
HAL Id: hal-04660364
https://hal.inrae.fr/hal-04660364v1

Submitted on 30 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating complex pangenome graphs
Jérôme Arnoux, Angela Bonifati, A. Calteau, Stefania Dumbrava, Guillaume

Gautreau

To cite this version:
Jérôme Arnoux, Angela Bonifati, A. Calteau, Stefania Dumbrava, Guillaume Gautreau. Integrating
complex pangenome graphs. 2024 IEEE 40th International Conference on Data Engineering Work-
shops (ICDEW), May 2024, Utrecht, New Zealand. pp.350-354, �10.1109/ICDEW61823.2024.00052�.
�hal-04660364�

https://hal.inrae.fr/hal-04660364v1
https://hal.archives-ouvertes.fr

Integrating Complex Pangenome Graphs
Jérôme Arnoux1 Angela Bonifati2 Alexandra Calteau1 Stefania Dumbrava3 Guillaume Gautreau4

1Genoscope/LABGeM - CEA, CNRS, Paris Saclay University 2IUF, CNRS LIRIS, Lyon 1 University
3SAMOVAR/Inst. Poltech de Paris, ENSIIE 4MetaGenoPolis, Université Paris-Saclay, INRAE, MGP

Abstract—Graph databases are increasingly used to handle
complex data pipelines, in which interconnected data is exploited
for visualization and analytics. We propose a novel method,
PanGraph-DB, for performing complex inter-pangenomic anal-
ysis within a graph database. As a case study, we focus on
the antibiotic resistance in sequenced genomes. Over the past
decade, the volumes of genomic data stored in public databases
have grown exponentially, to the point of hindering compar-
ative genomics algorithms. We show that, due to the nature
of genomic data, graph databases enable accurate data and
metadata analysis, visualization, and comparison across diverse
genomes in the pangenomic approach. Families of graph-encoded
pangenomes can then be integrated under a common mediated
graph schema. The graph data integration allows to visualize and
compare several pangenomes, as well as to analyze AntiMicrobial
Resistance (AMR) gene niches through a combination of graph
queries, whose performance and scalability we study.

I. INTRODUCTION

Graphs are ubiquitous in several applications that rely on
interconnected data to represent, explore, predict, and explain
real- and digital-world phenomena. In the near future, graph
ecosystems are expected to handle complex data pipelines,
ranging from data pre-processing, querying, and analysis, to
advanced processing, through learning and inference [1]. In
order to optimize for performance and accuracy, such complex
data pipelines need to be purposed for the particular tasks they
target. In this paper, we focus on devising a custom methodol-
ogy for enabling comparative genomics on pangenome graphs.

Typical analyses in comparative genomics often rely on a
reference-centric approach to grasp species diversity, based
only on several genomes. This reference genome, however,
fails to provide sufficient coverage. A trivial solution would
be to pairwise compare all the known genomes, but this would
lead to a combinatorial explosion. The pangenomic approach
overrides these limitations, by combining all the genomes,
including the reference ones, in a unified data structure. This
can be represented using various formalisms, e.g., sets, Mul-
tiple Sequence Alignments, Sequence graphs, and De Bruijn
graphs, as reviewed in [2]. Among these, microbial pangenome
graphs increasingly rely on nodes, corresponding to clusters
of similar genes (families), linked by edges, indicating their
genomic neighborhood in various genomes [3], [4], [5], [6].

An open problem in pangenomics is how to compare several
pangenome graphs in a straightforward manner. In particular,
deciphering transfers of genetic information between species
(pangenomes), such as AMR genes, raises many critical issues.
The first hurdle is the size of the combined graphs, of the order
of millions of nodes, requiring custom solutions for storage

and efficient computation. Second, querying the graphs, in
order to find similar modules for instance, can be difficult,
in terms of both algorithmic and computational complexity.

