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ABSTRACT 
 

Fire is an evolutionary environmental filter in tropical savanna ecosystems altering functional diversity and associated C pools in the biosphere and fluxes between the atmosphere and 

biosphere. Therefore, alterations in fire regimes (e.g. fire exclusion) will strongly influence ecosystem processes and associated dynamics. In those ecosystems C dynamics and 

functions are underestimated by the fire-induced offset between C output and input. To determine how fire shapes ecosystem C pools and fluxes in an open savanna across recently 

burned and fire excluded areas, we measured the fol- lowing metrics: (I) plant diversity including taxonomic (i.e. richness, evenness) and plant functional diversity (i.e. func- tional 

diversity, functional richness, functional dispersion and community weighted means); (II) structure (i.e. above- and below-ground biomass, litter accumulation); and (III) functions 

related to C balance (i.e. net ecosystem carbon di- oxide (CO2) exchange (NEE), ecosystem transpiration (ET), soil respiration (soil CO2 efflux), ecosystem water use ef- ficiency (eWUE) 

and total soil organic C (SOC). We found that fire promoted aboveground live and belowground biomass, including belowground organs, coarse and fine root biomass and 

contributed to higher biomass allocation be- lowground. Fire also increased both functional diversity and dispersion. NEE and total SOC were higher in burned plots compared to 

fire-excluded plots whereas soil respiration recorded lower values in burned areas. Both ET and eWUE were not affected by fire. Fire strongly favored functional diversity, fine root 

and belowground organ biomass in piecewise SEM models but the role of both functional diversity and ecosystem structure to mediate the effect of fire on ecosystem functions 

remain unclear. Fire regime will impact C balance, and fire exclusion may lead to lower C input in open savanna ecosystems. 
 
 
 

HIGHLIGHTS  

 

• Alterations of fire regimes influence tropi- 

cal savannas water and carbon exchange. 

• Fire presence modified carbon balance in- 

creasing soil and belowground carbon 

input. 

• Fire promotes functional diversity due to 

plant regeneration post-fire strategies. 

• Fire exclusion leads to losses on soil car- 

bon and functional diversity. 
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1. Introduction 

 
Disturbances (e.g., fire) can alter carbon (C) dynamics and overall C bal- 

ance by shifting the amount of C input and output from ecosystems conse- 

quently altering stocks in the biosphere and fluxes between the atmosphere 

and biosphere (Goetz et al., 2007). Fire is fundamental for the maintenance 

of C balance and ecosystem function at fire prone-ecosystems, such as open 

tropical savannas (McLauchlan et al., 2020). However, currently fire re- 

gimes of many fire-prone systems have been deeply changed across the 

globe (Archibald, 2016; Rogers et al., 2020) potentially altering C dynamics 

in fire-dependent ecosystems. Some studies already suggested that fire sup- 

pression in savannas will lead to changes of C dynamic equilibrium, de- 

creasing the ecosystem C sink capacity (Beringer et al., 2015; Yin et al., 

2020). Even so, the indirect and direct impacts of changes in fire regimes 

on C dynamics remain still poorly understood and are not explicitly ana- 

lyzed addressing interfaces of fluxes between the atmosphere and bio- 

sphere alongside with C stocks to capture overall C dynamics (Pausas and 

Bond, 2020; Yin et al., 2020). 
Changes in tropical savanna fire regimes (i.e., increase or decrease of 

fire frequencies) will lead to changes in vegetation structure or soil compo- 

sition for example, causing plant-soil feedback that might modify the global 

C dynamics (Da Silva and Batalha, 2008; Grace et al., 2006; Pellegrini et al., 

2020). Those plant-soil feedback alterations may occur due to differential 

responses of vegetation regrowth after fire (C input) (Archibald et al., 

2018), soil respiration modification (C release), variations on soil organic 

carbon (SOC, C input), and changes in microbial activities (C fixing, 

Chapin et al., 2011; Dove et al., 2021; Pressler et al., 2019). Fire exclusion 

may increase aboveground biomass, decreasing grasses fuel load, affecting 

thus fire intensity (Fidelis et al., 2013, 2018). Thus, due to changes in fuel 

load and vegetation structure by the replacement of grassy by woody vege- 

tation, C input after fire as a result of regrowing vegetation may be compro- 

mised. First, because fire exclusion can negatively impact the herbaceous 

layer, since some species may disappear after some time without fire 

(Pilon et al., 2021b) . Secondly, in fire-excluded areas, as a consequence 

to increasing woody cover, the release of C to the atmosphere will contrib- 

ute more in case of fire, compromising C balance (Richards et al., 2011; 

