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Abstract: Boron (B) is a micronutrient crucial for the growth, development, productivity, and quality
of crops. However, in areas characterized by acid soil (pHwater < 5.0) and high rainfall, soil B
concentration tends to decrease, leading to insufficient supply to crops. This study was aimed at
determining the optimal rate of B fertilization to enhance Vaccinium corymbosum L. performance
in acid conditions. One-year-old cultivars with contrasting Al resistance (Al-sensitive Star and
Al-resistant Cargo) were used. Plants were conditioned in plastic pots containing 18 L of half-ionic-
strength Hoagland solution (pH 4.5) for 2 weeks. Thereafter, the following B treatments were applied
foliarly: control, without B application (distilled water), 200, 400, and 800 mg L−1 of B as Solubor®

for up to 72 h. Photosynthetic performance, root and shoot B levels, antioxidants, and oxidative
stress were evaluated. Root and shoot B concentrations increased with the increasing B application,
being higher in leaves than in roots of both cultivars. Net photosynthesis decreased at 800 mg L−1 B
supply and effective quantum yield of PSII at 72 h in all B treatments. Lipid peroxidation increased
in both cultivars at 800 mg L−1 B treatment. Antioxidant activity increased in all B treatments in
both cultivars; while, at 400 and 800 mg L−1 B, total phenols increased in leaves of cultivar Star
and decreased in cultivar Cargo. In conclusion, optimal B foliar application for highbush blueberry
appears to be around 400 mg L−1 B. The appropriate B foliar application could help mitigate potential
stress-induced problems in highbush blueberry cultivation. However, the optimal foliar B application
should be confirmed in field experiments to help the farmers manage B nutrition.

Keywords: ascorbic acid; cell wall; Solubor®; woody plants

1. Introduction

Boron (B) is essential for the growth, development, productivity, and quality of
crops [1,2]. Its absorption by plants, primarily in the form of boric acid [B(OH)3], oc-
curs through root membranes via passive diffusion [3,4]. Also, some plants possess efficient
B transport systems activated under low or high B conditions; for example, under B defi-
ciency, the boric acid channel NIP5;1 is activated in root cells of Arabidopsis for boric acid
uptake, whereas xylem loading is performed by the borate transporter BOR1 [5].
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The requirement of B for normal plant growth and development ranges from 10 to
75 mg kg−1 in dried leaf tissues for many crops. Boron requirements vary depending on
the type of plants: in monocotyledons, leaf content ranges from 1 to 6 mg kg−1, while
in dicotyledons, it ranges from 20 to 70 mg kg−1 [6]. Boron plays a pivotal role in the
synthesis and the properties of the cell wall [7,8]. In addition, B is involved in the regulation
of the synthesis of ascorbate and lignin, as well as the maintenance of the antioxidant
system [6,9]. In this context, a recent study by [10] reported that the addition of boron
could help to detoxify H+-toxicity by activating the antioxidant system, thereby reducing
oxidative damage in the roots of trifoliate seedlings (Poncirus trifoliate (L) Raf.). In regions
characterized by acid soil (pHwater < 5) and high rainfall, availability of B in soils is
low, leading to plant deficiency manifested as abnormal growth in young plants and
a rapid inhibition of root growth and elongation, subsequently affecting crop yield and
quality [11]. Conversely, excessive B supply can result in decreased chlorophyll content;
reduced photosynthetic capacity; and yield reduction in Citrus rootstock cultivars, Cucurbita
pepo, Cucumis sativus, Mentha arvensis, and Cymbopogon fexuosus [8,12,13].

