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A B S T R A C T

In the task of predicting spatio-temporal fields in environmental science using statistical
methods, introducing statistical models inspired by the physics of the underlying phenomena
that are numerically efficient is of growing interest. Large space–time datasets call for new
numerical methods to efficiently process them. The Stochastic Partial Differential Equation
(SPDE) approach has proven to be effective for the estimation and the prediction in a spatial
context. We present here the advection–diffusion SPDE with first–order derivative in time which
defines a large class of nonseparable spatio-temporal models. A Gaussian Markov random field
approximation of the solution to the SPDE is built by discretizing the temporal derivative with
a finite difference method (implicit Euler) and by solving the spatial SPDE with a finite element
method (continuous Galerkin) at each time step. The ‘‘Streamline Diffusion’’ stabilization
technique is introduced when the advection term dominates the diffusion. Computationally
efficient methods are proposed to estimate the parameters of the SPDE and to predict the spatio-
temporal field by kriging, as well as to perform conditional simulations. The approach is applied
to a solar radiation dataset. Its advantages and limitations are discussed.
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1. Introduction

Many areas of environmental science seek to predict a space–time variable of interest from observations at scattered points in the
pace cross time domain of study, e.g., among other possible applications, wind prediction (Lenzi and Genton, 2020; Huang et al.,
022), precipitation forecasting (Sigrist et al., 2011), urban air quality inference (Paciorek et al., 2009). Among modern techniques
roposing efficient methods for estimation and prediction in a spatio-temporal framework, there is a distinction between two possible
ays of constructing and treating spatio-temporal models (Wikle and Hooten, 2010): either one follows the traditional geostatistical
aradigm, using joint space–time covariance functions (see for example Cressie and Huang (1999), Gneiting (2002), Stein (2005),
s well as the recent reviews Porcu et al. (2021), Chen et al. (2021)), or one uses dynamical models, including functional time series
f surfaces, see for example Wikle and Cressie (1999), Sigrist et al. (2012) and Martínez-Hernández and Genton (2023).

While the theoretical aspects of spatio-temporal geostatistics are well developed (Cressie and Wikle, 2011), their implementation
aces difficulties. The geostatistical paradigm is computationally expensive for large spatio-temporal datasets, due to the factorization
f dense covariance matrices, whose complexity scales with the cube of the number of observations. This well known problem is
ften referred to as the ‘‘big 𝑛 problem’’ (Banerjee et al., 2014). Separable space–time covariance functions have often been used to

take advantage of their computational convenience, even when they are not realistic in describing the processes due to the absence
of space–time interaction. In most applications, separable models show poorer predictions than nonseparable models, see references
above. Recent studies have focused on constructing nonseparable models, which are physically more realistic, albeit computationally
more expensive, see Gneiting (2002), Porcu et al. (2006), Salvaña and Genton (2021) and Bourotte et al. (2016), Allard et al. (2022)
in a multivariate context. Nonseparable space–time covariance models can be constructed from Fourier transforms of permissible
spectral densities, mixtures of separable models, and partial differential equations (PDEs) representing physical laws (Carrizo-
Vergara et al., 2022; Lindgren et al., 2022). They can be fully symmetric or asymmetric, stationary or nonstationary, univariate
or multivariate, in the Euclidean space or on the sphere. See Porcu et al. (2021) and Chen et al. (2021) for recent comprehensive
reviews.

In this paper, we follow the dynamic approach that makes use of physical laws and study models which are defined through
Stochastic Partial Differential Equations (SPDEs), where the stochasticity is obtained by adding a random noise as a forcing term. The
SPDE approach relies on the representation of a continuously indexed Gaussian Random Field (GRF) as a discretely indexed random
process, i.e. a Gaussian Markov Random Field (GMRF, see Rue and Held (2005)). Passing from a GRF to a GMRF, the covariance
function and the dense covariance matrix are substituted respectively by a neighborhood structure and a sparse precision matrix.
Using GMRFs with sparse precision matrices implies computationally efficient numerical methods, especially for matrix factorization.
The link between GRF and GMRFs in the purely spatial case has been pioneered by Lindgren et al. (2011), who proposed to construct
a GMRF representation of the spatial Matérn field on a triangulated mesh of the domain through the discretization of a diffusion
SPDE with a Finite Element Method (FEM). We refer to Bakka (2022) for a simple explanation of the FEM applied to the spatial
SPDE and to Section 2.3 for a detailed generalization to the spatio-temporal SPDE.

In the spatial framework, major mathematical and algorithmic advances in the SPDE approach have been made (Fuglstad et al.,
2015; Pereira and Desassis, 2019; Pereira et al., 2022), making it possible to efficiently process very large datasets, even in the
presence of nonstationarities and varying local anisotropies. The development of SPDE-based approaches to Gaussian processes has
led to several practical solutions, among which we find the R package for approximate Bayesian inference R-INLA (Rue et al., 2009;
Lindgren and Rue, 2015) that uses SPDEs to sample from spatial and spatio-temporal models.

When generalizing to the spatio-temporal framework, a direct space–time formulation of the SPDE approach was first suggested
in Lindgren et al. (2011), without any precise detail on estimation and prediction. In Cameletti et al. (2011), the SPDE approach
was coupled with an AR(1) model in time, leading to a separable space–time model. Nonseparable spatio-temporal models have
been elaborated in Särkkä et al. (2013), Krainski et al. (2018) and Lindgren et al. (2023) as a spatio-temporal generalization of the
diffusion-Matérn model of Lindgren et al. (2011). In the approaches overviewed above, the space–time processes are symmetrical
in the sense that the spatio-temporal covariance does not change when the sign of the space and/or time lag changes. However,
atmospheric and geophysical processes are often asymmetric due to transport effects, such as air and water flows. Sigrist et al.
(2015) built non-symmetrical and nonseparable space–time Gaussian models as a solution to an advection–diffusion SPDE with
computationally efficient algorithms for statistical estimation using fast Fourier transforms and Kalman filters. Sharrock and Kantas
(2022) used a similar method, but in an joint online parameter estimation and optimal sensor placement problem. Liu et al. (2020)
extended this approach to spatially-varying advection–diffusion and non-zero mean source–sink, leading to a space–time covariance
which is nonstationary in space. The applicability of these approaches remains difficult however, especially with scattered data,
2
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the physical processes linked to the studied phenomena (advection, diffusion, etc.), but the estimation of the parameters and the
conditioning to the observed data remained unaddressed.