Simpson et al., 2021). In addition, woody encroachment caused by fire ex- 

clusion may lead to changes in SOC pool, i.e. SOC losses and decrease in soil 

respiration which are fundamental properties of interconnections between 

the biosphere and the atmosphere (Abreu and Durigan, 2011; Chen et al., 

2003; February et al., 2020; Jackson et al., 2002). On the other hand, 

SOC may increase after fire exclusion due to the stabilization of soil organic 

matter (Pellegrini et al., 2021) and thus, further studies about the effects of 

changes in fire regimes are needed to elucidate carbon dynamics in differ- 

ent fire-prone ecosystems. 
Moreover, changes in fire frequency will lead to changes in biomass al- 

location and belowground traits, both greatly influencing soil C pools and 

fluxes balance (Jackson et al., 2000). Indeed, higher C investment in below- 

ground biomass in tropical grassy biomes is partly in response to fire (De 

Castro and Kauffman, 1998; Fidelis et al., 2013), where plants shift their 

strategy by allocating resources from above to belowground (Archibald et 

al., 2018, 2019). The belowground biomass investment represents the 

major component of C input in grassy biomes (De Castro and Kauffman, 

1998; Ottaviani et al., 2020). Belowground traits, especially root traits, are 

key functional traits that shape several ecosystem processes (Freschet et 

al., 2021) and are subject to be affected by fire and changes in vegetation 

structure (Loiola et al., 2015). For example, root traits from grasses such as 

higher specific root length and dense root system in the superficial soil layer 

promote efficiency of water and nutrients use (Case et al., 2020; Freschet 

et al., 2018; Linder et al., 2018) being related to ecosystem C input mainly 

at shallow soil layer (Jobbagy and Jackson, 2000). Root traits (e.g. rooting 

depth) from trees and shrubs are more correlated with tree growth and 

water uptake at deeper soil promoting efficiency of water use (Case et al., 

2020; Zhou et al., 2020), and ecosystems C input at deep soil layer 

(Pellegrini et al., 2020, 2021). In addition, root traits (e.g. specific root 

length, root length density) also are related to ecosystem C loss due to 

 
plant-soil respiratory processes (Bardgett et al., 2014; De Deyn et al., 

2008). Further, any changes in root functional traits can have consequences 

on C flux balance by altering root depth, root respiration, microbial com- 

munities or nutrient uptake for example (Bardgett et al., 2014; De Deyn et 

al., 2008; Freschet and Roumet, 2017). 

Fire modifies C flux balance by affecting both taxonomic(Abreu et al., 

2017; Finn et al., 2013) and functional diversity (De Deyn et al., 2008; 

Hoffmann et al., 2012; Keeley et al., 2011). Fire maintains species richness 

and fitness in tropical savanna ecosystems (Lamont et al., 2018; Pilon et al., 

2021a). Thus, fire can influence ecosystem function (Petchey and Gaston, 

2006) by filtering species with functional traits that are key to ensure 

higher plant fitness and are related to C cycling in such ecosystems 

(Bardgett et al., 2014; De Deyn et al., 2008). Fire should therefore promote 

functional diversity through functional dispersion (Silva et al., 2013) and, 

by selecting plant-soil response and further positively impacting C dynam- 

ics flux balance (Freschet and Roumet, 2017; Hanif et al., 2019). 

Our  study  aimed  to  integrate  total  environment  responses 
-atmospheric and biosphere dynamics- by understanding whether fire 

impacts (I) ecosystem C and water dynamics (i.e., total SOC, net ecosystem 

carbon dioxide (CO2) and water exchange, ecosystem water use 

efficiency and soil respiration), ecosystem diversity (i.e. plant 

taxonomic and functional diversity) and ecosystem structure (i.e. above 

and belowground biomass) on open Cerrado (Brazilian sa- vanna) 

physiognomy; and (II) how changes in ecosystem diversity and/or 

structure in response to fire will affect ecosystem C dynamics. We 

hypothesized that: (a) fire occurrence modifies the overall balance 

between C release and input, increasing C input while reducing C out- 

put through changes in both functional diversity and biomass alloca- tion; 

(b) fire increases C input in the system, by increasing biomass allocation 

in the belowground compartment; and (c) fire will promote higher 

taxonomic and functional diversity in Cerrado open physiog- nomy 

compared to areas excluded from fire. 

 
2. Material and methods 

 
2.1. Study site 

 
We conducted our study at the Reserva Natural Serra do Tombador (RNST 

hereafter; 13° 35-38′ S and 47° 45′-51′ W, 8900 ha, 560–1118 m a.s.l., 

Fig. S1), a protected area of Cerrado (Fundação Grupo Boticário, 2011). 