Cultivation of highbush blueberry (Vaccinium corymbosum L.), prevalent in southern
Chile [14], occurs on volcanic ash-derived soils with high acidity and high aluminum
concentrations that often coincide with low B availability [14–16]. In addition, elements
such as manganese (Mn) increase in acid soils; although it is an essential micronutrient,
its excess can produce toxic effects in plants [17,18]. In these acid soils, B is strongly
adsorbed by the allophane, which is the most dominant mineral in the clay fraction [19,20],
producing its deficiency. This problem is exacerbated by the high rainfall in autumn–winter,
so foliar application of boron at the reproductive phenological stage (e.g., flowering) in
spring–summer is very necessary for farmers to improve the fruit set, fruit production, and
quality. To address these challenges, it is important to characterize the effects of variable
B supply on highbush blueberry under acidic conditions as a theoretical basis for new
agronomic strategies to mitigate these B-related problems. Therefore, this study was aimed
at determining the optimal rate of foliar B application to enhance highbush blueberry
performance under acidic conditions.

2. Results
2.1. B Concentration in Leaves and Roots of Highbush Blueberry Cultivars

To explore the uptake and translocation of B in plants under varying rates of B ap-
plication, we performed analyses to determine the B concentration in roots and leaves of
each cultivar (Figure 1). Our findings revealed a significant interaction between B doses
and time (p < 0.05). In leaves, the Star cultivar exhibited the most substantial increase,
reaching a 7.9-fold increase in the 800 mg L−1 treatment after 72 h, followed by a 4.6-fold
increase at 400 mg L−1 after the same period following application, compared to the control
(Figure 1B). Conversely, in Cargo leaves, these increments were more modest compared
to Star (1.8-fold and 2.4-fold increases at 72 h for the 400 and 800 mg L−1 treatments,
respectively) (Figure 1A). By contrast, both Star and Cargo roots showed no significant
changes across different B doses and time (Figure 1C,D).
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Figure 1. Boron concentration (mg kg−1) in leaves (A,B) and roots (C,D) of Al-resistant cultivar Cargo 
(A,C) and Al-sensitive cultivar Star (B,D) of V. corymbosum exposed to different rates of foliar B ap-
plication (200, 400, and 800 mg L−1 Solubor®) for 0, 24, 48, and 72 h. The values are the averages of 
four independent biological replicates [± standard error (SE)]. Lowercase letters indicate significant 
differences (p ≤ 0.05) as influenced by the interaction treatment x time, according to the Tukey test. 

2.2. Chlorophyll Fluorescence and Gas Exchange Parameters 
At 72 h in the Cargo cultivar, the effective quantum yield (ΦPSII) and electron 

transport rate (ETR) decreased in all treatments, except for 400 mg L−1 B, where no signif-
icant difference across time was recorded for both parameters (Figure 2A,C). Cultivar Star 
showed the highest increase in both parameters for the 800 mg L−1 B treatment at 48 h 
compared to the control (Figure 2B,D). A significant interaction between the B application 
rates and time (p < 0.05) was observed for the net photosynthesis (Pn) in both Star and 
Cargo. Cultivar Cargo showed an increase of up to 45% with an increase in the B dose 
over time compared to the control, except for 800 mg L−1 B at 72 h, where a decrease (13%) 
was observed (Figure 3A). In comparison, cultivar Star showed decreased Pn in all the 
treatments over time, except for 200 mg L−1 B at 72 h, where an increase of approximately 
35% was observed (Figure 3B). In both cultivars, stomatal conductance (gs) exhibited fluc-
tuations across treatments and times (Figure 3C,D). Transpiration (E) in both cultivars did 
not show any significant changes across treatments (Figure 3E,F).  

Figure 1. Boron concentration (mg kg−1) in leaves (A,B) and roots (C,D) of Al-resistant cultivar
Cargo (A,C) and Al-sensitive cultivar Star (B,D) of V. corymbosum exposed to different rates of foliar B
application (200, 400, and 800 mg L−1 Solubor®) for 0, 24, 48, and 72 h. The values are the averages of
four independent biological replicates [±standard error (SE)]. Lowercase letters indicate significant
differences (p ≤ 0.05) as influenced by the interaction treatment × time, according to the Tukey test.