In this work, we propose a new and efficient approach for dealing with spatio-temporal SPDEs that includes both a diffusion
nd an advection term. In contrast to Sigrist et al. (2015) and Liu et al. (2020), we make use of the sparse formulation of the
patio-temporal field which is the approximate solution of the SPDE obtained by a combination of FEM and finite differences (FD).
his sparse formulation allows fast algorithms for parameter estimation and spatio-temporal prediction. We also treat the case of
n advection-dominated SPDE, by introducing the streamline diffusion stabilization term in the SPDE (Hughes and Brooks, 1979).
o the best of our knowledge, this work is the first statistical FEM/FD implementation of spatio-temporal SPDEs with advection.

The paper is organized as follows: Section 2 first presents background material on the spatio-temporal SPDE approach. The spatio-
emporal advection–diffusion model developed in this paper is presented, along with its discretization. Moreover, the stabilization
f advection-dominated SPDEs is introduced. Section 3 explores fast and scalable estimation methods, kriging formula for prediction
nd conditional simulations. Section 4 presents an application of the proposed spatio-temporal SPDE approach to a solar radiation
ataset. Section 5 discusses the advantages and the limitations of the approach and opens the way to further works.

. The spatio-temporal advection–diffusion SPDE and its discretization

.1. Background

In the SPDE representation, GRFs on R𝑑 are viewed as solutions to specific stochastic partial differential equations (Whittle,
1954, 1963). In particular, Gaussian Whittle–Matérn fields, analyzed in details in Lindgren et al. (2011) and reviewed in Lindgren
et al. (2022), are solutions to

(𝜅2 − 𝛥)𝛼∕2𝑋(⋅) = 𝜏𝑊 (⋅), (1)

with 𝛼 > 𝑑∕2 and 𝜏 > 0. 𝛥 =
∑𝑑
𝑖=1

𝜕2

𝜕𝑠2𝑖
is the Laplacian operator and 𝑊 (⋅) is a standard spatial Gaussian white noise, whose definition

s briefly recalled.
A white noise 𝑊 (⋅) is as a Generalized Random Field (GeRF) that associates to any function 𝜙 ∈ 𝐿2(R𝑑 ) a random variable

𝑊 (𝜙) ∈ R, that satisfies

E[𝑊 (𝜙)] = 0, ∀𝜙 ∈ 𝐿2(R𝑑 )

and

Cov[𝑊 (𝜙1),𝑊 (𝜙2)] = ∫R𝑑
𝜙1(𝐬)𝜙2(𝐬) d 𝐬, ∀𝜙1, 𝜙2 ∈ 𝐿2(R𝑑 ). (2)

If, moreover, for any 𝑚 ≥ 1 and any linearly independent 𝜙1,… , 𝜙𝑚 ∈ 𝐿2(R𝑑 ), the random vector [𝑊 (𝜙1),… ,𝑊 (𝜙𝑚)]⊤ is a Gaussian
vector, then 𝑊 is called Gaussian white noise.

If {𝑍𝑖}𝑖∈N is a sequence of independent, standard Gaussian variables, then the function 𝑊 defined over 𝐿2(R𝑑 ) by

𝑊 (𝜙) =
∑

𝑗∈N

𝑍𝑗 ∫R𝑑
𝜙𝑒𝑗 d 𝐬, ∀𝜙 ∈ 𝐿2(R𝑑 ),

where {𝑒𝑗}𝑗∈N denotes an orthonormal basis of 𝐿2(R𝑑 ), is a Gaussian white noise on R𝑑 .
In principle, GeRFs have only meaning when applied to test functions in some particular functional space, and not necessarily

when evaluated in points of the space, but, for an easier reading, we will allow ourselves to write 𝑊 (𝐬) and 𝑋(𝐬).
The covariance function of the Gaussian Whittle–Matérn field solution to Eq. (1) is the well known Matérn covariance function

Cov(𝐡) = 𝜎2𝐶𝑀𝜈 (𝜅‖𝐡‖) = 𝜎2

2𝜈−1𝛤 (𝜈)
(𝜅‖𝐡‖)𝜈 𝜈 (𝜅‖𝐡‖) , (3)

with smoothness parameter 𝜈 = 𝛼−𝑑∕2 > 0, scale parameter 𝜅 and variance 𝜎2 = 𝜏2(4𝜋)−𝑑∕2𝛤 (𝜈)𝛤 (𝜈+𝑑∕2)−1𝜅−2𝜈 . 𝜈 is the modified
2nd order Bessel function and 𝐡 = 𝐬 − 𝐬′ is the spatial lag between two locations 𝐬 and 𝐬′ in R𝑑 . In particular, when 𝜈 = 1∕2, we
get the exponential covariance function and when 𝜈 → +∞, after proper renormalization, (3) tends to the Gaussian covariance
function (Genton, 2001).

In Lindgren et al. (2011), the smoothness parameter 𝜈 considered in the Matérn covariance function corresponds to integer values
of 𝛼. When non-integer values of 𝛼 are introduced in the modeling, the SPDE is said to be fractional. Recent reviews of results and
applications of the fractional SPDE approach are available in Bolin and Kirchner (2020), Roques et al. (2022), Bolin et al. (2024),
but this case will not be treated further in this work.

When generalizing to spatio-temporal processes 𝑋(𝑡, 𝐬), we consider the framework proposed in Carrizo-Vergara et al. (2022)
for extending the SPDE approach to a wide class of linear spatio-temporal SPDEs. Let us denote 𝝃 ∈ R𝑑 a spatial frequency and
𝜔 ∈ R a temporal frequency. The space–time white noise with unit variance, denoted 𝑊 (𝑡, 𝐬), is characterized by its spectral measure
𝑑𝜇𝑊 (𝜔, 𝝃) = (2𝜋)−(𝑑+1)𝑑𝝃𝑑𝜔. New spatio-temporal models were obtained from known PDEs describing physical processes, such as
diffusion, advection, and oscillations with stochastic forcing terms. In particular, Carrizo-Vergara et al. (2022) provided sufficient
conditions to the existence and uniqueness of stationary solutions to

[

𝜕𝛽 + 𝑔
]

𝑋(𝑡, 𝐬) = 𝑊 (𝑡, 𝐬), (4)
3
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with 𝛽 > 0. In (4), the spatial operator 𝑔 is defined using the spatial Fourier transform on R𝑑 , denoted 𝑆 ,

𝑔(⋅) = −1
𝑆 (𝑔 𝑆 (⋅)),

where 𝑔 ∶ R𝑑 → C is a sufficiently regular and Hermitian-symmetric function called the symbol function of the operator 𝑔 . The
temporal operator 𝜕𝛽

𝜕𝑡𝛽 is

𝜕𝛽

𝜕𝑡𝛽
(⋅) = −1

𝑇 ((𝑖𝜔)𝛽𝑇 (⋅)),

where 𝑇 is the temporal Fourier transform on R and where we have used the symbol function over R

𝜔 ↦ (𝑖𝜔)𝛽 = |𝜔|𝛽𝑒𝑖sgn(𝜔)𝛽𝜋∕2.