RNST exhibits a mosaic of fire history, with a fire-interval in open savannas 

of ca. 2–4 years (Daldegan et al., 2014) and a prevalence of open savannas 

(Fundação Grupo Boticário, 2011). Our study site at the RNST is classified 

as open savannas (campo sujo), a species-rich open savanna mainly com- 

posed of C4 grasses mixed with forbs and scattered dwarf trees and shrubs, 

representing overall low tree cover (<5%) and basal area (Coutinho, 1978; 

Ribeiro and Walter, 2008). The climate is marked by two seasons: dry (May 

to October) and wet (November to April) (Fundação Grupo Boticário, 

2011). The region of the study site has year-round average temperatures 

of ~23 °C, and annual precipitation of ~1778 mm, of which 82% is concen- 

trated between the months of November and April (Fick and Hijmans, 

2017).We performed all measurements during the rainy season (January– 

February 2019) at the peak of vegetation productivity (Cornelissen et al., 

2003; Díaz et al., 2016; Pérez-Harguindeguy et al., 2013). 

We selected one area (~3600 m2) subjected to long-term fire experi- 

ment established in the area since 2013 (for more details, see Rissi et al., 

2017), and one area with long-term fire exclusion (~ 0.36 ha). Before the 

establishment of the fire experiments, the area was subjected to high fire 

frequency (i.e. 2–3 year fire interval, Daldegan et al., 2014). Both areas pre- 

sented two contrasting fire frequencies: the first area was experimentally 

burned every two years (fire hereafter) in the middle of the dry season 

(July since 2013) and mimic campo sujo historical fire interval (Pivello, 

2011). Fire intensity in the area is 1850–2700 kW.m−1, being character- 

ized by a surface fire with high combustion efficiency (>90%, Rissi et al., 

2017; Rodrigues et al., 2021). The second area was excluded from fire for 

16 years (one fire event in the last 20 years, referred as fire exclusion 



 

 

 
hereafter) (Fig. S1). Within each area, we randomly selected 12 1m2 plots 

(12 plots × 2 treatments = 24 plots), with a minimum distance of 2 m be- 

tween plots. All measurements for both fire frequencies were carried within 

those 1m2 plots, 18 months after fire experiments in the burned plots. 

 
2.2. Method 

 
2.2.1. Net ecosystem C fluxes and soil C pools 

We determined fire effects on interconnected fluxes between the atmo- 

sphere and the biosphere by measuring net ecosystem exchange by 

assessing CO2 and water (H2O) vapor exchange between the biosphere and 

the atmosphere by tracking the net ecosystem C exchange (NEE; 

μmols CO2 m−2 s−1) and water exchange (ET; ecosystem evapotranspira- 

tion; μmols H2O m−2 s−1). We estimated NEE at each plot in both fire fre- 
quencies before biomass sampling, during the rainy season (March 2019) 

by recording the flux of CO2 and H2O vapor on three separate sunny days 

(March 23rd, 25th, and 26th 2019) between 11 a.m. and 2 p.m. to ensure 

maximum ecosystem-level photosynthetic activity. NEE and ET from each 

plot was measured using the LiCOR 7500 infrared gas analyzer (Li-Cor 

Inc.,) mounted on a tripod and two 15 cm diameter electric fans to mix the 

air within a chamber (0.49m2 total area and 0.37m3 volume) covered with 

woven rip-stop polyethylene that reduced PAR by 25% while main- 

taining temperatures constant (e.g., temperature increasing during mea- 

surement period did not exceed <1 °C). The chamber was placed in each 

plot for 120 s where CO2 was recorded overtime for 90 s - the first 30 s we 

allowed for the air to mix and stabilize (Arnone and Obrist, 2003; Huxman 

et al., 2004; Potts et al., 2006a). Linear declines in CO2 and in- creases in 

H2O vapor concentrations during the measurement periods dem- onstrate 

the alterations in water vapor were not significant to alter stomatal 

conductance, canopy photosynthesis or soil respiration (Huxman et al., 

2004). NEE of CO2 and H2O vapor were analyzed using Jasoni et al. (2005) 

approach to estimate fluxes at the system level. As the NEE inte- grated 

both CO2 uptake by the vegetation via plant photosynthesis and CO2 

release by soil respiration (roots and microorganism respiration, re- 

spectively), to clearly measure soil CO2 release, alone we measured soil res- 

piration which is soil average efflux (μ mol CO2m−2 s−1) with a LI-6400 gas 
analyzer (Li-Cor Inc., Lincoln, NE, USA). Finally, ecosystem water use effi- 

ciency (eWUE, μ mol CO2/μ mol H2O m−2 s−1) was determined by calcu- 
lating the ratio of NEE per amount of ET. 

 
2.2.2. Plant and soil C stocks 

Within each 1m2 plot, we harvested all the aboveground biomass in one 

subplot of 0.5 m × 0.5 m and we sampled the belowground biomass in one 

subplot of 0.25 m × 0.25 m with 0.2 m depth. to quantify biomass of coarse 

roots (roots >2 mm) and belowground organs (i.e., rhizomes, bulbs, 

xylopodia). Within each subplot used for the belowground biomass, fine 

roots (roots <2 mm) were quantified based on a soil core sample using an 

auger of 5 cm diameter and 20 cm depth since 50% of root biomass is 

found in the top 20 cm of the soil (De Castro and Kauffman, 1998; Delitti 

et al., 2001; Loiola et al., 2015). 

