Human health (Mazza et al., 2014)

• Food security(Paini et al., 2016)

Accelerating effect of globalization and climate change
⇒ Need to improve the understanding and prediction of invasions
to enhance biological control efficiency (Hulme, 2017, Reaser et al., 2020)

How can we use genomics in this context ?
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Genotype Environment Association

• Identification of markers/environmental variables with specific
roles in adaptation
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Population-level genomic prediction ?

Genomic Offset = a measure of the level of maladaptation
• Temporal (future environmental conditions)
• Spatial (new geographic areas)
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Relationship between GO and fitness already studied

Common garden : Rhoné et al. (2020), Fitzpatrick et al. (2021)
Simulations : Laruson et al. (2021), Gain et al. (2023)

But not applied to biological invasions

Simulations
• Relationship between GO and the establishment probability of

invasive populations ?
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Methods

Geometric GO
• Linear (regression coefficients)
• Correction for neutral structure :

→ Latent factors (LFMM)
or

→ Allelic frequencies covariance (Baypass)

Gradient Forest (optimized)
• Non linear (Random Forest)
• Allelic frequencies corrected with LFMM
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Simulations design

2 steps for simulations (SLiM v4)

1. Native area
• Population grid (5x5) , stepping stone
• 1000 individuals/population
• High (0.05) or low (0.005) migration rate
• 3000 simulated generations
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Simulations design : native area
• 2 environmental variables, related to adaptation via QTLs

(Quantitative Trait Loci)
• Σ effect sizes = phenotype ↔ environment = fitness

• 3 different environment type (replicated 10 times each) :
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Simulations design : invaded area

2. Invaded area
• Panmictic population characterized by 2 the env. variables
,→ 9 possible environments to invade : (-1,0,1) × (-1,0,1)

• 10 or 100 invading individuals
,→ 3 possible source populations : -1/-1, 0/0, 1/1

• Non constrained population size ("Non-WF") :
• Overlapping generations
• Death ̸= Reproduction

• Simulation stops when the population :
• goes extinct
• goes established
,→ reaches 50 000 individuals
,→ survives for 100 generations
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Analyses
GO can be computed :

Each invasion is repeated 250 times to compute establishment probability

log(Establishment 
probability)

GO
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Results in an "ideal" case

Mean R2 between GO and establishment prob. (10 ind., mig 0.005)
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Good performances with only causal variables

Mean R2 between GO and establishment prob. (10 ind., mig 0.005)
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Performance reduction linked to confounding variables

Mean R2 between GO and establishment prob. (10 ind., mig 0.005)
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PCs bridge the performance gap between methods

Mean R2 between GO and establishment prob. (10 ind., mig 0.005)
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Similar results with high migration rate
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The issue of interpreting GO values

With 100 individuals → strong relationship with fitness

But adaptive challenge buffered
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Conclusions
Relationship between GO and establishment probability ?

• Strong correlation between GO and establishment probability
• Robust to the strenght of adaptation in the native area
• Disturbed by confounding variables and environmental

complexity

Methods performances ?

• Use of univariate methods or PCs recommended
• Geometrics GO perform better

Some questions remains ...

• Influence of admixture ? Number of successive introduction ?
Genetic Load ?

• Interpretability of absolute GO values ?
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Thank you for your attention !
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Simulations design : native area

• Mutation rate : 10-7 (QTLs and neutral markers)
• Recombination rate : 10-5 (50 cM)
• Randomly drawn effect sizes for each QTLs
• Σ effect sizes = phenotype ↔ environment = fitness
• Neutral mutations added after the simulation
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