The spatio-temporal symbol function of the operator involved in (4) is thus

(𝜔, 𝝃) ↦ (𝑖𝜔)𝛽 + 𝑔(𝝃) = |𝜔|𝛽 cos
(

𝛽𝜋
2

)

+ 𝑔𝑅(𝝃) + 𝑖
(

sgn(𝜔)|𝜔|𝛽 sin
(

𝛽𝜋
2

)

+ 𝑔𝐼 (𝝃)
)

,

here 𝑔𝑅 and 𝑔𝐼 are the real and imaginary part of the spatial symbol function 𝑔(𝝃). If |𝑔𝑅| is inferiorly bounded by the inverse of a
trictly positive polynomial and 𝑔𝑅 cos

(

𝛽𝜋
2

)

≥ 0, Theorem 1 and Proposition 3 in Carrizo-Vergara et al. (2022) state that (4) admits
a unique stationary solution for every arbitrary 𝑔𝐼 function .

2.2. The spatio-temporal advection–diffusion SPDE

The advection–diffusion equation is a Partial Differential Equation (PDE) that describes physical phenomena where particles,
energy, or other physical quantities evolve inside a physical system due to two processes: diffusion and advection. Advection
represents the mass transport due to the average velocity of all particles, and diffusion represents the mass transport due to
the instantaneously varying velocity of individual particles. In this paper, we study the advection–diffusion SPDE on the domain
[0, 𝑇 ] ×R𝑑 that writes

[ 𝜕
𝜕𝑡

+ 1
𝑐
(𝜅2 − ∇ ⋅𝐇∇)𝛼 + 1

𝑐
𝜸 ⋅ ∇

]

𝑋(𝑡, 𝐬) = 𝜏
√

𝑐
𝑍(𝑡, 𝐬), (5)

where

• the operator ∇ ⋅𝐇∇ is a diffusion term that can incorporate anisotropy in the matrix 𝐇. When the field is isotropic, i.e. when
𝐇 = 𝜆𝐈, this term reduces to the Laplacian operator 𝜆𝛥;

• the operator 𝜸 ⋅ ∇ models the advection, 𝜸 ∈ R𝑑 being a velocity vector;
• 𝛼 ≥ 0 relates to the smoothness of 𝑋(𝑡, ⋅), 𝜅2 > 0 accounts for damping and 𝑐 is a positive time-scale parameter;
• 𝜏 ≥ 0 is a standard deviation factor and 𝑍 is a stochastic forcing term, detailed below.

This equation was mentioned in Lindgren et al. (2011), Carrizo-Vergara et al. (2022) and Lindgren et al. (2023), and was analyzed
sing spectral approaches in Sigrist et al. (2015) and Liu et al. (2020). The term 𝑍(𝑡, 𝐬) is assumed to be of the form

𝑍(𝑡, 𝐬) = 𝑊𝑇 (𝑡)⊗𝑍𝑆 (𝐬), (6)

i.e., a space–time separable stochastic (generalized) random function given as the tensor product of a temporal Gaussian white
noise 𝑊𝑇 and a spatial noise 𝑍𝑆 . 𝑍𝑆 is often chosen to be a spatial Gaussian white noise, denoted 𝑊𝑆 in this case. To ensure a
sufficient regularity for 𝑍, 𝑍𝑆 can alternatively be a colored noise, such as for example the solution to the spatial Whittle–Matérn
SPDE (Lindgren et al., 2011)

(𝜅2 − ∇ ⋅𝐇∇)𝛼𝑆∕2𝑍𝑆 (𝐬) = 𝑊𝑆 (𝐬), (7)

where 𝑊𝑆 is a Gaussian white noise. Note that the parameters 𝜅2 and 𝐇 in the noise term have been set identical to those in the
diffusion term in the left-hand-side of (5) to ensure that the spatial marginalization of the process is a Matérn field, as detailed
below. A relation can be found between the SPDE notation of our paper and the more classical notation of infinite dimensional
SDEs of Da Prato and Zabczyk (1992). This relation is explained in Appendix A.

When 𝛼 > 0, 𝑋(𝑡, 𝐬) is a stationary nonseparable spatio-temporal field with covariance function Cov(𝑢,𝐡), with (𝑢,𝐡) ∈ R ×R𝑑 .
The advection–diffusion Eq. (5) is a particular first–order evolution model as in Eq. (4) with 𝛽 = 1. Its spatial symbol function,

𝑔(𝝃) = 1
𝑐
[

(𝜅2 + 𝝃⊤𝐇𝝃)𝛼 + 𝑖𝜸⊤𝝃
]

,

verifies the sufficient condition for existence and uniqueness of a stationary solution recalled at the end of Section 2.1. We define
the spatial trace of 𝑋 as the spatial random field 𝑋(𝑡, ⋅) at any 𝑡 ∈ [0, 𝑇 ]. Carrizo-Vergara et al. (2022) showed that the advection
term does not affect the spatial trace of the solution. For some specific values of the parameters, the spatial trace of the solution to
(5) is a Matérn field, as detailed in Proposition 1. In the following |𝐇| denotes the determinant of the square matrix 𝐇.
4
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Proposition 1. Let 𝑍(𝑡, 𝐬) be a spatio-temporal noise colored in space with 𝑍𝑆 (𝐬) satisfying (7), and let 𝛼tot = 𝛼 + 𝛼𝑆 . If 𝛼tot > 𝑑∕2, the
patial trace of the stationary solution 𝑋(𝑡, 𝐬) of the SPDE (5) is the Gaussian Matérn field with covariance

Cov(0,𝐡) =
𝜏2𝛤 (𝛼tot − 𝑑∕2)

2𝛤 (𝛼tot)(4𝜋)𝑑∕2𝜅2(𝛼tot−𝑑∕2)
|𝐇|

1∕2
𝐶𝑀𝛼tot−𝑑∕2

(

𝜅‖‖
‖

𝐇−1∕2𝐡‖‖
‖

)

, (8)

where 𝐡 = 𝐬 − 𝐬′ is the spatial lag and 𝐶𝑀𝛼tot−𝑑∕2
(⋅) is the unit variance and scale Matérn covariance function defined in (3) with smoothness

parameter equal to 𝜈 = 𝛼tot − 𝑑∕2.

Proposition 1 is adapted from Proposition 1 in Lindgren et al. (2023). A proof is reported in Appendix B. The model reduces to
a separable one in a particular case stated in the corollary below.