2.2. Chlorophyll Fluorescence and Gas Exchange Parameters

At 72 h in the Cargo cultivar, the effective quantum yield (ΦPSII) and electron transport
rate (ETR) decreased in all treatments, except for 400 mg L−1 B, where no significant
difference across time was recorded for both parameters (Figure 2A,C). Cultivar Star
showed the highest increase in both parameters for the 800 mg L−1 B treatment at 48 h
compared to the control (Figure 2B,D). A significant interaction between the B application
rates and time (p < 0.05) was observed for the net photosynthesis (Pn) in both Star and
Cargo. Cultivar Cargo showed an increase of up to 45% with an increase in the B dose
over time compared to the control, except for 800 mg L−1 B at 72 h, where a decrease (13%)
was observed (Figure 3A). In comparison, cultivar Star showed decreased Pn in all the
treatments over time, except for 200 mg L−1 B at 72 h, where an increase of approximately
35% was observed (Figure 3B). In both cultivars, stomatal conductance (gs) exhibited
fluctuations across treatments and times (Figure 3C,D). Transpiration (E) in both cultivars
did not show any significant changes across treatments (Figure 3E,F).
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electron transport rate (ETR) (C,D) of Al-resistant cultivar Cargo (A,C) and Al-sensitive cultivar Star 
(B,D) of V. corymbosum exposed to different rates of foliar B application (200, 400, and 800 mg L−1 
Solubor®) for 0, 24, 48, and 72 h. The values are the averages of four independent biological replicates 
[±standard error (SE)]. Lowercase letters indicate significant differences (p ≤ 0.05) in the treatment x 
time interaction, according to the Tukey test. 

 

Figure 2. Fluorescence parameters of effective quantum yield of photosystem II (ΦPSII) (A,B) and
electron transport rate (ETR) (C,D) of Al-resistant cultivar Cargo (A,C) and Al-sensitive cultivar Star
(B,D) of V. corymbosum exposed to different rates of foliar B application (200, 400, and 800 mg L−1

Solubor®) for 0, 24, 48, and 72 h. The values are the averages of four independent biological
replicates [±standard error (SE)]. Lowercase letters indicate significant differences (p ≤ 0.05) in the
treatment × time interaction, according to the Tukey test.
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Figure 3. Photosynthetic parameters: net photosynthesis (Pn, µmol CO2 m−2 s−1) (A,B), stomatal
conductance (gs, mol H2O m−2 s−1) (C,D), and transpiration (E, mmol H2O m−2 s−1) (E,F) of Al-
resistant cultivar Cargo (A,C,E) and Al-sensitive cultivar Star (B,D,F) of V. corymbosum exposed to
different rates of foliar B application (200, 400, and 800 mg L−1 Solubor®) for 0, 24, 48, and 72 h. The
values are the averages of four independent biological replicates (±standard error [SE]). Lowercase
letters indicate significant differences (p ≤ 0.05) in the treatment × time interaction, according to the
Tukey test.



Plants 2024, 13, 1553 5 of 14

2.3. Photosynthetic Pigments

In Cargo, chlorophyll a, b, and total chlorophyll (a + b) in all treatments remained
relatively stable across various B dose × time combinations; nonetheless, chlorophyll a and
b were increased in the 200 mg L−1 B treatment compared to the control after 48 h (Table 1).
In cultivar Star, chlorophyll a, a/b, and total chlorophyll (a + b) remained relatively stable
in all treatments (Table 2).

Table 1. Photosynthetic pigments in leaves of V. corymbosum cultivar Cargo.