We sorted all aboveground biomass into litter, live and dead biomass, 

and then dried the samples at 80 °C for 48 h. The sum of live and dead bio- 

mass represented the total aboveground biomass. We washed the below- 

ground biomass to remove soil particles and separate coarse root biomass 

from belowground organs. Fine root (<2 mm) samples were sieved at 

2 mm, 1.40 mm and 850 μm before being washed. For assessing fine root 
biomass, we considered all fine roots (roots <2 mm) as a result of the sum 

of acquisitive and transport roots (McCormack et al., 2015). The total be- 

lowground biomass was the sum of belowground organs, coarse and fine 

roots. 

We used total aboveground biomass, live and dead biomass, litter, total 

belowground biomass, belowground organs biomass, coarse and fine root 

biomass measurements to characterize the system structure metrics. To 

evaluate biomass allocation, we considered the ratio of total aboveground: 

total belowground biomass and live aboveground: fine root biomass to 

evaluate biomass allocation for each plot. 

 
We determined total SOC through total soil organic matter (SOM) of 

sieved soil samples taken in each plot (remaining soil from fine root sam- 

ples sieve at 850 μm). SOM was determined by the Soil Lab from the 
Universidade de São Paulo – ESALQ, Brazil, through organic matter titra- 
tion of dichromate solution added to soil samples (Camargo et al., 2009). 

We used the WB method (Walkley and Black, 1934) to determine total 

SOC using the following formula: SOM (g.kg−1) = SOC (g.kg−1) × 1.724. 

 
2.2.3. Plant diversity 

In the 24 1m2 plots, we determined overall plant community species 

richness and percentage cover of each plant species (see Table S4) using a 

modified Braun-Blanquet scale (Wikum and Shanholtzer, 1978, using inter- 

vals of 10%). Species richness, Simpson's index and evenness index were 

used as the system taxonomic diversity metrics. The taxonomic diversity 

metrics were obtained by using the R package vegan (Oksanen et al., 2019). 

We measured three above and three belowground plant functional traits 

on the dominant species from each fire and fire exclusion plots 

(30 m × 30 m) to determine functional diversity, richness, evenness, commu- 

nity weight means (CWM) and dispersion. We measured (i) aboveground 

functional traits: growth-form, specific leaf area (SLA), individual height; 

and (ii) belowground traits: root specific length (SRL), root dry matter content 

(RDMC) and root tissue density (RTD). Plant functional traits selected are as- 

sociated with C dynamics (e.g. C stock) because they reflect individual eco- 

physiological adaptations and trade-off mainly related to resources 

allocations and acquisition (Bardgett et al., 2014; De Deyn et al., 2008; 

Pérez-Harguindeguy et al., 2013). 

We considered as dominant plant species, those plants which repre- 

sented 80% of vegetation cover at community level from each fire fre- 

quency. For fire plots, 25 species represented 80% of total cover, and 12 

species accounted for 80% of total cover in the fire exclusion area (see 

Table S5). Aboveground functional traits have been assessed in 10 different 

individuals for each species and belowground in 5 different individuals for 

each species (Cornelissen et al., 2003). Since in savannas several plants may 

have clonal growth (Lamont et al., 2011; Pausas et al., 2018), each individ- 

ual was sampled at least three meters from the nearest neighbor of the same 

species to avoid measuring the same genet. 

To measure the roots functional traits, roots were first washed under 

water and then fine roots (<2 mm) were classified in acquisitive (first three 

root order) and transport roots (McCormack et al., 2015). To measure the 

root morphological traits (i.e., SRL, RDMC and RTD), a sub-sample of acquis- 

itive roots was used. Each sub-sample was weighed (fresh roots), digitized 

using a scanner EPSON Perfection V800 (Copyright© 2015 Epson America, 

Inc.) at resolution of 1200dpi. Root volume, diameter, and length was 

assessed with the software WinRHIZO™ 2013e (Copyright© 1996–2019 Ré- 

gent Instruments Inc., Canada) (Bouma et al., 2000; Rose and Lobet, 2019) 

using digitized images. After image analysis, each sub-sample was dried 72 

h at 50 °C in an oven and weighed to determine dry biomass. Specific root 

length (SRL, m g−1) was measured as the ratio between root length and 

root dry mass, root dry matter content (RDMC, mg g−1) was measured as 

the ratio between fresh wet (in mg) and dry weight (in g), and root tissue 

density (RTD, g cm−3) was assessed as the ratio between root dry mass and 

root volume. 