Corollary 2. Let the coefficients of the SPDE (5) be such that 𝛼 = 0 and 𝜸 = 𝟎; the spatial operator applied to the spatio-temporal field
𝑋(𝑡, 𝐬) is then the constant value 𝑐−1. Let 𝑍(𝑡, 𝐬) be a spatio-temporal noise colored in space, with 𝑍𝑆 (𝐬) satisfying (7). If 𝛼𝑆 > 𝑑∕2, the
tationary solution of the SPDE is a separable spatio-temporal field with covariance

Cov(𝑢,𝐡) =
𝜏2𝛤 (𝛼𝑆 − 𝑑∕2)

2𝛤 (𝛼𝑆 )(4𝜋)𝑑∕2𝜅2(𝛼𝑆−𝑑∕2)|𝐇|

1∕2
𝐶𝑀𝛼𝑆−𝑑∕2

(

𝜅‖‖
‖

𝐇−1∕2𝐡‖‖
‖

)

exp 𝑢
𝑐
,

ith smoothness parameter equal to 𝜈 = 𝛼𝑆 − 𝑑∕2.

.3. Discretization

The advection–diffusion SPDE in (5) is discretized in time and space, using finite differences and a finite element method,
espectively (from now on, this type of discretization will be noted as FEM/FD discretization). The temporal domain [0, 𝑇 ] is
iscretized in (𝑁𝑇 + 1) regular time steps of length 𝑑𝑡 = 𝑇 ∕𝑁𝑇 , and we note 𝑡𝑘 = 𝑘𝑑𝑡 for 𝑘 ∈ {0,… , 𝑁𝑇 }. Since implicit

solvers are usually less sensitive to numerical instability than explicit solvers, the implicit Euler scheme is chosen for the temporal
discretization. This choice implies stability, hence convergence towards the stationary solution. We denote 𝑋(𝑘) = 𝑋(𝑡𝑘, ⋅) the
temporal approximation of the spatial trace of the SPDE (5) at time 𝑡𝑘. The FEM method for the spatial discretization is the continuous
Galerkin method with Neumann Boundary Conditions as detailed in Lindgren et al. (2011).

The solution in two dimensions is now detailed. The solution in three dimensions involve geometrical technicalities, but is
otherwise very similar. Let 𝛺 ⊂ R2 be a compact and connected domain of R2. 𝛺 is meshed using a triangulation  with 𝑁𝑆
vertices {𝐬1,… , 𝐬𝑁𝑆 } ⊂ 𝛺. Let ℎ ∶= maxTr∈ ℎTr , where ℎTr is the length of the longest side of the triangle Tr ∈  . A first–order
finite element representation 𝑋ℎ of the solution to the spatial SPDE is a linear combination 𝑋ℎ =

∑𝑁𝑆
𝑖=1 𝑥𝑖𝜓𝑖 of piecewise linear

basis functions {𝜓𝑖}
𝑁𝑆
𝑖=1 , each 𝜓𝑖 being equal to 1 at the vertex 𝐬𝑖 and 0 at all the other vertices. The weights {𝑥𝑖}

𝑁𝑆
𝑖=1 define uniquely

the values of the field at the vertices, while the values in the interior of the triangles are determined by linear interpolation. The
continuous Galerkin solution is then obtained by finding the weights that fulfill the weak formulation of Eq. (5) for test functions
belonging to the space  spanned by {𝜓𝑖}

𝑁𝑆
𝑖=1 .

Proposition 3. Let 𝑋(𝑡, 𝐬) be the spatio-temporal process solution to Eq. (5) with 𝛼 ∈ {0, 1} and spatio-temporal white noise, i.e. 𝑍(𝑡, 𝐬) =
𝑊 (𝑡, 𝐬) = 𝑊𝑇 (𝑡)⊗𝑊𝑆 (𝐬). Let  be a triangulation of 𝛺 and {𝜓𝑖}

𝑁𝑆
𝑖=1 be the piecewise linear basis functions defined over  . Let us define the

mass matrix 𝐌 = [𝑀𝑖𝑗 ]
𝑁𝑆
𝑖,𝑗=1, the stiffness matrix 𝐆 = [𝐺𝑖𝑗 ]

𝑁𝑆
𝑖,𝑗=1, the advection matrix 𝐁 = [𝐵𝑖𝑗 ]

𝑁𝑆
𝑖,𝑗=1 and the matrix 𝐊 = [𝐾𝑖𝑗 ]

𝑁𝑆
𝑖,𝑗=1 as follows:

𝑀𝑖𝑗 = ∫𝛺
𝜓𝑖(𝐬)𝜓𝑗 (𝐬)d 𝐬,

𝐺𝑖𝑗 = ∫𝛺
𝐇∇𝜓𝑖(𝐬) ⋅ ∇𝜓𝑗 (𝐬) d 𝐬,

𝐵𝑖𝑗 = ∫𝛺
𝜸 ⋅ ∇𝜓𝑖(𝐬)𝜓𝑗 (𝐬)d 𝐬,

𝐾𝑖𝑗 = (𝜅2𝑀𝑖𝑗 + 𝐺𝑖𝑗 )𝛼 .

Then, at each time step, the continuous Galerkin finite element solution vector 𝐱(𝑘+1) = {𝑥(𝑘+1)𝑖 }𝑁𝑆𝑖=1 , for 𝑘 ∈ {0,… , 𝑁𝑇 }, satisfies

(

𝐌 + 𝑑𝑡
𝑐
(𝐊 + 𝐁)

)

𝐱(𝑘+1) = 𝐌𝐱(𝑘) +
𝜏
√

𝑑𝑡
√

𝑐
𝐌1∕2𝐳(𝑘+1), (9)

where 𝐳(𝑘+1) ∼  (𝟎, 𝐈𝑁𝑆 ), 𝐌
1∕2 is any matrix such that 𝐌1∕2𝐌1∕2 = 𝐌 and 𝑑𝑡 = 𝑇 ∕𝑁𝑇 . When the noise on the right-hand side is colored

in space, i.e. 𝑍(𝑡, 𝐬) = 𝑊𝑇 (𝑡)⊗𝑍𝑆 (𝐬), the discretization reads
(

𝐌 + 𝑑𝑡
𝑐
(𝐊 + 𝐁)

)

𝐱(𝑘+1) = 𝐌𝐱(𝑘) +
𝜏
√

𝑑𝑡
√

𝑐
𝐌𝐋⊤𝑆𝐳

(𝑘+1),

where 𝐋𝑆 is the Cholesky decomposition of 𝐐−1
𝑆 , the covariance matrix of the discretized solution 𝐙𝑆 of the spatial SPDE (7), obtained with
5

the continuous Galerkin FEM (Lindgren et al., 2011).
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Proof. The proof is available in Appendix C.

Remark 1. The elements of the matrices 𝐌, 𝐆 and 𝐁 are non-zero only for pairs of basis functions which share common triangles.
This implies that the matrix (𝐌+ 𝑑𝑡

𝑐 (𝐊+𝐁)) is sparse and that Eq. (9) can be solved by Cholesky decomposition in an efficient way.