Time (h)–B Rate (mg L−1) Chl a Chl b Chl a/b Carotenoids

0-0 0.49 ± 0.046 b 0.21 ± 0.018 ab 2.34 ± 0.035 a 0.82 ± 0.011 abc
0-200 0.49 ± 0.046 b 0.21 ± 0.018 ab 2.34 ± 0.035 a 0.82 ± 0.011 abc
0-400 0.49 ± 0.046 b 0.21 ± 0.018 ab 2.34 ± 0.035 a 0.82 ± 0.011 abc
0-800 0.49 ± 0.046 b 0.21 ± 0.018 ab 2.34 ± 0.035 a 0.82 ± 0.011 abc

24-0 0.45 ± 0.066 b 0.21 ± 0.017 ab 2.40 ± 0.036 a 0.70 ± 0.026 c
24-200 0.45 ± 0.021 b 0.20 ± 0.009 b 2.24 ± 0.115 a 0.80 ± 0.046 abc
24-400 0.40 ± 0.037 b 0.17 ± 0.012 b 2.29 ± 0.088 a 0.72 ± 0.068 bc
24-800 0.54 ± 0.061 b 0.22 ± 0.017 ab 2.37 ± 0.096 a 0.98 ± 0.087 abc

48-0 0.41 ± 0.038 b 0.18 ± 0.012 b 2.17 ± 0.059 a 0.78 ± 0.065 abc
48-200 0.77 ± 0.018 a 0.29 ± 0.006 a 2.52 ± 0.846 a 1.09 ± 0.151 a
48-400 0.57 ± 0.016 ab 0.25 ± 0.004 ab 2.30 ± 0.094 a 1.00 ± 0.011 abc
48-800 0.59 ± 0.048 ab 0.24 ± 0.019 ab 2.40 ± 0.028 a 1.07 ± 0.112 ab

72-0 0.43 ± 0.018 b 0.18 ± 0.008 b 2.31 ± 0.108 a 0.74 ± 0.030 bc
72-200 0.53 ± 0.039 b 0.22 ± 0.013 ab 2.34 ± 0.032 a 0.95 ± 0.072 abc
72-400 0.57 ± 0.016 ab 0.25 ± 0.037 ab 2.31 ± 0.217 a 0.91 ± 0.087 abc
72-800 0.55 ± 0.025 b 0.21 ± 0.011 ab 2.35 ± 0.111 a 0.93 ± 0.030 abc 1

1 Different lowercase letters in the columns indicate significant differences by Tukey’s test at 5% significance.
Values represent the mean ± SE.

Table 2. Photosynthetic pigments in leaves of V. corymbosum cultivar Star.

Time (h)–B Rate (mg L−1) Chl a Chl b Chl a/b Carotenoids

0-0 0.61 ± 0.050 ab 0.27 ± 0.021 abc 2.27 ± 0.011 a 1.08 ± 0.102 abc
0-200 0.59 ± 0.042 ab 0.26 ± 0.01 abcde 2.28 ± 0.003 a 1.16 ± 0.027 a
0-400 0.61 ± 0.018 ab 0.28 ± 0.02 abc 2.29 ± 0.001 a 1.11 ± 0.040 ab
0-800 0.61 ± 0.030 ab 0.27 ± 0.005 abc 2.27 ± 0.003 a 1.02 ± 0.008 abcd

24-0 0.45 ± 0.013 b 0.21 ± 0.005 cde 2.22 ± 0.055 ab 0.79 ± 0.038 cd
24-200 0.53 ± 0.010 ab 0.24 ± 0.011 abcde 2.18 ± 0.064 abc 0.92 ± 0.022 abcd
24-400 0.60 ± 0.057 ab 0.29 ± 0.001 ab 2.22 ± 0.046 ab 1.10 ± 0.100 abc
24-800 0.44 ± 0.045 b 0.19 ± 0.005 e 2.11 ± 0.029 abc 0.75 ± 0.019 d

48-0 0.59 ± 0.018 ab 0.25 ± 0.005 abcde 2.28 ± 0.068 a 0.95 ± 0.053 abcd
48-200 0.64 ± 0.005 a 0.26 ± 0.031 abcd 2.17 ± 0.010 abc 0.88 ± 0.085 abcd
48-400 0.54 ± 0.027 ab 0.19 ± 0.009 de 2.21 ± 0.058 abc 0.95 ± 0.07 abcd
48-800 0.51 ± 0.046 ab 0.30 ± 0.010 a 1.89 ± 0.104 c 0.85 ± 0.08 abcd