System functional diversity metrics were represented by functional 

richness (FRich) (Villéger et al., 2008), functional evenness (FEve), func- 

tional dispersion (FDis) (Laliberté and Legendre, 2010), functional diver- 

sity (FDp) (Petchey and Gaston, 2002, 2006) and the CWM index which 

is the abundance-weighted mean trait value for a community (Kleyer 

et al., 2012). FRich, FEve, FDis and CWM index were obtained by using the 

R package FD (Laliberté et al., 2014) and FDp using package picante 

(Kembel et al., 2010). 

 
2.3. Data analysis 

 
To quantify the direct effect of fire frequencies on system diversity, 

structure, and ecosystem C balance, we performed the Effect-size test 

using Cohen's D index (Cohen, 1988). We calculated the standardized effect 



 

 

 
size (d) by assessing the standardized mean difference between the fire 

plots (mt) and fire exclusion plots (control, mc) of the value of a given sys- 

tem metric, using the pooled standard deviation of the same component in 

the treatment (sdt) and control (sdc) plots, with a correlation of the two 

samples (fire exclusion and fire) to make it less biased (McGrath and 

Meyer, 2006), as the following formula: 

(1)

 

considered only one system structure metric at a time respectively the live 

aboveground biomass (first piecewise SEM and first hypothesis), fine root 

(second), coarse root (third), and belowground organ (forth) repre- 

senting our second hypothesis. 

Each SEM model was built from five linear mixed effect models 

(lme) (see Supplementary material, Table S3). The first lme aims to explain 

total SOC as the response variable according to system struc- 
ture (i.e., fine roots biomass, belowground organ biomass, coarse

 
roots biomass, live aboveground biomass) and fire frequencies as pre- 

dictor variables. The second lme aims to explain system structure (i.e., 

live aboveground biomass, fine roots biomass, belowground 

A positive value of Cohen's D index for a given system metric means that 

fire increases the ecosystem metric in relation to fire exclusion. A value of 

Cohen's D index near zero means that fire has no effect on the given system 

metric. All NEE values were multiple by −1 to simplify results interpreta- 

tion. To examine how changes in diversity and structure promoted by fire 

will lead to direct and indirect changes on ecosystem C balance we used a 

piecewise structural equation model (piecewiseSEM; Lefcheck, 2016). 

Piecewise SEM's has a non-significant p-value (p > 0.05) as an indicative 

of a well-fit model, similarly to the lower AIC value (Lefcheck, 2016). We 

built four different piecewise SEM models based on our hypothesis from 

the results of our effect-size analyses, using variables that have shown sig- 

nificant effect according to fire and supporting our theoretical hypothesis 

(Fig. 1, hypothesis one is in brown, hypothesis two is in black). Also, to en- 

sure good explanatory power at each of our piecewiseSEM models, we 

respected the general rule of the ratio of the total number of observations 

to the number of variables as d = 5 (Grace et al., 2015). Based on this, each 

of the four piecewise SEM model, representing our hypothesis, 

organ biomass, coarse roots biomass) as the response variable accord- ing 

to fire frequencies and functional diversity (FDp index). The third lme 

used NEE as the response variable, and the functional diversity, soil 

respiration, total SOC, fire frequencies and system structure (i.e., 

aboveground biomass, fine root biomass, belowground organ biomass, 

coarse root biomass) as explanatory variables. The fourth lme aims 

to explain soil respiration according to system structure, fire 

frequencies and NEE as predictor variables. Finally, the fifth lme examined 

functional diversity as a response to fire frequencies. We log-

transformed all response and predictor variables to achieve nor- mality 

assumptions. We kept fire frequency as a categorical variable, and to 

check the contribution of each category in the model (fire and fire 

exclusion), we performed an estimated marginal mean analysis for 

each significant model (Lefcheck, 2019). We used Fisher's C to as- sess the 

completeness of our model. We included plot as a random var- iable in all 

model regressions and we did not remove non-significant links in our final 

SEM. 

 

 
 

Fig. 1. Conceptual model based on our hypothesis examined within our piecewise SEM models. (A) Hypothetical model regarding the general pathways of the effect of fire 

presence on system diversity, structure and thus system function to carbon balance. (B) Detail of our hypothetical model, considering the metrics we used in our 

piecewiseSEM models. Hypotheses one and two are represented by the brown and black arrows, respectively. To ensure good explanatory power at our piecewiseSEM 

models, belowground biomass components from our second hypothesis, were separately analyzed in our piecewiseSEM models. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 



 

 

 
All analyses were conducted using the R version 3.6.3 environment (R 

Development Core Team, 2020) and package piecewiseSEM (Lefcheck, 

2016), nlme (Pinheiro et al., 2020) and package effsize (Torchiano, 2017). 