.4. Stabilization of advection-dominated SPDE

When the advection term is too strong with respect to the diffusion term, advection-domination occurs. In the framework
utlined above, when 𝛼 = 1, the non-symmetric matrix

[

𝐌 + 𝑑𝑡
𝑐 (𝐊 + 𝐁)

]

becomes ill-conditioned, which induces oscillations and
unstable solutions for the continuous Galerkin approximation. Specifically, the advection-domination occurs when the Péclet number
Peℎ = ‖𝜸‖ℎ

2𝜆 > 1, where 𝜆 is the coefficient of the isotropic Laplacian operator (see for example Mekuria and Rao (2016) or Quarteroni
2008, Chapter 5)).

One possible solution is to decrease the mesh size ℎ, i.e., to refine the triangulation, until the advection no longer dominates on the
lement-level, with Peℎ < 1. However, in many cases this is not a feasible solution because it would increase the number of vertices
eyond computation limits. Another solution, adopted here, is to introduce a stabilization term. Many stabilization approaches are
ossible, some being more accurate than others (Quarteroni, 2008, Chapter 5). In our case, we opt for the streamline diffusion
tabilization approach (Hughes and Brooks, 1979), considered as a good trade-off between accuracy and computational complexity.
ssentially, the SD approach consists of stabilizing the advection by introducing an artificial diffusion term along the advection
irection. The following proposition presents the stabilized solution to (5).

roposition 4. Assume the same hypotheses as in Proposition 3 with 𝛼 = 1. The solution to Eq. (5) in presence of streamline diffusion
tabilization is

(

𝐌 + 𝑑𝑡
𝑐
(𝐊 + 𝐁 + 𝐒)

)

𝐱(𝑘+1) = 𝐌𝐱(𝑘) +
𝜏
√

𝑑𝑡
√

𝑐
𝐌1∕2𝐳(𝑘+1), (10)

where 𝐒 = [𝑆𝑖𝑗 ]
𝑁𝑆
𝑖,𝑗=1 is the matrix of the streamline diffusion stabilization operator , such that

𝑆𝑖𝑗 = (𝜓𝑖, 𝜓𝑗 ) = ℎ‖𝜸‖−1 ∫𝛺
(𝜸 ⋅ ∇𝜓𝑖)(𝜸 ⋅ ∇𝜓𝑗 ) d 𝐬,

and 𝜏 = 𝜏
(

|𝐇 + ℎ‖𝜸‖−1𝜸𝜸⊤|
)−1∕4 (|𝐇|)1∕4. When the noise on the right-hand side of Eq. (5) is colored in space, the discretization becomes

(

𝐌 + 𝑑𝑡
𝑐
(𝐊 + 𝐁 + 𝐒)

)

𝐱(𝑘+1) = 𝐌𝐱(𝑘) +
𝜏
√

𝑑𝑡
√

𝑐
𝐌𝐋⊤𝑆𝐳

(𝑘+1),

where 𝐋𝑆 is as in Proposition 3.

The proof of the discretized equation follows the same reasoning as that of Proposition 3 with the addition of the matrix 𝐒. The
SD approach can be seen as a perturbation of the original SPDE (Bank et al., 1990). Indeed, by making the classical hypothesis of
Neumann boundary condition on 𝛺 and by using the Green’s first identity, we get

∫𝛺
(𝜸 ⋅ ∇𝑥)(𝜸 ⋅ ∇𝑣) d 𝐬 = −∫𝛺

∇ ⋅ (𝜸𝜸⊤)∇𝑥𝑣 d 𝐬.

As a consequence, the original SPDE (5) can be rewritten with an additional diffusion term as
[ 𝜕
𝜕𝑡

+ 1
𝑐
[

𝜅2 − ∇ ⋅
(

𝐇 + ℎ‖𝜸‖−1𝜸𝜸⊤
)

∇ + 𝜸 ⋅ ∇
]

]

𝑋(𝑡, 𝐬) = 𝜏
√

𝑐
𝑍(𝑡, 𝐬). (11)

The term (ℎ‖𝜸‖−1𝜸𝜸⊤) acts as an anisotropic ‘‘diffusion’’ matrix that is added to the anisotropy (or identity) matrix 𝐇 of the original
diffusion. This extra diffusion stabilizes the advection directed along the direction 𝜸. By following the proof of Proposition 1, we
find that the marginal variance of the spatial field 𝑋(𝑡, ⋅) of Eq. (11) is equal to

𝜎2 =
𝜏2𝛤 (𝛼tot − 𝑑∕2)

𝛤 (𝛼tot)2(4𝜋)𝑑∕2𝜅2(𝛼tot−𝑑∕2)
|𝐇 + ℎ‖𝜸‖−1𝜸𝜸⊤|1∕2

.

For the variance to be equal to the variance in Proposition 1, 𝜏 must be replaced by 𝜏 = 𝜏
(

|𝐇 + ℎ‖𝜸‖−1𝜸𝜸⊤|
)1∕4 (|𝐇|)−1∕4.

.5. Spatio-temporal Gaussian Markov random field approximation

roposition 5. In presence of an advection-dominated flow and a spatio-temporal white noise on the right-hand side of Eq. (5), the
iscretized vector 𝐱(𝑘+1) on the mesh  at each time step is the solution of the following equation:

𝐱(0) ∼  (𝟎,Σ),

𝐱(𝑘+1) = 𝐃𝐱(𝑘) + 𝐄𝐳(𝑘+1), (12)
6
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where

𝐃 =
(

𝐌 + 𝑑𝑡
𝑐
(𝐊 + 𝐁 + 𝐒)

)−1
𝐌,

𝐄 =
𝜏
√

𝑑𝑡
√

𝑐

(

𝐌 + 𝑑𝑡
𝑐
(𝐊 + 𝐁 + 𝐒)

)−1
𝐌1∕2, (13)

and 𝐳(𝑘+1) ∼  (𝟎, 𝐈𝑁𝑆 ) is independent of 𝐱(0),… , 𝐱(𝑘+1). In presence of a spatio-temporal noise colored in space on the right-hand side
of Eq. (5), the matrix 𝐄 reads

𝐄 =
𝜏
√

𝑑𝑡
√

𝑐

(

𝐌 + 𝑑𝑡
𝑐
(𝐊 + 𝐁 + 𝐒)

)−1
𝐌𝐋⊤𝑆 ,

where 𝐋𝑆 is defined in Proposition 3.

Proof. Starting from Eq. (10), which represents the numerical scheme for the advection–diffusion spatio-temporal SPDE with
stabilization, it is straightforward to obtain (12).

When the SPDE is not advection-dominated, which implies that no stabilization term is needed, Eq. (13) is replaced by the similar
equation where the matrix 𝐒 is deleted and 𝜏 is replaced by 𝜏.

