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Further results about L∞/L1 duality
and applications to the SIR epidemiological model

D. GOREAC1 AND ALAIN RAPAPORT2

Abstract— The L∞/L1 duality in optimal control problems
consists in studying how to link solutions minimizing the L∞

norm of an output function under an upper L1 constraint on an
input function (primal problem), with solutions minimizing the
L1 norm of the input function under an upper L∞ constraint
on the output function (dual problem). In this work, we bring
insights on recent results on L∞/L1 duality in optimal control
problems. In particular, we exhibit an example for which
duality does not apply, and we revisit the application to the
epidemiological SIR problem.

I. INTRODUCTION

The usual tools in optimal control theory, namely the
Maximum Principle of Pontryagin and the Hamilton-Jacobi-
Bellman equation, provide necessary and sufficient condi-
tions for problems whose costs are integral, terminal or
both (so-called Lagrange, Mayer or Bolza problems) [3].
However, in some applications, the maximum trajectory
deviation is a more relevant criterion that better reflects
transient behaviors and risky situations [8]. This is typically
the case in epidemiology when one aims at reducing the
epidemic peak. This rather corresponds to an L∞ cost, for
which there is much less results available in the literature
(mainly theoretical characterizations of the value function
[2]). Moreover, in several applications a budget is associated
to the control strategy reducing the maximum deviation. This
is again the case in epidemiology. Let us for instance briefly
recall the well-known SIR model with non-pharmaceutical
interventions 

ṡ = −β(1− u)si

i̇ = β(1− u)si− γi

ṙ = γi

(1)

The components correspond to a normalized (unitary) pop-
ulation divided into different compartments: susceptible,
infected and recovered. The non-pharmaceutical policy u
acts as a social-distancing measure reducing the effective
contact rate β. The space of controls is U = [0, u], with the
upper bound not exceeding 1. For this model, the problem
of minimizing the epidemic peak (which has been strongly
motivated by the the SARS CoV2 crisis)

inf
u(·)∈UK

sup
t≥0

i(t)
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has been recently investigated for the class of controls

UK := {u(·) ∈ L1([0,+∞), U); ||u||1≤ K}

where K denotes the control budget [9]. Note that without
this budget constraint, the control u identically equal to ū
is optimal, which is of limited interest... Another similar
problem has been investigated by different authors [1], [6],
[7]:

inf
u(·)∈U

∫ +∞

0

u(t)dt

under the ICU (Intensive Care Unit) constraint

sup
t≥0

i(t) ≤ K

for the class of controls U = L1([0,+∞), U). This problem
is more classical but one has to deal with state constraint,
for which the application of the Maximum’s principle with
state constraint is not always easy. Clearly, this two optimal
control problems present a kind of duality. This is exactly
what has been recently investigated by the authors in [4],
which defines a duality in a general framework and illustrate
it on the SIR model. The purpose of the present work
is to complement this former work on two aspects. First,
we provide an explicit counter-example to this duality, and
secondly we revisit the epidemiological problem with a more
general budget constraint:∫ +∞

0

λ(s(t), i(t))u(t)dt ≤ K

where λ is some positive function, that we consider to be
more realistic reflecting the fact that decision makers are
prone to weight differently the intervention cost depending
on the current stage of the epidemic progress (accounting
for instance social pressures). This cost is still of L1 form
but rather more difficult to tackle with the simple technique
developed in [10], [9], [5], because of the state dependency.
This is where duality gets comes into interest: depending on
the application, one of the problems might be easier to solve.

The paper is organized as follows. In Section II, we
present the general framework, defining the primal and
dual problems. We recall in Section III the duality results,
underlying the role of the viability kernels, and provide
an example for which duality does not apply. Section IV
is devoted to revisiting the epidemiological problem with
the SIR model under generalized budget function, using the
duality that is shown to apply here.



II. DEFINITIONS AND NOTATIONS

We consider a controlled system
ẋ(t) = f(x(t), u(t)),

ż(t) = g(x(t), u(t)),

x(0) = x0 ∈ Ω, z(0) = z0 ∈ R+

(2)

defined on Ω × R+, where Ω ⊂ Rn (n > 1 ) is of non-
empty interior, and the control u(t) takes values in a set U
of a metric space; with an output function

y(t) = h(x(t)), t ≥ 0.