 
3. Results 

 
3.1. Direct effect of fire on ecosystem diversity, structure & function 

 
Fire impacted all three system components: system diversity, structure, 

and system function (Fig. 2). Fire has a positive effect on diversity by pro- 

moting functional diversity and functional dispersion. However, fire did 

not impact taxonomic diversity metrics (Fig. 2, Tables S1–S2). 

Fire promoted live biomass and all belowground biomass components 

including belowground organs, coarse and fine roots biomass (Fig. 2). The 

ratio between above- and belowground biomass responded negatively to 

fire, indicating a higher biomass allocation to belowground with fire (Fig. 

2). Fire had no effect on dead biomass and litter, as well as on the ratio 

between live aboveground biomass and fine roots. 

Finally, fire impacted system function, positively affecting NEE and 

total SOC while negatively impacting soil respiration. Fire had no effect on 

ET and eWUE. 

 
3.2. Fire impacts on ecosystem C dynamics through shifts in structure & diversity 

 
Models consistently indicated a fire-induced increase on SOC (Fig. 3, 

Table S3) and a decline in soil respiration (Fig. 3C). All piecewise SEM 

models showed strong positive and direct relation between fire and plant 

 
functional diversity (Fig. 3, Table S3). The models also showed that fire in- 

duced greater belowground biomass input, especially fine root and below- 

ground organ biomass (Fig. 3B and D) whereas coarse roots biomass was 

minimally affected by fire (Fig. 3C). NEE in most models (except Fig. 3D) 

was positively, besides marginally, affected by fire (Fig. 3). 

Overall, the model that included fine root biomass was the best model 

to explain how fire impacted ecosystem C stocks and fluxes (Fisher's C = 

2.194, AIC = 58.194, p-value = 0.7, Fig. 3B). In that model, fire marginally 

reduced soil respiration while promoting NEE, leading towards higher eco- 

system C flux input. Further, fire affected positively and directly both func- 

tional diversity and fine root biomass (Fig. 3B). Although our models 

showed a marginal positive relationship between fire and NEE, they did 

not allow us to establish a direct relationship between fire and NEE, or a 

clear indirect relation mediated by functional diversity, belowground bio- 

mass, soil respiration or SOC. 

 
4. Discussion 

 
In Cerrado open savanna, fire is promoting C input in the system 

through increases in live above- and belowground biomass as well as a 

higher biomass allocation belowground, ultimately promoting the input of 

C into soils. Our results also showed a higher NEE and total SOC with fire 

whereas soil respiration declined i.e., soil C efflux (C output), corrobo- 

rating the higher C input in burned compared to unburned areas. While fire 

enhanced functional diversity, our results did not support positive fire ef- 

fects on taxonomic diversity as found in other studies (Abreu et al., 2017; 

Gomes et al., 2020; Pilon et al., 2021a). Although our results support direct 

 

 
 

Fig. 2. Effect of fire on (A) system function to carbon balance considering total soil carbon content (SOC), rates  of net ecosystem exchange (NEE), ecosystem 

evapotranspiration (ET), ecosystem water use efficiency (eWUE) and soil respiration, (B) system structure considering total aboveground biomass as well as live and dead 

biomass, and total belowground biomass in addition to fine root, coarse root and belowground organs biomass, total aboveground biomass:belowground biomass ratio 

and live aboveground biomass:fine root biomass, and litter biomass; and (C) system diversity considering plant community taxonomic diversity (i.e. richness, Simpson, 

and evenness index) and functional diversity: functional richness (FRich), functional evenness (FEve), functional dispersion (FDis); functional diversity plot-based 

dendrogram (FDp), community weighted means (CWM). (C) Positive values mean that fire promotes the system variable while negative values indicate that fire 

negatively affects the system variable. Values near zero indicate that fire did not have a significant effect. The values were based on Cohen's D index (ci = 95%), obtained 

from plots located in burned and fire excluded areas. 



 

 

 
effects of fire in ecosystem functions associated with C dynamics (i.e., NEE, 

total SOC or soil respiration), how ecosystem structure and diversity medi- 

ated these relationships remain less straightforward. 

Our results highlighted that fire modifies C balance with higher NEE in 

burned plots, illustrating a higher C input and lower C release. C flux is very 

cyclic in the Cerrado (Santos et al., 2003; Vourlitis and da Rocha, 2010) and 

compared to unburned savanna areas, frequently burned savannas rapidly 

become a stronger sink for CO2 (Santos et al., 2003). However, after 

12 months, the negative impact of fire (i.e. C release, biomass lost) on the 

open savannas is eliminated, indicating the potential of the system to com- 

pensate for C losses due to combustion (Potts et al., 2006a, 2006b; Potts et 

al., 2012). The increase of photosynthetic activities promoted by the 

 

 
newly produced leaves from the vegetation regrowth compensates the C 

loss, providing the whole system C uptake (e.g., greater NEE in burned 

than unburned plots) (Baldocchi, 2008; Huxman et al., 2004; Potts et al., 

2012). 