We address these challenges in a practical system, by im-
porting pangenome families in a unified property graph, under
a mediated schema. The schema helps domain experts under-
stand and explore the multi-pangenome graph and formulate
graph queries that facilitate complex bioinformatics tasks, such
as AMR analyses. Our method leverages the Neo4j system [7]
and our queries are expressed in its native openCypher [8]
language. These can, however, be equivalently encoded in
any graph query language, including the future GQL [9]
standard. We establish the scalability of the approach when
varying the number of pangenome graphs, and its efficiency on
custom AMR queries. Overall, our work shows how to solve
a complex domain-specific task, which has been considered
unfeasible in classical genomics, by designing a dedicated
graph processing pipeline. To the best of our knowledge,
ours is the first work that uses graph databases for efficient
and scalable multi-pangenome processing. Our promising first
results, obtained in the context of investigating the AMR of
various pangenomes, open the perspective of employing this
methodology in further applications. We make our datasets,
queries, and our PanGraph-DB artifact [10] publicly available.

Related Work. Graph databases have gained rapid adoption
in the life sciences, as surveyed in [11] and as witnessed by
creation of various datasets, i.e., BioRDF for linked open data,
GeneOntology for gene taxonomies, GProfile - for metabolism
information, KEGG for gene and genome information, ChEBI
for chemical entities, and the Genomic Data Model [12] for
omics data. PanTools [13] is the work closest to ours, as it
also uses the Neo4j graph database for comparative genomics.
Their technique, though, hinges on a De Bruijn Graph and fa-
cilitates the integration of eukaryotic pangenomes. Compared
to our approach, De Bruijn Graphs are at a lower level of
granularity, which is subject to high variability and makes it
challenging to scalably interpret and analyze functional and
structural patterns across microbial species.

Tertiary data analysis has been carried out with Ge-
nomic Data Model (GDM) and GenoMetric Query Language
(GMQL), in order to enable scientists and bioinformaticians to
focus on the biological questions and on the design of their ex-
perimental studies, instead of implementing the computational
pipelines across different formats [12]. They focus, however,
on genomic regions, and their comparisons are implemented
as joins in the GMQL queries. Their query language is not

……

Genome
sequences

…

Pangenome
Graphs

Pangenomic
Analysis

Data
Integration

Pangenomic
Dataset

Mediated Schema

Data
Import

Graph Database

Data
Querying

Domain
Expert

Data
Modeli

Domain
Expert

Annotated
Pangenome

Graphs

CARD
resource

Similarity
Computation

…

Data
Modeling

Data Generation

Fig. 1: Graph database driven pangenomic analysis.

graph-oriented and is thus not applicable to comparisons of
families of pangenomic graphs and to AMR identification.

II. METHODOLOGY

Our methodology aims to facilitate efficient comparative
pangenomics. As such, we constructed the PanGraph-DB
system, whose pipeline (see Figure 1) is capable of operating
on pangenome graphs, computed by the PPanGGOLiN [5]
framework, and of leveraging graph databases for integrated
analyses by domain experts. Our approach is system agnostic
and can be reproduced with any graph database whose data
model and querying capabilities are comparable to those of the
Neo4j system we employ. Given the rich property graph data
model supported by Neo4j, domain experts can further enrich
such pangenome graphs with custom properties. We illustrate
this technique with a complex analysis aimed at inspecting
AMR patterns in a multi-pangenome setting. Domain experts
can, however, adapt and extend it to various other applications.

Data generation. Our pipeline (see Figure 1) takes as input
complete ESKAPE genomes [14], from the NCBI GenBank
database [15]. These are then processed by PPanGGOLiN,
which performs gene clustering, edge merging, and statistical
partitioning to compute pangenome graphs. Using these, we
can highlight Regions of Genomic Plasticity (RGP) that are
relevant to our analyses and that correspond to genomic spots
(hotspots) onto which AMR genes can be integrated. We com-
pute the information regarding RGPs using PPanGGOLiN’s
PanRGP method [16] and we further connect co-occurring and
co-located gene families. Indeed, these might potentially be
involved in a common biological process, as is commonly the
case for AMR genes. Hence, we regroup them into structures
called modules, with PPanGGOLiN’s panModule method [17].