U := L0(R+;U) is the set of admissible controls functions.

Assumption 1: i. U is compact and f : Ω × U → Rn

is continuous, Lipschitz in x uniformly in u:

sup
u∈U

sup
x,y∈Ω, x ̸=y

|f(x, u)− f(y, u)|
|x− y|

< +∞.

ii. The functions h : Ω → R, g : Ω × U → R+ are
bounded, continuous and Lipschitz in x uniformly in u:

sup
u∈U

sup
x,y∈Ω, x ̸=y

|g(x, u)− g(y, u)|+|h(x)− h(y)|
|x− y|

< +∞.

iii. Ω× R+ is forward invariant by (2) for any u ∈ U.

Under theses assumptions, we shall denote
(xx0,u(·), zx0,z0,u(·)) the unique absolutely continuous
solution of (2) for (x0, z0) ∈ Ω × R+, u ∈ U, and yx0,u(·)
the corresponding output function.

Given x0 ∈ Ω, h0 ∈ R, g0 ∈ R+, we define the sets of
viable controls related to constraints on z and y

Uh(x0, h0) := {u ∈ U; yx0,u(t) ≤ h0, ∀t ≥ 0},
Ug(x0, g0) := {u ∈ U; zx0,0,u(t) ≤ g0, ∀t ≥ 0},

and the associated viability kernels.

Viabh(h0) := {x0 ∈ Ω : Uh(x0, h0) ̸= ∅},
Viabg(g0) := {x0 ∈ Ω : Ug(x0, g0) ̸= ∅},

Given u ∈ U, we define the functions

G(x0, u) :=

∫ +∞

0

g(xx0,u(t), u(t))dt,

H(x0, u) := sup
t≥0

h(xx0,u(t)).

and the related optimal control problems.

1) Primal problem:

Ph(x0;h0) : minimize G(x0, u) over u ∈ Uh(x0, h0).

2) Dual problem:

Pg(x0; g0) : minimize H(x0, u) over u ∈ Ug(x0, g0).

Their value functions are denoted, Vh(x0;h0) resp.
Vg(x0; g0) (set to +∞ when x0 /∈ Viabh(h0)), resp. x0 /∈
Viabg(g0)).

It will be convenient to define for any subset L ⊂ Ω and
(x0, u) ∈ Ω×U the hitting time function

τx0,u
L :=

{
+∞, if xx0,u(t) /∈ L, ∀t ≥ 0,

inf{t; xx0,u(t) ∈ L}, otherwise.

We give now the main results of [4].

III. THE DUALITY RESULTS

Theorem 1: If the functions Vh(x0; ·), Vg(x0; ·) are lower
semi-continuous on their domains, then Vh, Vg are general-
ized inverse i.e.

Vh(x0;h0) = inf {g0 : Vg(x0; g0) ≤ h0},
h0 ∈ DomVh(x0; ·),

Vg(x0; g0) = inf {h0 : Vh(x0;h0) ≤ g0},
g0 ∈ DomVg(x0; ·).

(3)

Theorem 2: Let (x0, h0) ∈ Ω × R be such that
Vh(x0;h0) < +∞ and Vh(x0; ·) is lower semi-continuous.
Posit

h0 := inf {h′
0 : Vh(x0;h

′
0) = Vh(x0;h0)},

g0 := Vh(x0;h0) = Vh(x0;h0).

If u∗ is optimal for Ph(x0;h0), then u∗ is optimal for
Pg(x0; g0). In particular, if u∗ is unique, then one has

g0 := Vh

(
x0; sup

t≥0
h
(
xx0,u

∗
(t)

))
.

An analogous statement is obtained for Vg and problem Ph.

In all generality, one equally notes that the viable
controls satisfy a monotonicity property, i.e.,
Uh(x0, h0) ⊂ Uh(x0, h

′
0) as son as h0 ≤ h

′

0. The
same holds true for Ug . As a simple consequence, Vh(x0, ·)
is non-increasing. The lower semi-continuity of Vh(x0; ·) is
equivalent to the right-continuity. The same property holds
true for Vg(x0; ·).

Conditions ensuring the lower semi-continuity of the value
functions van be given under the additional assumption

Assumption 2: For any x ∈ Ω, one has⋃
u∈U,r≥0

[
f(x, u)

g(x, u) + r

]
is closed and convex.