Fast regeneration in open savanna is primarily ensured by the quick re- 

generation of grass species that produce newly photosynthetic leaves (Pilon 

et al., 2021a), since grasses are the most resilient growth form to fire in sa- 

vannas (Bond, 2004). Graminoids morphological architecture that protects 

buds and meristems ensures fast recovery (Linder et al., 2018; Pilon et al., 

2021a; Wigley et al., 2020), being also the most flammable element of 

the fuel load (Simpson et al., 2016). Also, high annual productivity of 

grasses can be related to the energetic cost investment of resprouting, that 

is focused on the production of photosynthetically active tissue (Linder et 

al., 2018; Simpson et al., 2021). Frequent fires will promote mainly grasses 

live aboveground biomass as shown in our results. In savannas, fire 

occurrence is closely related with grass abundance (De Castro and 

Kauffman, 1998), favoring grass species over woody species (Bond et al., 

2005; Bond and Keeley, 2005). 
C input in burned plots is also shown through the increase in below- 

ground biomass. Our results showed that fire enhanced total belowground 

biomass, especially fine root and belowground organ biomass and pro- 

moted biomass allocation in the belowground compartment, corroborating 

with our hypothesis. In open tropical savannas, plants allocate a large pro- 

portion of biomass in belowground compartments (Fidelis et al., 2013; 

Jobbagy and Jackson, 2000; Poorter et al., 2011). Fire is indeed expected to 

lead towards plant investment to belowground organs, for bud protec- 

tion, resource storage and resource acquisition, allowing plants to survive 

and quickly resprout after fire (Clarke et al., 2013; Enright et al., 2014; 

Lawes and Clarke, 2011). Further, fire stimulates fine root biomass produc- 

tion at the shallow soil layer (0-20 cm depth) to improve the nutrient acqui- 

sition (Jackson et al., 2002; Le Stradic et al., 2021; Oliveras et al., 2013; 

Pellegrini et al., 2020). However, at deeper soil (>30 cm–100 cm), Cerrado 

open savannas areas with different fire histories and frequencies did not 

show differences on fine root biomass (Le Stradic et al., 2021). 

Higher total SOC in burned areas illustrates the overall increase in C 

input in tropical open savannas. Grassy ecosystems can boost SOC at the 

shallow soil layer because of the higher grass root biomass in the upper 20 

cm of the soil (Berhongaray et al., 2019; February et al., 2013, 2020; Le 

Stradic et al., 2021). Indeed, the increase of total SOC may be related to 

higher grass fine root decomposition which represents the great deal of 

organic matter input in the soil (De Deyn et al., 2011). However, in burned 

sites we also observed a reduction of soil respiration which suggests a re- 

duced microbial activity. Fire can enhance plant microbiome diversity and 

composition (Dove et al., 2021) that might affect C input into soil 

 

Fig. 3. Piecewise structural equation model (SEM) depicting the direct and indirect 

effects of fire frequency on system diversity, structure and system function 

associated with carbon balance. (A) Piecewise SEM based on our first hypothesis that 

considers live-aboveground biomass as a system structure metric. The model 

presented the lower goodness of fit for our data: Fisher's C = 3.266, AIC = 

59.266, p-value = 0.514. The following piecewiseSEM models were based on our 

second hypothesis that considered separately the different belowground biomass 

components: (B) fine roots biomass, (C) coarse roots biomass and (D) below 

organs biomass. (B) The model considering the fine root biomass presented the best 

good fit for our data: Fisher's C = 2.194. AIC = 58.194, p-value = 0.7. 

(C) The model with coarse roots biomass, also presented a good fit for our data: 

Fisher's C = 6.757, AIC = 62.757, p-value = 0.149. (D) The last model 

considered below organs biomass and has a good fit for our data: Fisher's C = 

5.364, AIC = 59.266, p-value = 0.252. Partial R2 values are under each 

predicted variable, and standardized path estimates are provided next to each 

path with line thickness scaled based on the magnitude of the estimated variable. 

Red and dark blue arrows indicate positive and negative relationships, 

respectively. Grey dashed arrows represent non-significant paths (p > 0.05), and 

the green represents the marginally significant paths. Asterisks (*) indicate 

significance (p < 0.05). Black dashed block indicates the model with the best fit 

for our data. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 



 

 

 
through modification in microbial activities and increase in microbial by- 

product (Rossi et al., 2020). In addition, increases in belowground organ 

and fine roots at the shallow soil layer due to fire, can overtime contribute to- 

wards greater soil C through slow decomposition and mycorrhizal association 

(Freschet et al., 2013; Godbold et al., 2006). Although the belowground com- 

munities seem to play an important role in the soil respiration and for soil C 

input, further studies are needed to understand how they may affect C flux 

and storage in a fire-prone environment (Pressler et al., 2019). 