Gene families from these pangenome graphs are enriched
with Comprehensive Antibiotic Resistance Database (CARD)
annotations, in order to identify known AMR genes [18].
Also, various similarity levels between gene families of differ-
ent pangenomes are computed, through dedicated alignment
methods [19]. Finally, we obtain multiple CARD-annotated
pangenome graphs, incorporating additional information re-
garding the partitions, RGPs, and modules the genomes relate
to. This information, however, is not explicit and cannot be di-

rectly queried. Moreover, the graphs are largely disconnected,
except for the similarity annotations between gene families.

Data modeling. As genomic analyses typically require a
holistic view, encompassing information stored in all of these
individual datasets, it is important to integrate them into a
single graph. This is especially challenging, as the pangenome
data lacks structural information and explicit labeling. To ad-
dress this, we first construct a unifying schema that will shape
the integrated multi-pangenome instance to be imported and
analyzed in the Neo4j database. A key requirement for inter-
pangenome analyses is having a data model that is expressive
enough to capture multi-pangenome properties. Hence, for
our AMR task, we need to enrich the previously computed
datasets with further metadata, as follows. Each pangenome
corresponds to a particular species, carries a mandatory name
and unique identifier, and is linked to all the gene families
it comprises. Note that all families must be associated with
exactly one partition (persistent, shell, or cloud). To model
the possible connections between families, we need to first
determine whether they are part of the same pangenome. Intra-
pangenome families can be marked as neighbors and, based
on this, neighborhood weights can be computed, by counting
their number of genomes. Inter-pangenome families can only
be linked through similarity relations that can be characterized
by a percentage of identity and a percentage of coverage. To
facilitate the analyses, for each module, we explicitly store
information regarding its gene families. Next, for each gene,
we record its name, its start and stop position on the DNA
sequence (contig), as well as its RGPs, which we connect to
named spots, if they are co-located in the pangenome graph.

Data processing. The data import methodology closely
follows that of the CovidGraph framework [20]. First, we
create a Python dictionary for every pangenome. This has a
hierarchical structure, whose parent is the pangenome itself
and whose leaves are the genes. As such, we can use the
dict2graph package [21] to create relationships between nodes,
load properties for nodes and relations, as well as automati-
cally index and merge all nodes and relationships into a graph.
Note that all these tasks are parallelized. Next, we sequentially
load the similarities of edges, by inspecting the alignment
result table and extracting pairs of families with identity and
coverage greater than 30% and 80%. Finally, we create edges
between family nodes with the graphio package [22]. The
expert user can then visualize, explore, and inspect the data
through graph queries that can extract complex patterns [23].

III. INTEGRATED PANGENOMICS

To efficiently perform genomic analyses on our graph
dataset of connected pangenomes, we leverage the Neo4j
graph database. This natively stores data as a property graph,
i.e., a directed, multi-labeled multi-graph with key/value prop-
erties attached to nodes and edges. To facilitate data integra-
tion, we design a mediated schema (Figure 2) that captures
the integrated dataset structure. Pangenome nodes are con-
nected to their genomic Family nodes and to neighboring
and similar nodes of the same label in Modules. Family

Fig. 2: Mediated Schema.

nodes contain antibiotic resistance annotations. These nodes
are classified as belonging to persistent, shell, and cloud
Partitions, depending on whether their Genes are preva-
lent in all, some, or only a few corresponding genomes.
Finally, Genes are part of Contigs, associated to particular
Genomes, and can be part of RGPs, located in Spots.