Proposition 1: Let x0 ∈ Viabh(h0) for h0 ∈ R. If there
exists ε > 0 and a compact set L ⊂ Ω such that

i. for any h̄ ∈ [h0, h0 + ε), L ∩ Viabh(h̄) is (forward)
viable with a null-cost control, i.e.

∀y0 ∈ L ∩ Viabh(h̄), ∃u(·) ∈ Uh(x0, h̄) s.t.
xy0,u(t) ∈ L and g(xy0,u(t), u(t)) = 0, ∀t > 0;

ii. L is finitely reached under viable controls i.e.

T ⋆ := sup
h̄∈[h0,h0+ε)

sup
u∈Uh(x0,h̄)

τx0,u
L < +∞ (4)

then Vh(x0, ·) is bounded and lower semi-continuous on
[h0, h0 + ε).
Similar assertions hold true for Vg(x0; ·).



To show the importance of the lower semi-continuity
property of the value functions to obtain the duality results
of Theorems 1 and 2, we give here a counter example.

Consider the dynamics in R3 ẋ1 = u ∈ [−1, 1]
ẋ2 = −min(x2

3, 1)x2

ẋ3 = 0

with the initial condition x(0) = x0 = (0, 1, 1)⊤, and
functions

h(x) = |x1|, g(x, u) = min(|x2|, 1)(1− u2).

Clearly, Assumptions 1 are fulfilled.

Whatever is the control u(·), one has

x2(t) = e−t, ⇒ g(x(t), u) = e−t(1− u2)

For h0 = 0, the constraint supt≥0 h(x(t)) ≤ 0 implies
that the solution is x(t) = 0 for any t ≥ 0, and thus the
control u(·) has to satisfy u(t) = 0 a.e. t > 0. Then the cost
is ∫ +∞

0

g(x(t), u(t))dt =

∫ +∞

0

e−tdt = 1

For h0 > 0, consider the control

uh0
(t) =

{
1, t ∈ [2kh0, (2k + 1)h0),

−1 t ∈ [(2k + 1)h0, (2k + 2)h0)

Then, the corresponding solution verifies |x1(t)|≤ h0 for
any t ≥ 0 and the constraint supt≥0 h(x(t)) ≤ h0 is thus
satisfied, while the cost is∫ +∞

0

g(x(t), uh0
(t))dt = 0

and this solution is optimal. This shows that the value
function of problem Ph verifies Vh(x0;h0) = 0 for any
h0 > 0 and Vh(x0; 0) = 1. Vh(x0, ·) is thus not lower semi-
continuous at 0.

Consider now the dual problem Pg with the constraint∫ +∞
0

g(x(t), u(t))dt ≤ 0. This implies that the control has
to satisfy u2(t) = 1 a.e. t ≥ 0. Then, the sequence of controls
u1/n(·) provides a sequence of solutions xn(·) such that
supt≥0 h(xn(t)) = 1/n and we obtain Vg(x0; 0) = 0. We
do have the property

inf{h0 ≥ 0; Vh(x0;h0) ≤ g0} = Vg(x0; g0)

for g0 = 0, as in Theorem 1. However, the problem
Pg(x0; 0) does not admit an optimal solution because having
supt≥0 h(x(t)) = 0 implies

∫ +∞
0

g(x(t), u(t))dt = 1 and
the integral constraint is thus not satisfied. In this sense, we
consider that the duality fails (Theorem 2 is not satisfied).
One can note that Assumption 2 is not fulfilled for this
particular choice of g (although the velocity set of the x-
dynamics is convex).

Remark 1: In practical problems, Theorem 2 also gives a
further intuition on a way to check the equivalence between

the problems Ph and Pg .
Albeit presenting state constraints, the primal problem Ph

has known further developments in the literature and, as such,
it is considered easier. If the candidates to optimality u∗,h′

0 ∈
Uh(x0;h

′
0) in connection to the problem Ph are unique and

known for constraint profiles h′
0 in a right-neighborhood of

some h0, then, in order to check lower semi-continuity of
Vh(x0; ·) at h0, one studies the right-continuity of the value
functions G(x0, u

∗,h′
0).

This argument applies, mutatis mutandis, to Pg .