72-0 0.49 ± 0.010 ab 0.21 ± 0.002 cde 2.28 ± 0.072 a 0.84 ± 0.001 bcd
72-200 0.49 ± 0.033 ab 0.23 ± 0.010 abcde 2.07 ± 0.064 abc 0.85 ± 0.074 abcd
72-400 0.59 ± 0.041 ab 0.30 ± 0.016 a 1.93 ± 0.130 bc 1.02 ± 0.07 abcd
72-800 0.46 ± 0.005 b 0.22 ± 0.005 bcde 2.06 ± 0.07 abc 0.82 ± 0.02 bcd 1

1 Different lowercase letters in the columns indicate significant differences by Tukey’s test at 5% significance.
Values represent the mean ± SE.

2.4. Assessment of Lipid Peroxidation and Antioxidant Activity

In Cargo leaves, lipid peroxidation increased progressively over time in the 800 mg L−1 B
treatment, while noticeable decreases were observed at 72 h for the 200 and 400 mg L−1 B
treatments (Figure 4). On the contrary, leaves of the Star cultivar did not show any significant
differences in lipid peroxidation, except with 800 mg L−1 B at 72 h (Figure 4). In the roots of
both cultivars, lipid peroxidation levels remained stable over treatments and time (Figure 4).
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Figure 4. Lipid peroxidation in leaves (A,C) and roots (B,D) of Cargo (A,B) and Star (C,D) cultivars
of V. corymbosum exposed to different doses of B (200, 400, and 800 mg L−1 Solubor®) for 0, 24, 48,
and 72 h. The values are the averages of four independent biological replicates (±standard error
[SE]). Lowercase letters indicate significant differences (p ≤ 0.05) in the treatment × time interaction,
according to the Tukey test.

To elucidate the non-enzymatic antioxidant mechanism, we analyzed the contents of
total antioxidants, total phenols, and total flavonoids. In Cargo leaves, total antioxidants
doubled with 400 mg L−1 B treatment after 24 h compared to the control (Figure 5A). In Star
leaves, total antioxidant levels were lower than those in Cargo, but increased up to 2.2-fold
across treatments compared to the control (Figure 5C). Lower levels of total antioxidants
were observed in roots of both cultivars compared to leaves, with a significant increase in
roots of Cargo (1.9-fold) for the B treatments (Figure 5B,D).

Total phenols showed a significant interaction between B doses and time (p < 0.01).
In Cargo leaves, total phenols decreased by 16% with 800 mg L−1 B at 72 h, whereas in
the treatment rates and durations, total phenols did not vary significantly compared to the
control (Figure 6A). In cultivar Star leaves, total phenols increased only in the treatment
with 400 mg L−1 B at 24 h (1.6-fold) and 800 mg L−1 B at 48 h (1.7-fold) (Figure 6C). In
Cargo roots, total phenols showed a significant treatment-dependent decrease at 24 and
48 h, followed by recovery (Figure 6B). By contrast, in roots of Star, a significant increase
(1.6-fold) was observed at 400 mg L−1 B after 72 h (Figure 6D).

Total flavonoids in cultivar Cargo leaves decreased (up to 24.9%) across all treatments
at 72 h compared to the control (Figure 7A), whereas in Star leaves, a slight increase was
observed in all B treatments at 48 and 72 h (Figure 7C). In roots of both cultivars, total
flavonoids increased (~31.9%) in all treatments compared to the control at 24 and 48 h,
excepting in Star with 400 mg L−1 B at 24 h (Figure 7B,D).