The covariance matrix Σ of the approximate spatial trace 𝐱(0) at the first time step, can be taken to be equal to any admissible
positive definite matrix. The closer Σ is to the covariance 𝐶𝑆 of 𝑋(𝑡, ⋅), the faster the stationary solution is obtained. When the
hypotheses of Proposition 1 are satisfied, an efficient option is to choose Σ as the Matérn covariance of Eq. (8).

To obtain fast inference and prediction computations, the precision matrix of the spatio-temporal discretized solution 𝐱0∶𝑁𝑇 =
[𝐱(0),… , 𝐱(𝑁𝑇 )]⊤ must be sparse. For this reason, 𝐌 is replaced by the diagonal matrix 𝐌̃ = [𝑀𝑖𝑗 ]

𝑁𝑆
𝑖,𝑗=1, where 𝑀𝑖𝑖 = ⟨𝜓𝑖, 1⟩ and 𝑀𝑖𝑗 = 0

if 𝑖 ≠ 𝑗 (Lindgren et al., 2011). This technique is called mass lumping and is common practice in FEM (Quarteroni, 2008, Chapter
5). From now on, we always use the diagonal matrix 𝐌̃, but for ease of reading, it will still be denoted 𝐌.

Proposition 6. Let 𝐱0∶𝑁𝑇 = [𝐱(0),… , 𝐱(𝑁𝑇 )]⊤ be the vector containing all spatial solutions until time step 𝑁𝑇 of Eq. (12). The global
precision matrix 𝐐 of the vector 𝐱0∶𝑁𝑇 of size (𝑁𝑆 (𝑁𝑇 + 1), 𝑁𝑆 (𝑁𝑇 + 1)) reads

𝐐 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Σ−1 + 𝐃⊤ 𝐅−1 𝐃 −𝐃⊤ 𝐅−1 0 … 0
−𝐅−1 𝐃 𝐅−1 + 𝐃⊤ 𝐅−1 𝐃 −𝐃⊤ 𝐅−1 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ 0
⋮ ⋱ −𝐅−1 𝐃 𝐅−1 + 𝐃⊤ 𝐅−1 𝐃 −𝐃⊤ 𝐅−1

0 … 0 −𝐅−1 𝐃 𝐅−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (14)

where 𝐅 = 𝐄𝐄⊤.

Proof. The proof is available in Appendix D.

Remark 2. Matrix (14) has a tridiagonal structure in time and is sparse in each of its spatial blocks of size (𝑁𝑆 , 𝑁𝑆 ) located on the
hree diagonals. The sparsity of the precision matrix relies on the choice of 𝐌̃ and on the value of 𝛼 (the higher 𝛼 the less sparse

the spatial blocks). Conversely, the precision of finite element method discretization is influenced by the mesh density (the smaller
ℎ, the more precise the solution); this factor plays a role in defining the size of the precision matrix, but not its sparsity pattern.
The sparsity pattern will be useful for the following sections concerning estimation and prediction.

3. Estimation, prediction and simulation

This section presents an efficient implementation for parameter estimation and spatio-temporal prediction within the spatio-
temporal SPDE framework described in Section 2. We consider the advection–diffusion SPDE (5) with 𝑑 = 2, 𝛼 = 1, 𝐇 = 𝐈 (isotropic
diffusion) and colored noise in space with 𝛼𝑆 = 2. Similar computations can be generalized to other values of 𝛼𝑆 such that 𝛼𝑆∕2 is
integer or to anisotropic diffusion.

The spatio-temporal domain 𝛺 × [0, 𝑇 ] is discretized in space with a triangulation  with 𝑁𝑆 nodes and discretized in time
by means of (𝑁𝑇 + 1) regular time steps. This space–time discretization is denoted  ′ =  × {0, 𝑇 ∕𝑁𝑇 ,… , 𝑇 }. At each time step
𝑘 ∈ {0,… , 𝑁𝑇 } there are 𝑛(𝑘) observations scattered in the spatial domain 𝛺. There is thus a total of 𝑛 =

∑𝑁𝑇
𝑘=0 𝑛

(𝑘) spatio-temporal
data collected in the vector 𝐲0∶𝑁𝑇 = [(𝐲(0))⊤,… , (𝐲(𝑁𝑇 ))⊤]⊤.

We consider a statistical model with fixed and random effects. The fixed effect is a linear trend on a set of covariates and the
random effect is modeled as the FEM/FD discretization of the random field solution to the SPDE (5) (as described in Section 2.3),
with the addition of random noise:

𝐲0∶𝑁𝑇 = Λ𝐛 + 𝐀𝐱0∶𝑁𝑇 + 𝜎0𝜺, (15)

where 𝐛 is the vector of 𝑞 fixed effects and Λ is a (𝑛, 𝑞) matrix of covariates with [Λ]𝑗𝑘 = 𝜆𝑘(𝑡𝑗 , 𝐬𝑗 ), 𝑗 = 1… , 𝑛 and 𝑘 = 1,… , 𝑞.
′

7

The matrix 𝐀 is the (𝑛,𝑁𝑆 (𝑁𝑇 + 1)) projection matrix between the data and the points in  , and 𝜺 is a standard Gaussian
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random vector with independent components. When the observation locations do not change during the time window, 𝐀⊤𝐀 is
a (𝑁𝑆 (𝑁𝑇 + 1), 𝑁𝑆 (𝑁𝑇 + 1)) block-diagonal matrix with all (𝑁𝑆 , 𝑁𝑆 ) equal blocks.

The discretization with FEM in space and FD in time is justified by a few considerations: compared to a Fourier approximation
approach (such as the ones considered in Sigrist et al. (2015), Liu et al. (2020), Sharrock and Kantas (2022)), it is better suited for
scattered data, it can be easily adapted to spatially and/or temporally varying parameters in the SPDE, leading to nonstationary
extensions of the method, and it can be generalized to spatio-temporal fields on Riemannian surfaces with only a few changes in
the approach (Pereira, 2023).