Antibiotic Resistance Analysis. We illustrate the utility
of graph databases for AMR identification, a key genomics
task. Grasping the evolution of such resistance profiles across
pangenomes is crucial to understanding how these elements
spread between species. To conduct the analysis, the domain
expert has to first comprehend the scale of such AMR profiles
within the various pangenomes. She can extract aggregated
information from the graph and identify the pangenomes with
the highest number of relevant biological features at the intra-
pangenomic level. Thus, she can express top-k queries [10]
to focus on information about pangenomes (Q1, Q2, Q4),
RGPs and Spots (Q3), as well as modules (Q5) that contain
the most CARD-annotated families and top-k species in terms
of modules (Q6). These queries allow gaining AMR insights
about a species. However, to determine evolutionary patterns,
one needs to analyze multiple pangenomes. Hence, a further
step is to consider pangenome pairs and extract families
that have similar AMR profiles. This can be encoded (Q7)
through a main query that recovers, for a pangenome, its
families and their modules, and two correlated sub-queries that
further extract, for each previously identified family, all other
similar families, from other pangenomes. Note that one has to
explicitly export the variables reused in the correlated queries.

Q7. Return the names of similar inter-pangenomic families
and of the partitions and pangenomes they belong to.
MATCH (p1:Pangenome)<-[:IS_IN_PANGENOME]-
(f1:Family)-[:HAS_PARTITION]->(s1:Partition)
WITH p1, f1, s1
MATCH (f1)-[:IS_SIMILAR]-(f2:Family)-[:

HAS_PARTITION]->(s2)
WITH p1, f1, s1, s2, f2
MATCH (p2:Pangenome)<-[:IS_IN_PANGENOME]-(f2)
WHERE p1.name <> p2.name
RETURN p1.name, f1.name, s1.partition,
p2.name, f2.name, s2.partition

The query below is key to the analysis, as the information
regarding Spot nodes allows highlighting RGP hotspots, i.e.,
common insertion sites for Horizontal Gene Transfers.

Q8. Identify similar inter-pangenomic AMR families where
at least one has RGP-related genes, part of hotspots.

Note that in the Cypher encoding, we explicitly name the
graph patterns to filter intermediate results iteratively, using
path-level reachability constraints. As such, we first specify
the pattern allowing to identify families that have RGP-related
genes and extract the graph objects connected to these, in
particular the Spot information. We then refine the results
with a path condition aimed at identifying pairs of similar
families, within different pangenomes, and extract further
information regarding their Partition. We also discard
results wherein families do have not any AMR annotation.
MATCH
a=(p:Partition)<-[HAS_PARTITION]-(f1:Family)
-[:IS_IN_FAMILY]-(g:Gene)-[:IS_IN_RGP]-(r:RGP)
-[:IS_IN_SPOT]-(s:Spot)
WITH a,p,f1,g,r,s
MATCH b=(p1:Pangenome)-[:IS_IN_PANGENOME]-(f1)
-[:IS_SIMILAR]-(f2:Family)
-[:IS_IN_PANGENOME]-(p2:Pangenome)
WHERE f1.annotation IS NOT NULL AND z1<>z2
WITH a,b,p,f1,g,r,s,p1,zp2,f2
MATCH c=(f2)-[:HAS_PARTITION]-(p2)
RETURN a,b,c

Next, we can precisely compare the neighborhoods (con-
texts) of modules across pangenomes with the below query.

Q9. Return the names and count of similar families from
different pangenomes and the names of their modules.
MATCH (m1:Module)<-[:IS_IN_MODULE]-(f1:Family)

-[:IS_IN_PANGENOME]->(p1:Pangenome)
WITH f1, m1, p1
MATCH (p2:Pangenome)<-[:IS_IN_PANGENOME]-(f2:

Family)-[:IS_SIMILAR]-(f1)
WITH f1, m1, p1, f2, p2
MATCH (f2)-[:IS_IN_MODULE]-(m2:Module)
WHERE f1.annotation IS NOT NULL AND p1 <> p2
RETURN p1, p2, m1, m2, f1, f2

Interestingly, families with similar CARD annotations may
even belong to different partitions, highlighting the genetic
variability between species, as analyzed with the query below.