IV. REVISITING THE SIR MODEL

We come back to model (1) with control in U / The
Euclidean state space has the dimension n = 2 with state
variable (s, i) ∈ Ω where

Ω :=
{
(s, i) ∈ R2; s > 0, i > 0, s+ i ≤ 1

}
.

Indeed, due to the conservation condition s + i + r = 1, it
suffices to argue on the first two components, the third one
being naturally determined. We are concerned with preva-
lence peak constraints and the running cost is multiplicative
in the control with a state-depending coefficient, i.e.,

h(s, i) := i, g(s, i, u) = λ(s, i)u,

where λ is a smooth function. Furthermore, we will make
the following assumption on the upper bound ū.

u < 1− γ

β
. (5)

Remark 2: 1) The proportion γ
β corresponds to the en-

demic equilibrium without social distancing. Theoret-
ically, with the maximal action u = ū, the resulting
system has yet another equilibrium s̄ = γ

β(1−u) . If (5)
holds true, s̄ < 1 and is relevant in analysis. Otherwise,
this point is no longer relevant and the analysis is
somewhat simplified.

2) Furthermore, this condition implies the existence of
initial configurations under which the strict confinement
should be decreed for a certain period of time.

3) Small u corresponds to a limited capacity of action,
where the non-pharmaceutical measures have to be
carefully considered. Finally, with the data in France
on COVID-19, one has

• γ−1 = 14 (time of recovery in days);
• R0 = β

γ ≈ 5.8148148 (expressed in
(individuals×days)−1, as a weighted average
on R0 ∈ {4, 7, 11});

As a result, β ≈ 0, 41534 (individuals−1), and ū ≤
0.828 (meaning that the essential economy concerns at
least 17.2% of the population, which is well bellow the
reality).

A. The viability kernels and their geometric decomposition

As we have already hinted at before, we aim to illustrate
the duality result by assuming that the problem Ph is easier
than the problem Pg . In other words, we will primarily focus
on a thorough description of the viability kernel V iabh. Let



i∗ ∈ [0, 1] be fixed. Then, according to [1, Theorem 2.3],
and provided that i∗ + γ

β(1−u) ≤ 1, we get the following
description of the viability kernel.

V iabh(i
∗) ={

(s0, i0) ∈ Ω : s0 ≤ γ

β(1− u)
, i0 ≤ i∗ or

s0 >
γ

β(1− u)
, and

i0 ≤ γ

β(1− u)

(
1 + log

(
β(1− u)s0

γ

))
− s0 + i∗

}
(6)

Let use note that the minimal action taken on the active
boundary of V iabh(i

∗) (i.e., outside the axis) is divided into
three parts

1) if s0 ≤ γ
β , any control keeps i ≤ i∗ and the minimal

action is 0;
2) if s0 ∈

(
γ
β ,

γ
β(1−u)

)
, the minimal action keeps i = i∗

and is obtained for the feed-back control 1− γ
βs ;

3) if s0 ≥ γ
β(1−u) , the only control maintaining i ≤ i∗ is

u.
We are, therefore, concerned with this minimal action control
in closed feed-back form

u∗,i∗(s, i) =max

{
0, 1− γ

βs

}
1s∈( γ

β , γ
β(1−u) ), i=i∗

+ u1
i∗≥i= γ

β(1−u) (1+log ( β(1−u)s
γ ))−s+i∗

(7)

For further developments, we also introduce the invariance
kernel associated to i∗

Invh(i
⋆) :={

(s0, i0) ∈ Ω : ∀u ∈ L0(R+;U); i(s0,i0),u(t) ≤ i⋆, ∀t ≥ 0
}

and similar to V iabh(i
∗), one has

(s0, i0) ∈ Invh(i
∗) ⇔{

s0 ≤ γ
β , i0 ≤ i∗

}
or{

s0 > γ
β , i0 ≤ γ

β

[
1 + log

(
βs0
γ

)]
− s0 + i∗

}
.

(8)

This set is the maximal one on which the trajectory driven
associated with u∗,i∗ is actually only computed with the null
control. Second, we define the set of initial data for which
the control u∗,i∗ is almost surely strictly inferior to b. We
get the following explicit description.

(s0, i0) ∈ B(i∗) ⇔{
s0 ≤ γ

β(1−u) , i0 ≤ i∗
}

or{
s0 > γ

β(1−u) ,

i0 ≤ γ
β(1−u)

[
1 + log

(
β(1−u)s0

γ

)]
− s0 + i∗

}
.