In Cerrado open savannas, litter deposition and decomposition is rela- 

tively slow (Carvalho et al., 2012; Kauffman et al., 1994; Valenti et al., 

2008), especially due to recalcitrant compounds of C4 grasses that decom- 

pose more slowly relative to C3 plants (Martin et al., 1990). Indeed, most of 

the dead grass material remains attached in the tussocks (Wragg et al., 

2018) which slows down substrate quantity deposition and may decrease 

soil respiration (Chapin et al., 2011). In addition, in case of recurrent and 

frequent fires like in Cerrado, litter accumulation is limited and removed 

frequently by fire, which may reduce microbial activity related to litter de- 

composition. Cerrado soils are relatively nutrient poor with acidic pH 

(Pivello et al., 2010), which may also limit soil microbial activities, lower- 

ing therefore soil respiration, and thus C loss from microbial activities 

(Fierer and Jackson, 2006; Funakawa et al., 2014; Rousk et al., 2010). Fi- 

nally, microbial activity associated with soil respiration may also be limited 

in post-fire environments since fire may have burned superficial microbial 

communities. 
Overtime, fire promoted functional diversity in plant communities with 

greater trait variability across species (Dantas et al., 2013). Post-fire condi- 

tions promote new opportunities for plant colonization (Fidelis et al., 2012; 

Pausas et al., 2003), due to higher environmental heterogeneity and higher 

resource availability (He et al., 2019; Krawchuk and Moritz, 2011; Pivello 

et al., 2010), and increasing niche availability generating species 

coexistence and greater diversity. High diversity of post-fire strategies is as- 

sociated with higher trait diversity, dispersion and consequently trait diver- 

gence (Lhotsky et al., 2016; Mason et al., 2013) as highlighted by our 

results. In addition, functional diversity can be stimulated by fire because 

over time species could complement each other in the resource use by cap- 

turing resources with different strategies (Garnier et al., 2016). Functional 

diversity associated with functional divergence may influences plant-soil 

feedback responses, such as plant and soil respiration, and efficiency on 

water and nutrients use, and thus impacting the ecosystem function of C 

balance (De Deyn et al., 2008; Jackson et al., 2000; Petchey and Gaston, 

2006), besides our results did not allow to conclude about that. However, 

we may hypothesize belowground communities seem to play an important 

role in the processes of plant-soil feedback responses and C balance. Further 

studies are needed to understand how belowground community dynamics 

affect C flux and storage in a fire-prone environment (Pressler et al., 2019). 

Finally, in a context of climate changes and modification of fire regimes, 
it seems essential to better understand mechanisms between fire and the 

ecosystem C cycle which are complex in different fire-prone ecosystems. 

Quantifying tropical open savannas potential C pools and fluxes is not triv- 

ial and identifying system pathways trajectories and mediation will provide 

a way to assess and describe fluctuations in ecosystem function in response 

to modification in fire regime under climate change. Furthermore, our find- 

ings also should help ecosystem base restoration and fire management 

plans in savanna open ecosystems to maintain system structure, diversity, 

and function. We acknowledge that our results dealt with the C pool at the 

shallow soil layer of an open savanna, and we did not account for C in the 

deeper soil layers, which may have a higher contribution of trees and 

shrubs. Whereas our results showed that fire promoted SOC at the soil sur- 

face, fire may decrease SOC in deeper soil layer, as shown by other study in 

a temperate savanna (Pellegrini et al., 2020). In addition, in savannas 

where the woody cover has a higher importance, the presence of trees and 

shrubs is expected to differently affect C balance. In woody tropical sa- 

vannas, fire may decrease C stock in soil and plant biomass due to a reduc- 

tion on nutrient mineralization rates, and nitrogen viability, that decreases 

tree net primary production and consequently soil and plant C input (Cook 

et al., 2005; Richards et al., 2011; Williams et al., 2004). 

 
5. Conclusions 

 
Our study showed that high fire frequency in Cerrado open savannas 

lead overall to C input into the system by increasing soil C, plant below- 

ground biomass and by declining C fluxes from the biosphere back to the at- 

mosphere. However, we need to acknowledge that the relationship and the 

underlined mechanisms between functional diversity, changes in biomass 

allocation and changes in ecosystem functions remained unclear. In addi- 

tion, our findings also highlight the importance of fire to promote functional 

diversity on Cerrado open ecosystems. Once fire is excluded, functional di- 

versity was reduced, so potentially the diversity of response to disturbances 

and environmental changes. Functional diversity losses could be an issue in 

terms of regeneration possibility after a fire, should limit system resilience 

in areas excluded from fire for long-time, limiting vegetation regeneration 

and jeopardizing the ability of the natural system to compensate for the C 

lost during combustion altering biosphere and atmosphere dynamics. 
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