The SOD activity in the leaves of both cultivars increased across all treatments after 24
h, subsequently decreasing by up to 2.5-fold compared to the control. Similarly, in the roots
of Cargo, a decrease (23.5%) in SOD activity was also found in the 200 and 400 mg L−1 B
treatments at 48 h (Figure 8).
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the treatment × time interaction, according to the Tukey test.
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24, 48, and 72 h. The values are the averages of four independent biological replicates (±standard
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3. Discussion

The availability of B, in the form of boric acid (H3BO3) or borate anion [B(OH)4
−],

is directly related to the soil pH. At low pH, the predominant form is H3BO3, whereas
at higher pH, the borate anion predominates [1,21]. In agriculture, the application of B
fertilizer via foliar spraying has been recognized as a supplement to soil application to
meet the plant B requirements [22]. Moreover, foliar application is the standard practice to
rapidly alleviate B deficiency in plants [23–26].

The results of the present study revealed a higher accumulation of B in leaves com-
pared to roots with increasing rates of B application, suggesting that B was not translocated
from leaves to roots. It is known that B is highly mobile in the soil [27]; however, in plants,
the long-distance mobility of B (from roots to the leaves) through the phloem depends
on its ability to complex with other metabolites [28]. For instance, plants in the Oleaceae
and Rosaceae families translocate B with large amounts of polyols in the phloem [29],
while B shows low mobility in wheat (Triticum aestivum) and canola (Brassica napus), which
translocate B complexed with sucrose in the phloem [30]. In Citrus (Citrus sp.), foliar-
supplied B is transported from leaves to roots as a B–sucrose complex via phloem [26]. Our
findings of higher B concentration in leaves of highbush blueberry corroborate the previous
findings of [31], who reported a linear increase in B concentration with increasing rates of
B application in beet (Beta vulgaris) and tomato (Lycopersicon esculentum). Similar results
were observed in almond trees, where foliar application increased the B concentration in
the tissues of this woody species [32–34]. These studies suggest that the boron application
absorbed by leaves is likely transported as a B–sorbitol complex. Moreover, boric acid
uptake occurs due to the high permeability and passive transport across plant membranes,
whereas the responses of tolerant plant species to deficiency and toxicity nutrients may
involve active transport [6,35].

Both B toxicity and deficiency present similar symptoms in plants, including a decrease
in photosynthesis, and efficiency of photosystem II, low transpiration rate and stomatal
conductance, alterations in the activity of antioxidative enzymes, and increased lipid
peroxidation [36–38]. On the other hand, optimal B supply exerted a positive effect on
gas exchange parameters such as the net CO2 assimilation rate and stomatal conductance
in almond (Prunus dulcis) [39]. Similarly, in Zea mays plants, B application considerably
improved growth, photosynthetic capacity, tissue B concentration, as well as the antioxidant
defense system [40]. However, our results demonstrate alterations in the Pn and efficiency
of the photosystem II under a low and high supply of B in both cultivars of V. corymbosum,
possibly indicating symptoms of deficiency and/or toxicity.

SOD activity plays a crucial role in plants under stress conditions, serving as an
indicator of oxidative stress [13]. In boron-toxicity-tolerant plants like Carthamus tinctorius
(safflower), low SOD activity was observed at high B concentrations [41], which is similar
to the findings of this study. A similar behavior was observed in woody citrange orange
species, when excess B resulted in decreased SOD activity and reduced activity of other
antioxidant enzymes [42,43].