(9)

Concerning the main assumptions, the reader will note that
we deal with a control-affine structure here such that

1) the sets V iabh(i
∗) ⊂ V iabh(1) are compact;

2) the Assumption 2 (convexity of the extended velocity
set) is always satisfied.

We have the following simple results.
Proposition 2: For every i∗1, i∗2 ∈

(
0, 1− γ

β(1−u)

)
, the

following holds true.
1) Invh(i

∗
1) ⊂ B(i∗1) ⊂ V iabh(i

∗
1);

2) If i∗1 ≤ i∗2, then Invh(i
∗
1) ⊂ Invh(i

∗
2), B(i∗1) ⊂ B(i∗2)

and V iabh(i
∗
1) ⊂ V iabh(i

∗
2).

B. The cost associated to u∗

We emphasize that the arguments hereafter work for
g much more general than the multiplicative one we
have here (g(s, i, u) = λ(s, i)u. The reader is referred
to [6]. The reason for illustrating this example is that
monotonicity is very easily obtained in this framework,
without further assumptions on g and that this allows to
infer a condition that echoes that on the dual approach in [9].

Proposition 3: The associated cost satisfies (see [6,
Lemma 1])

G
(
s0, i0, u

∗,i∗) = 0, if (s0, i0) ∈ Invh(i
∗);

G
(
s0, i0, u

∗,i∗) = 1

γi∗

∫ s1(s0,i0;i
∗)

γ
β

λ(l, i∗)

(
1− γ

βl

)
dl,

if (s0, i0) ∈ B(i∗) \ Invh(i∗);

G
(
s0, i0, u

∗,i∗) = G
(

γ
β(1−u) , i

∗, u∗,i∗
)
+

1

β(1− u)

∫ s2

γ
β(1−u)

λ
(
s,
(
θ(i∗)− s+ γ

β(1−u) log s
))

u

s
(
θ(i∗)− s+ γ

β(1−u) log s
) ds

otherwise
(10)

where

(a) : s1(s0, i0; i
∗) > γ

β is the solution of
s1 − s0 − i0 + i∗ − γ

β log s1
s0

= 0;

(b) : θ(i) := i+ γ
β(1−u)

(
1− log γ

β(1−u)

)
;

(c) : s2 = s2(s0, i0; i
∗) is explicitly given by

s2 := exp
(

β(1−u)
γu

(
s0 + i0 − γ

β log s0 − θ(i∗)
))

.

(11)
The cost G

(
γ

β(1−u) , i
∗, u∗,i∗

)
used in expression (10) de-

pends on the function λ and does not have necessarily an
explicit expression, except when λ is constant as in [1], [9].

We claim that the following property is fulfilled.
Lemma 1: Fix (s0, i0) ∈ Ω and (in)n, n ∈ N, a sequence

decreasing to i∗. Then, one has

lim
n→+∞

G
(
s0, i0, u

∗,in
)
= G

(
s0, i0, u

∗,i∗
)
. (12)

Proof:
1) The reader will easily note that one has Invh(i

∗) =
∩

n∈N
Invh(i

n) (decreasing limit).

2) The same assertion holds true by defining B(i∗) given
in (11)(a) as B(i∗) = ∩

n∈N
B(in), where (B(in))n is a

non-increasing sequence.
3) If (s0, i0) ∈ Invh(i

∗), then the equality in (12) follows
easily from the inclusion Invh(i

∗) ⊂ Invh(i
n) for



every n ∈ N and by recalling that the value function
is null at such points.

4) If (s0, i0) ∈ B(i∗) \ Invh(i
∗), then (s0, i0) ∈ B(in),

for all n ∈ N. If there existed a subsequence (ϕ(n))n
such that (s0, i0) ∈ Invh

(
iϕ(n)

)
for any n ∈ N, then,

we would have (s0, i0) ∈ Invh(i
∗) which is not the

case.
It follows that, from some n0 > 0 large enough and
every n ≥ n0, one has (s0, i0) ∈ B(in) \ Invh(i

n).
One easily see that the function i 7→ s1(s0, i0; i) is
right-continuous for i > 0, and we get equality (12) for
this framework.