3.1. Estimation of the parameters

The parameters of the SPDE are estimated using maximum likelihood. We collect the parameters of the SPDE in the vector
𝜽⊤ = [𝜅, 𝛾𝑥, 𝛾𝑦, 𝑐, 𝜏], while all the parameters of the statistical model are collected in 𝝍⊤ = [𝜽⊤,𝐛⊤, 𝜎0]. Following (15), 𝐲0∶𝑁𝑇 is a

aussian vector with expectation Λ𝐛 and covariance matrix

Σ𝐲0∶𝑁𝑇
= 𝐀𝐐−1(𝜽)𝐀⊤ + 𝜎20𝐈𝑛,

here 𝐐(𝜽) is a precision matrix of size (𝑁𝑆 (𝑁𝑇 + 1), 𝑁𝑆 (𝑁𝑇 + 1)) depending on the parameters 𝜽. For ease of notation, we use 𝐐
instead of 𝐐(𝜽). The log-likelihood is equal to

(𝝍) = − 𝑛
2
log(2𝜋) − 1

2
log|Σ𝐲0∶𝑁𝑇

| − 1
2
(𝐲0∶𝑁𝑇 −Λ𝐛)⊤Σ−1

𝐲0∶𝑁𝑇
(𝐲0∶𝑁𝑇 −Λ𝐛). (16)

We use the Broyden, Fletcher, Goldfarb, and Shanno optimization algorithm (Nocedal and Wright, 2006), that makes use of the
econd–order derivative of the objective function. The gradients of the log-likelihood function (16) with respect to the different
arameters included in 𝝍 are approximately computed with finite differences.

We now propose and detail a computationally efficient formulation for both the terms of the log-likelihood (16), namely
1
2 log|Σ𝐲0∶𝑁𝑇

| and − 1
2 (𝐲0∶𝑁𝑇 − Λ𝐛)⊤Σ−1

𝐲0∶𝑁𝑇
(𝐲0∶𝑁𝑇 − Λ𝐛). We first consider the log-determinant. The quadratic form is addressed

ext.

roposition 7. In the framework outlined above, we have

log|Σ𝐲0∶𝑁𝑇
| = 𝑛 log 𝜎20 − log|𝐐| + log|𝐐𝐀|, (17)

here 𝐐𝐀 = 𝐐 + 𝜎−20 𝐀⊤𝐀.

roof. To compute log|Σ𝐲0∶𝑁𝑇
|, let us consider the augmented matrix

Σ𝑐 =

(

𝐐−1 𝐐−1𝐀⊤
𝐀𝐐−1 Σ𝐲0∶𝑁𝑇

)

. (18)

ence,

𝐐𝑐 = Σ−1
𝑐 =

(

𝐐 + 𝜎−20 𝐀⊤𝐀 −𝜎−20 𝐀⊤
−𝜎−20 𝐀 𝜎−20 𝐈𝑛

)

. (19)

sing block formulas, we have

log|Σ𝑐 | = − log|𝐐𝑐 | = − log|𝐐| + 𝑛 log 𝜎20 ,

nd

log|Σ𝑐 | = log|Σ𝐲0∶𝑁𝑇
| + log|𝐐−1 −𝐐−1𝐀⊤Σ−1

𝐲0∶𝑁𝑇
𝐀𝐐−1

|

= log|Σ𝐲0∶𝑁𝑇
| − log|𝐐 + 𝜎−20 𝐀⊤𝐀|,

here the last equality is a consequence of the Woodbury identity. This leads to the result.

roposition 8. The term log|𝐐| in Eq. (17) can be computed with the computationally efficient formula

log|𝐐| = log|Σ−1
| + (𝑁𝑇 − 1) log|𝐅−1

|, (20)

with

𝐅−1 = 𝑐
𝜏2𝑑𝑡

(𝐌 + 𝑑𝑡
𝑐
(𝐊 + 𝐁 + 𝐒))⊤𝐌−1𝐐𝑆𝐌−1(𝐌 + 𝑑𝑡

𝑐
(𝐊 + 𝐁 + 𝐒)),

where 𝐐 is the precision matrix of the discretized spatial noise 𝐙 defined in Proposition 3.
8

𝑆 𝑆
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Proof. Following Powell (2011), let 𝐍𝑁 = [𝐍𝑖𝑗 ]𝑁𝑖,𝑗=1 be an (𝑛𝑁, 𝑛𝑁) matrix, which is partitioned into 𝑁2 blocks 𝐍𝑖𝑗 , each of size
(𝑛, 𝑛). Then the determinant of 𝐍𝑁 is

|𝐍𝑁 | =
𝑁
∏

𝑘=1
|𝛼(𝑁−𝑘)
𝑘𝑘 |,

here the 𝛼(𝑘) are defined by

𝛼(0)𝑖𝑗 = 𝐍𝑖𝑗
𝛼(𝑘+1)𝑖𝑗 = 𝛼(𝑘)𝑖𝑗 − 𝛼(𝑘)𝑖,𝑁−𝑘(𝛼

(𝑘)
𝑁−𝑘,𝑁−𝑘)

−1𝛼(𝑘)𝑁−𝑘,𝑗 , 𝑘 ≥ 1.

is a block-matrix organized as 𝐍𝑁 . Hence, the formula for |𝐐| is

|𝐐| = |Σ−1
||𝐅−1

|

(𝑁𝑇 +1)−1. (21)

Applying the logarithm, we obtain Eq. (20).

Note that |𝐅−1
| is now the determinant of a (𝑁𝑆 , 𝑁𝑆 ) sparse, symmetric and positive definite matrix. The log-determinant can

be computed through its Cholesky decomposition as

log|𝐅−1
| = 2log(

𝑛
∏

𝑖=1
𝐹−1

chol,𝑖𝑖) = 2
𝑁𝑆
∑

𝑖=1
log(𝐹−1

chol,𝑖𝑖),

since 𝐅−1
chol is a triangular matrix, whose determinant is the product of the diagonal elements.

The term log|𝐐𝐀| = log|𝐐 + 𝜎−20 𝐀⊤𝐀| requires a detailed analysis. The term 𝜎−20 𝐀⊤𝐀 is an (𝑁𝑆 (𝑁𝑇 + 1), 𝑁𝑆 (𝑁𝑇 + 1)) diagonal
block matrix, whose (𝑁𝑆 , 𝑁𝑆 ) blocks are sparse. The computation of log|𝐐𝐀| is not as straightforward as in the case of log|𝐐|,
ecause there is no way of reducing the computation to purely spatial matrices. Depending on the size 𝑁𝑆 (𝑁𝑇 + 1), we can either
pply a Cholesky decomposition of the (𝑁𝑆 (𝑁𝑇 + 1), 𝑁𝑆 (𝑁𝑇 + 1)) matrix 𝐐𝐀 or the matrix-free approach proposed in Pereira et al.
2022), here sketched. The logarithm function is first approximated by a Chebyshev polynomial 𝑃 (⋅) (Chebyshev, 1853), then the
utchinson’s estimator (Hutchinson, 1990) is used to obtain a stochastic estimate of tr[𝑃 (𝐐𝐀)]. The method is detailed in Algorithm
in Pereira et al. (2022).