Generation of reactive oxygen species under B deficiency and toxicity leads to lipid
peroxidation [43,44]. In our study, lipid peroxidation increased in both cultivars subjected
to the 800 mg L−1 B application rate, consistent with findings reported in Malus domestica,
Solanum lycopersicum, Vitis vinifera, Mentha arvensis, and apple rootstock under B toxic-
ity [45–48]. On the other hand, increases in the concentration of phenolic compounds have
been associated with boron deficiency due to the formation of the B-sugar cis-diol complex
that regulates the accumulation of phenols [47]. In addition, higher total phenol content
results from an increase in the activity of the enzyme phenylalanine ammonia lyase under
B deficiency. Our results showed a peak in total phenol content in leaves of cultivar Star
treated with 400 mg−1 B.
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4. Materials and Methods
4.1. Plant Material and Growth Conditions

Two commercial cultivars of highbush blueberry (Vaccinium corymbosum L.) with dif-
ferent characteristics were used in this study: the Al-sensitive Star (USOOPP10675P) and
the Al-resistant Cargo (US 2013023926OP1). These cultivars differ in aluminum resistance,
genetic backgrounds, ecological adaptations, susceptibility to diseases, and soil and envi-
ronmental requirements [48–51]. One-year-old plants (uniform size and foliar area with
40 cm in height) were conditioned in plastic pots containing 18 L of half-strength Hoagland
solution [52] for 2 weeks. The pH was adjusted daily to 4.5. The composition of the nutrient
solution was 3.0 mM KNO3, 2.0 mM Ca (NO3)2, 1.0 mM MgSO4, 0.1 mM KH2PO4, 1.0 mM
NH4NO3, 20 µM Fe-EDTA, 25 µM H3BO3, 10 µM MnSO4, 0.4 µM CuSO4, 2.0 µM ZnSO4,
and 0.07 µM (NH4)6Mo7O24. The growth chamber conditions were 16/8 h light/dark
photoperiod, 22 ± 2 ◦C temperature, 70% relative air humidity, and light intensity around
300 µmol photons m−2 s−1. Foliar B application and treatments were control (distilled
water) and 200, 400, and 800 mg L−1 of B as SOLUBOR®. The dose coverage of SOLUBOR®

solution was 10 mL per plant calculated as the total foliar area of the plant. Physiological
parameters were immediately evaluated after B application (0 h) and at 24, 48, and 72 h after
B application; samples of fully expanded leaves and roots were harvested in the morning
between 08:00 and 10:00 h, rinsed extensively with distilled water, snap-frozen in liquid
nitrogen, and stored at −80 ◦C until analysis.

4.2. Determination of B Concentration

Boron concentration was analyzed as described by [53], whereby shoot and root
samples were dried at 70◦ C in a forced-air oven for 72 h. Then, 1.0 g of dried tissues was
ground and dry-ashed in a muffle furnace at 500 ◦C for 8 h; the ash was then dissolved in
2 M HCl. The concentration of B was determined using a multi-element atomic absorption
spectrophotometer (EAA, Model 969, Unicam, Cambridge, UK).

4.3. Chlorophyll Fluorescence and Gas Exchange Analyses

Chlorophyll fluorescence was measured in light-adapted conditions, where the maxi-
mum quantum yield [Fv’/Fm’ = (Fm’ − 0’)/Fm’] was calculated according to [54], while the
effective quantum yield of photosystem II [ΦPSII = (Fm’ − Fs)/Fm’)] and electron transport
rate [ETR = ΦPSII × α × β × PPFD) were calculated according to [55]. Photosynthesis-
related parameters were determined in fully expanded leaves as described by [56]. The
parameters were net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration
(E); the measurements were performed early in the morning using a portable infrared gas
analyzer (Licor LI6400, Lincoln, NE, USA) equipped with a measurement cuvette with its
own light source (300 µmol photons m−2 s−1), with control of temperature (20 ◦C) and
CO2 (400 mL L−1).

4.4. Determination of Photosynthetic Pigment Contents

Leaf samples (30 mg) were subjected to methanol extraction according to [57]. The
photosynthetic pigments were determined as described by [58], using a microplate spec-
trophotometer (EPOCH, BioTek Instruments, Inc., Winooski, VT, USA) and measuring
absorbances at 653 (chlorophyll a), 666 (chlorophyll b), and 470 nm (carotenoids) on a
spectrophotometer (Genesys 10UV, Thermo Spectronic, Madison, WI, USA).