Q10. Return the names of the top 10 pairs of similar
families, whose identity and coverage metrics surpass the 0.8
threshold, their partition names, and their CARD annotations.
MATCH
(f1:Family)-[:HAS_PARTITION]->(s1:Partition)
WITH f1, s1
MATCH (f1)-[r1:IS_SIMILAR]->(f2)

-[:HAS_PARTITION]->(s2:Partition)
WHERE r1.identity >= 0.8
AND r1.coverage >= 0.8
RETURN f1.name, s1.partition, f2.name,
s2.partition, r1.identity, r1.coverage,
f1.annotation, f2.annotation
ORDER BY r1.identity DESC LIMIT 10

Analyzing the query results, very similar inter-pangenomic
families could indicate recent inter-species gene transfers.

https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L4
https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L7
https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L14
https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L10
https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L17
https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L20
https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L23

IV. EXPERIMENTAL EVALUATION

We performed scalability experiments on a virtual machine,
running Ubuntu (version 22.04.1 LTS), equipped with an Intel
Xeon Processor (Skylake, IBRS), clocked at 2.2Ghz, 153GB
of RAM, and 621GB of free hard drive space. The queries
were executed in the Neo4j Community Edition (version
4.4.12) and the dataset characteristics are available in our
PanGraph-DB artifact [10]. Note that data import is one of
the bottlenecks faced when processing multiple pangenomes.
In previous analyses, even the simultaneous data loading of
several PPanGGOLiN files (one HDF5 file per pangenome)
was challenging in terms of memory usage. We deem our
runtimes acceptable for massive cross-pangenome analyses, as
they require less than a workday to fully import the datasets.
The disk usage is also sustainable, given the compactness of
storing 10 pangenomes (6.8GB), corresponding to billions of
genes, thousands of families and genomes, as well as expert
biological information (RGPs, Spots, AMR annotations).

Quantitative Analysis. We assess the performance and
scalability of our methodology on the previous complex
pangenomic analyses. As such, we analyze the runtimes of
evaluating queries Q1-Q10 on pangenome datasets integrating
an increasing number of pangenomes (see Figure 3). We note
that the query execution times range from approx. 27.07 ms.
on average (Q2) to approx. 66.8 ms. on average (Q8), when
considering only two pangenomes and from approx. 31.8
ms. (Q5) to approx. 88.93 ms. (Q7), when considering ten
pangenomes. The minimal execution times for Q2 and Q5
can be explained by the relative simplicity of the queries, as
this computes count aggregates over a basic path comprised
of only two edges. The maximal execution times are recorded
for queries Q7 and Q8. Both are complex-correlated queries
containing several subqueries. In terms of scalability, we note
that the increase in execution time is nearly linear or sublinear
when progressively adding more pangenomes. Moreover, we
can see that the most complex queries, i.e., Q3, Q7, and
Q10, which also take longest to execute, exhibit the highest
variability, as witnessed by their observed standard deviation.
This indicates that performances start to deteriorate when con-
siderably increasing data volumes, as the dataset integrating
ten pangenomes records performance variations of up to 40%.
Dealing with such scenarios requires further optimizations that
graph processing systems are expected to support in the future.
Nevertheless, the pangenome sizes we consider are already
well beyond what can be supported by current methods that,
moreover, do not support inter-pangenome analyses at all.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

0

25

50

75

100

125

ru
nt

im
es

 (
m

s)

of pangenomes 2 4 6 8 10

Fig. 3: Average Q1-Q10 runtimes on multiple pangenomes.