The same arguments can be applied in order to prove (12)
on V iabh(i

∗) \B(i∗) due to the continuity of the functions
θ and s2.

These considerations yield the following regularity result.
Proposition 4: Let (s0, i0) ∈ Ω. Then, the value function

i∗ 7→ G
(
s, i, u∗,i∗) is right-continuous at every point i∗ <

1− γ
β(1−u) , such that Vh(s0, i0; i

∗) < ∞.

C. Concluding using Theorem 2

In connection the the optimality of u∗,i∗ for the problem
Ph, we recall the following result, cf. [6, Theorem 2] (see
also Example 2).

Theorem 3: Let λ : R2 −→ R+ be non-negative, uni-
formly continuous such that

1) λ(s1(s0,i0),i
∗)

i∗ ≤ λ(s0,i0)
i0

, if (s0, i0) ∈ B(i∗) \ Invh(i∗);

2)
λ(s2,θ(i∗)−s2+

γ
β(1−u)

log s2)
θ(i∗)−s2+

γ
β(1−u)

log s2
≤ λ(s0,i0)

i0
, if (s0, i0) ∈

V iabh(i
∗) \ B(i∗). Here, s2 = s2(s0, i0; i

∗) as in
Proposition 3.

Then, u∗,i∗ is the optimal control for Ph at any point
(s0, i0) ∈ V iabh(i

∗).
As a consequence, we have the following theoretical result
Proposition 5: Let λ : R2 −→ R+ be non-negative,

uniformly continuous such that
1) λ(s1(s0,i0;i

∗),i∗)
i∗ ≤ λ(s0,i0)

i0
, if (s0, i0) ∈ B(i∗) \

Invh(i
∗);

2)
λ(s2,θ(i∗)−s2+

γ
β(1−u)

log s2)
θ(i∗)−s2+

γ
β(1−u)

log s2
≤ λ(s0,i0)

i0
, if (s0, i0) ∈

V iabh(i
∗) \ B(i∗). Here, s2 = s2(s0, i0; i

∗) as in
Proposition 3.

Then, u∗,i∗ is also the optimal control for Pg .
Proof: Theorem 3 guarantees the optimality for Ph. On

the other hand, by Proposition 4, at (s0, i0), Vh(s0, i0; ·) is
right-continuous, hence lower semi-continuous. The conclu-
sion follows owing to Theorem 2.
Let us further note the following. Geometrically speaking,
the point (s1 = s1(s0, i0; i

∗), i∗) is the point at which
the trajectory issued from (s0, i0) and uncontrolled
(u ≡ 0) hits the boundary ∂Viabh(i∗) in the case
(s0, i0) ∈ B(i∗) \ Invh(i

∗). Similarly, the point(
s2, θ(i

∗)− s2 +
γ

β(1−u) log s2

)
is the point at which

the trajectory issued from (s0, i0) and uncontrolled (u ≡ 0)
hits the boundary ∂Viabh(i

∗) in the remaining case.

As such, both conditions in the proposition are satis-

fied if one guarantees that ∂t
λ(ss0,i0,0(t),is0,i0,0(t))

is0,i0,0(t)
is non-

increasing. This leads to the sufficient condition

∂sQ(s, i)− ∂iP (s, i) ≤ 0. (13)

where

P (s, i) =
λ(s, i)

(
γ
βs − 1

)
γi

and Q(s, i) = −λ(s, i)

γi
.

The reader will easily note that the control is determined by

udt =

(
γ

βs
− 1

)
ds

γi
− di

γi
= P (s, i)ds+Q(s, i)di.

In other words, assuming some regularity (differentiability
conditions on λ, under the sufficient condition (13), the
optimality results in [6] imply those in [9], via our main
result Theorem 2. The converse is also true under this
assumption.

V. CONCLUSION

In this work, we have first shown the importance of the
semi-continuity of the value functions with respect to the
constraint level for the validity of the L∞/L1 duality. Let us
underline that in the literature semi-continuity of the value
functions in optimal controls is mainly studied with respect
to the initial condition only.

In the application on the SIR model, we have also shown
the role of the viability kernels in the optimal control
synthesis, and thus the importance of their determination
prior to the optimality analysis.

Future works could consider particular classes of dynamics
for which we could refine our sufficient conditions to obtain
a L∞/L1 duality.
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