4.5. Lipid Peroxidation Assay

The lipid peroxidation of the plasma membrane in leaves and roots of highbush
blueberry was determined by the modified method described by [59], using thiobarbituric
acid reacting substances (TBARS). Approximately 150 mg of ground fresh material was used
for analysis. Absorbance was measured at 440, 530, and 660 nm by a spectrophotometer
(Genesys 10UV, Thermo Spectronic, Madison, WI, USA).
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4.6. Antioxidants Determination

The antioxidant activity (AA) in roots and leaves was determined based on the method
described by [60], using the 2.2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging
assay. Fresh root and leaf samples were ground in liquid nitrogen and soaked in 1 mL of
80:20 (v/v) methanol:water. The absorbance was measured at 515 nm by a spectrophotome-
ter (Genesys 10UV, Thermo Spectronic, Madison, WI, USA), using Trolox as the standard.
The values were expressed in µg Trolox equivalents g−1 fresh weight (FW).

4.7. Phenol and Flavonoid Assays

The total phenols (TPs) were determined in roots and leaves by the Folin–Ciocalteu
method, as described by [61]. Absorbance was measured at 765 nm by a spectrophotometer
and expressed in chlorogenic acid equivalents (CAEs) g−1 FW.

The flavonoids were determined in roots and leaves by the method described by [62].
Absorbance was measured at 510 nm by a spectrophotometer (Genesys 10UV, Thermo
Spectronic, Madison, WI, USA) and expressed as mg of rutin equivalents per gram of fresh
weight (mg rutin equivalent g−1 FW).

4.8. Superoxide Dismutase Activity

The SOD activity was determined according to [56], through the photochemical reduc-
tion of nitroblue tetrazolium (NBT). The reaction mixture contained 640 µL of 0.1 M potas-
sium phosphate buffer (pH 7.0), 10 µL of 10 mM ethylenediaminete- traacetic acid (EDTA),
50 µL of 260 mM methionine, 80 µL of 4.2 mM NBT, 170 µL of 130 µM riboflavin, and
50 µL of supernatant. The reaction tubes were illuminated for 15 min, and the absorbance
of the samples was measured at 560 nm in a microplate spectrophotometer (EPOCH,
Bioteck Instruments, Inc., headquartered in Winooski, VT, USA). Non-illuminated and
illuminated reaction mixtures without the supernatant were used as controls. One SOD
unit was defined as the amount of enzyme corresponding to 50% inhibition of the NBT
reduction [63]. The SOD activity was calculated on a protein basis (proteins measured
according to the [64] method).

4.9. Experimental Design and Statistical Analyses

The experiment was performed in a randomized complete block design with two
cultivars, four B treatments, three replicates, and three measurement times for the physi-
ological and biochemical analyses. When the data passed the Kolmogorov–Smirnov test
for the normality and homogeneity of variances, we performed two-way ANOVA (where
the factors were B doses and sampling times) and used Tukey’s test (p ≤ 0.05) for mean
comparisons. All analyses were performed using XLSTAT-LifeScience v.2022.

5. Conclusions

The foliar application experiment with B under greenhouse conditions and using a
hydroponic solution revealed that 400 mg L−1 of B is necessary for the optimal physiological
performance of highbush blueberry plants. However, the optimal B supply rates for
highbush blueberry should be confirmed in field experiments to assist farmers in managing
B nutrition effectively, because boron nutrition depends on various factors, including the
soil pH, B status of plants, plant age, and more. Our study demonstrated that at a dose of
400 mg L−1 B, the B concentration significantly increased in both evaluated cultivars. Below
this dose, highbush blueberry plants may experience deficiency, whereas higher doses may
lead to B toxicity. Finally, this information demonstrates the importance of determining the
optimal B dose to improve plant performance. By establishing the appropriate B application
rates, growers can effectively manage B availability and supply, thereby mitigating potential
stress-induced problems in blueberry cultivation.
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