Qualitative Analysis. While resistance islands have been
extensively studied in the microbiology literature [24], [25],
[26], to the best of our knowledge, ours is the first data-
driven pangenomic approach to identify and compare them at
scale. Henceforth, we evaluate Q9 (Section III) on our largest
dataset (ten pangenomes) and explore the results. Note that Q9
is relevant for the entire AMR pipeline, as it helps to identify
similar inter-pangenome modules that contain AMR annotated
genes. RGPs carrying such AMR modules may correspond to
resistance islands, i.e., mobile genetic elements that contain
multiple resistance genes and may be passed between species
(pangenomes) through Horizontal Gene Transfers. It is thus
particularly important to expose these genomic patterns to
better understand their spread in ESKAPE bacteria.

A.

B.

Fig. 4: Similar modules (orange) with AMR-related families
(red) in distinct pangenomes (blue).

Inspecting the result graph, we can identify and extract
relevant patterns. For example, between the E. kobei, K. pneu-
moniae and A. baumanii pangenomes (in blue), there are three
pairs of similar gene families (in red) that are part of similar
modules (in orange) in between each of the three species (see
Figure 4). Having isolated these three modules, the expert user
can inspect their membership in relevant resistance islands.

We notice that module identification is greatly facilitated
by using a graph database, as all such pairs can be extracted
with a single, declarative query. Previously, no such direct
methodology for inter-pangenomic analysis and exploration
was readily available. This qualitative study also revealed the
importance of the underlying data model, which we will extend
to explicitly represent resistance island conglomerates.

V. CONCLUSION AND PERSPECTIVES

We have introduced the novel PanGraph-DB framework
and showcased the usage of a graph database for complex
pangenomic processes. By defining a mediated schema on top
of several isolated families of pangenomes, we have created a
unified pangenome graph that can be inspected for both intra-
and inter-pangenomic analyses. We have also experimentally
established the feasibility of data loading, processing, and
querying with our method. Our approach is generic and can be
deployed in other graph databases, as we make PanGraph-DB
readily available to both the database and bioinformatics com-
munities. We intend to optimize our pipeline to support even
larger pangenomes and to extend our data model with other
interesting types of genomic data, e.g., metabolic pathways,
defense, and virulence islands.

https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L4
https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L41
https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L7
https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L29
https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L17
https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L23
https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L7
https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L17
https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L23
https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L29
https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L10
https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L23
https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L41
https://github.com/jpjarnoux/PanGraph-DB/blob/main/script/python/wf.py#L36

REFERENCES

[1] S. Sakr, A. Bonifati, H. Voigt, A. Iosup, K. Ammar, R. Angles, W. G.
Aref, M. Arenas, M. Besta, P. A. Boncz, K. Daudjee, E. D. Valle,
S. Dumbrava, O. Hartig, B. Haslhofer, T. Hegeman, J. Hidders, K. Hose,
A. Iamnitchi, V. Kalavri, H. Kapp, W. Martens, M. T. Özsu, E. Peukert,
S. Plantikow, M. Ragab, M. Ripeanu, S. Salihoglu, C. Schulz, P. Selmer,
J. F. Sequeda, J. Shinavier, G. Szárnyas, R. Tommasini, A. Tumeo,
A. Uta, A. L. Varbanescu, H. Wu, N. Yakovets, D. Yan, and E. Yoneki,
“The future is big graphs: a community view on graph processing
systems,” Communications of the ACM, vol. 64, no. 9, pp. 62–71, 2021.

[2] Computational PanGenomics Consortium, “Computational pan-
genomics: status, promises and challenges,” Brief. Bioinform., vol. 19,
no. 1, pp. 118–135, Jan. 2018.

[3] Y. Peng, S. Tang, D. Wang, H. Zhong, H. Jia, X. Cai, Z. Zhang,
M. Xiao, H. Yang, J. Wang, K. Kristiansen, X. Xu, and J. Li, “MetaPGN:
a pipeline for construction and graphical visualization of annotated
pangenome networks,” Gigascience, vol. 7, no. 11, Nov. 2018.

[4] S. C. Bayliss, H. A. Thorpe, N. M. Coyle, S. K. Sheppard, and E. J.
Feil, “PIRATE: A fast and scalable pangenomics toolbox for clustering
diverged orthologues in bacteria,” Gigascience, vol. 8, no. 10, Oct. 2019.

[5] G. Gautreau, A. Bazin, M. Gachet, R. Planel, L. Burlot, M. Dubois,
A. Perrin, C. Médigue, A. Calteau, S. Cruveiller, C. Matias, C. Am-
broise, E. P. C. Rocha, and D. Vallenet, “Ppanggolin: Depicting micro-
bial diversity via a partitioned pangenome graph,” PLoS Comput. Biol.,
vol. 16, no. 3, 2020.

[6] G. Tonkin-Hill, N. MacAlasdair, C. Ruis, A. Weimann, G. Horesh, J. A.
Lees, R. A. Gladstone, S. Lo, C. Beaudoin, R. A. Floto, S. D. W.
Frost, J. Corander, S. D. Bentley, and J. Parkhill, “Producing polished
prokaryotic pangenomes with the panaroo pipeline,” Genome Biology,
vol. 21, no. 1, p. 180, Jul. 2020.

[7] Neo4j, Neo4j Graph Database, Std., 2023. [Online]. Available:
http://neo4j.org/

[8] ——, OpenCypher, Std., 2023. [Online]. Available: http://opencypher.
org/

[9] GQL Standards Committee, GQL, Std., 2023. [Online]. Available:
https://www.gqlstandards.org/

[10] (2023) PanGraph-DB. [Online]. Available: https://github.com/jpjarnoux/
PanGraph-DB

[11] S. Timón-Reina, M. Rincón, and R. Martı́nez-Tomás, “An overview
of graph databases and their applications in the biomedical domain,”
Database J. Biol. Databases Curation, 2021.

[12] M. Masseroli, A. Canakoglu, P. Pinoli, A. Kaitoua, A. Gulino,
O. Horlova, L. Nanni, A. Bernasconi, S. Perna, E. Stamoulakatou, and
S. Ceri, “Processing of big heterogeneous genomic datasets for tertiary
analysis of next generation sequencing data,” Bioinformatics, vol. 35,
no. 5, pp. 729–736, 2019.

[13] E. M. Jonkheer, D.-J. M. van Workum, S. Sheikhizadeh Anari,
B. Brankovics, J. R. de Haan, L. Berke, T. A. J. van der Lee,
D. de Ridder, and S. Smit, “PanTools v3: functional annotation,
classification and phylogenomics,” Bioinformatics, vol. 38, no. 18,
pp. 4403–4405, 07 2022. [Online]. Available: https://doi.org/10.1093/
bioinformatics/btac506

[14] M. S. Mulani, E. E. Kamble, S. N. Kumkar, M. S. Tawre, and K. R.
Pardesi, “Emerging strategies to combat eskape pathogens in the era of
antimicrobial resistance: A review,” Frontiers in Microbiology, vol. 10,
pp. 1–24, 2019.

[15] E. W. Sayers, J. Beck, E. E. Bolton, D. Bourexis, J. R. Brister, K. Canese,
D. C. Comeau, K. Funk, S. Kim, W. Klimke, A. Marchler-Bauer,
M. Landrum, S. Lathrop, Z. Lu, T. L. Madden, N. O’Leary, L. Phan,
S. H. Rangwala, V. A. Schneider, Y. Skripchenko, J. Wang, J. Ye,
B. W. Trawick, K. D. Pruitt, and S. T. Sherry, “Database resources of
the national center for biotechnology information,” Nucleic Acids Res.,
vol. 49, no. D1, pp. D10–D17, Jan. 2021.

[16] A. Bazin, G. Gautreau, C. Médigue, D. Vallenet, and A. Calteau,
“panRGP: a pangenome-based method to predict genomic islands and
explore their diversity,” Bioinformatics, vol. 36, no. Suppl 2, pp. i651–
i658, Dec. 2020.

[17] A. Bazin, C. Medigue, D. Vallenet, and A. Calteau, “panmodule:
detecting conserved modules in the variable regions of a pangenome
graph,” bioRxiv, 2021. [Online]. Available: https://www.biorxiv.org/
content/early/2021/12/07/2021.12.06.471380

[18] B. P. Alcock, A. R. Raphenya, T. T. Y. Lau, K. K. Tsang, M. Bouchard,
A. Edalatmand, W. Huynh, A.-L. V. Nguyen, A. A. Cheng, S. Liu,

S. Y. Min, A. Miroshnichenko, H.-K. Tran, R. E. Werfalli, J. A.
Nasir, M. Oloni, D. J. Speicher, A. Florescu, B. Singh, M. Fal-
tyn, A. Hernandez-Koutoucheva, A. N. Sharma, E. Bordeleau, A. C.
Pawlowski, H. L. Zubyk, D. Dooley, E. Griffiths, F. Maguire, G. L.
Winsor, R. G. Beiko, F. S. L. Brinkman, W. W. L. Hsiao, G. V.
Domselaar, and A. G. McArthur, “CARD 2020: antibiotic resistome
surveillance with the comprehensive antibiotic resistance database,”
Nucleic Acids Res., vol. 48, no. D1, pp. D517–D525, Jan. 2020.

[19] M. Steinegger and J. Söding, “MMseqs2 enables sensitive protein
sequence searching for the analysis of massive data sets,” Nature
Biotechnology, vol. 35, no. 11, pp. 1026–1028, Nov. 2017.

[20] HealthECCO, “Covidgraph,” https://covidgraph.org/ (visited: 07-11-
2022), 2021.

[21] T. Bleimehl. (2023) dict2graph. [Online]. Available: https://git.connect.
dzd-ev.de/dzdpythonmodules/dict2graph

[22] M. Preusse. (2023) Graphio. [Online]. Available: https://graphio.
readthedocs.io/en/latest/

[23] A. Bonifati and S. Dumbrava, “Graph queries: From theory to practice,”
SIGMOD Rec., vol. 47, no. 4, pp. 5–16, 2018.

[24] J. Hacker and J. B. Kaper, “Pathogenicity islands and the evolution of
microbes,” The Annual Review of Microbiology, vol. 54, pp. 641–679,
2000.

[25] O. Gal-Mor and B. B. Finlay, “Pathogenicity islands: a molecular
toolbox for bacterial virulence,” Cellular Microbiology, vol. 8, no. 11,
pp. 1707–1719, Nov 2006.

[26] S. Algarni, S. C. Ricke, S. L. Foley, and J. Han, “The Dynamics of the
Antimicrobial Resistance Mobilome of Salmonella enterica and Related
Enteric Bacteria,” Frontiers in Microbiology, vol. 13, p. 859854, 2022.

http://neo4j.org/
http://opencypher.org/
http://opencypher.org/
https://www.gqlstandards.org/
https://github.com/jpjarnoux/PanGraph-DB
https://github.com/jpjarnoux/PanGraph-DB
https://doi.org/10.1093/bioinformatics/btac506
https://doi.org/10.1093/bioinformatics/btac506
https://www.biorxiv.org/content/early/2021/12/07/2021.12.06.471380
https://www.biorxiv.org/content/early/2021/12/07/2021.12.06.471380
https://covidgraph.org/
https://git.connect.dzd-ev.de/dzdpythonmodules/dict2graph
https://git.connect.dzd-ev.de/dzdpythonmodules/dict2graph
https://graphio.readthedocs.io/en/latest/
https://graphio.readthedocs.io/en/latest/

	Introduction
	Methodology
	Integrated Pangenomics
	Experimental Evaluation
	Conclusion and Perspectives
	References