Now, concerning the quadratic term of the log-likelihood (16), we can work with the more convenient expression obtained thanks
o the Woodbury formula

Σ−1
𝐲0∶𝑁𝑇

= 𝜎−20 𝐈𝑛 − 𝜎−40 𝐀𝐐−1
𝐀 𝐀⊤.

ence

(𝐲0∶𝑁𝑇 −Λ𝐛)⊤Σ−1
𝐲0∶𝑁𝑇

(𝐲0∶𝑁𝑇 −Λ𝐛) = 𝜎−20 (𝐲0∶𝑁𝑇 −Λ𝐛)⊤𝐈𝑛(𝐲0∶𝑁𝑇 −Λ𝐛) − 𝜎−40 (𝐲0∶𝑁𝑇 −Λ𝐛)⊤𝐀𝐐−1
𝐀 𝐀⊤(𝐲0∶𝑁𝑇 −Λ𝐛). (22)

he second term of Eq. (22) can be computed either by Cholesky decomposition or using the conjugate gradient (CG) method. This
atter method solves 𝐐𝐀𝐯 = 𝐰 with respect to 𝐯 and computes 𝐯sol = 𝐰⊤𝐯, with 𝐰 = 𝐀⊤(𝐲0∶𝑁𝑇 −Λ𝐛). In this case, it is useful to find a
ood preconditioner for the matrix 𝐐𝐀 to ensure fast convergence of the CG method. We found that a temporal block Gauss–Seidel
reconditioner (Young, 1971, Chapter 3) was a good choice in this case. A detailed presentation of the CG method is available
n Pereira et al. (2022).

.2. Prediction by kriging

Under a Gaussian assumption, optimal prediction is the conditional expectation, also known in the geostatistics literature as
riging. We detail here two prediction settings: space–time interpolation and temporal extrapolation.

In the space–time interpolation setting, the spatio-temporal vector 𝐱0∶𝑁𝑇 is predicted on the entire spatial mesh during the time
indow [0, 𝑇 ], i.e. on  ′, using the data 𝐲0∶𝑁𝑇 defined in Eq. (15). The kriging predictor is directly read from Eq. (19):

𝐱⋆0∶𝑁𝑇 = E(𝐱0∶𝑁𝑇 ∣ 𝐲0∶𝑁𝑇 ) = 𝜎−20 𝐐−1
𝐀 𝐀⊤(𝐲0∶𝑁𝑇 −Λ𝐛). (23)

The CG method is used to avoid inverting 𝐐𝐀 in Eq. (23), as detailed at the end of Section 3.1. The conditional variance, also
alled kriging variance, is

Var(𝐱0∶𝑁𝑇 |𝐲0∶𝑁𝑇 ) = 𝐐−1
𝐀 .

The computation of the diagonal of an inverse matrix is not straightforward when only the Cholesky decomposition of the matrix
s available. Among the existing methods there is the Takahashi recursive algorithm described in Takahashi et al. (1973) and Erisman
nd Tinney (1975). Another way of computing the kriging variance is through conditional simulations, as detailed in Section 3.3.

In the temporal extrapolation setting, the vector 𝐱(𝑁𝑇 +1) is predicted at time step (𝑁𝑇 +1) on  using all the data available until
ime 𝑇 , i.e. from 𝐲0∶𝑁𝑇 . Following Eq. (12), we have

(𝑁𝑇 +1) (𝑁𝑇 ) (𝑁𝑇 +1)
9

𝐱 = 𝐃𝐱 + 𝐄 𝐳 , (24)
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Table 1
Mean (and standard deviation) of ML estimates 𝜽̂⊤ = [𝜅̂, 𝛾̂1 , 𝛾̂2 , 𝑐, 𝜏] over 50 simulations for two different subsets of advection–diffusion model parameters and
two different estimation approaches (Cholesky decomposition and matrix-free approach).

Method 𝜅 𝛾1 𝛾2 𝑐 𝜏 Average time (𝑠)

correct 0.5 2 2 1 1
Cholesky 0.610 (0.047) 2.354 (0.515) 2.325 (0.421) 1.037 (0.218) 1.072 (0.040) 194
Matrix-free 0.483 (0.029) 1.904 (0.178) 1.906 (0.147) 1.027 (0.046) 0.998 (0.024) 960

correct 0.7 1 −1 2 0.5
Cholesky 0.695 (0.067) 1.056 (0.659) −1.134 (0.631) 2.090 (0.352) 0.503 (0.022) 172
Matrix-free 0.669 (0.052) 0.967 (0.123) −1.164 (0.142) 1.954 (0.118) 0.485 (0.013) 863

where 𝐳(𝑁𝑇 +1) is a standardized Gaussian vector, and 𝐃 and 𝐄 are defined in Proposition 5. The kriging predictor 𝐱⋆(𝑁𝑇 +1) is

𝐱⋆(𝑁𝑇 +1) = E(𝐱(𝑁𝑇 +1) ∣ 𝐲0∶𝑁𝑇 ) = 𝐃E(𝐱(𝑁𝑇 ) ∣ 𝐲0∶𝑁𝑇 ) = 𝐃𝐱⋆(𝑁𝑇 ), (25)

here 𝐱⋆(𝑁𝑇 ) is extracted from 𝐱⋆0∶𝑁𝑇 . The same procedure can be iterated to predict 𝐱 at further time steps.

.3. Conditional simulations

To perform a conditional simulation, we use the conditional kriging paradigm presented below. This approach relies on the
act that kriging predictors and kriging residuals are uncorrelated (independent under Gaussian assumption, see Chilès and Delfiner
1999, Chapter 7)). First, a non-conditional simulation 𝐱(𝑁𝐶)0∶𝑁𝑇

is performed on the spatio-temporal grid  ′. From this simulation,
riging residuals

𝐫0∶𝑁𝑇 = E
(

𝐱0∶𝑁𝑇 ∣ 𝐀𝐱(𝑁𝐶)0∶𝑁𝑇

)

− 𝐱(𝑁𝐶)0∶𝑁𝑇

re computed over the entire spatio-temporal grid  ′. The conditional expectation is computed using the method presented in the
revious section. In a second step, these independently generated residuals are added to the usual kriging of the data to get the
onditional simulation

𝐱(𝐶)0∶𝑁𝑇
= 𝐱∗0∶𝑁𝑇 + 𝐫0∶𝑁𝑇 .

onditional simulations at further time steps are obtained by iteratively computing 𝐱(𝐶)𝑁𝑇 +𝑘
using the propagation Eq. (24) with 𝑘 ≥ 1.

ultiple independent realizations of conditional simulations can then be used to compute estimates of conditional variances or other
uantities, such as probability maps of threshold exceedance.

.4. Simulation study

We report here some results regarding the estimation of the parameters 𝜽⊤ = [𝜅, 𝛾1, 𝛾2, 𝑐, 𝜏] for 50 independent realizations
f a spatio-temporal model simulated with the SPDE (5). We set 𝐇 = 𝐈, 𝛼 = 1 and 𝛼𝑆 = 2. The spatial domain is the [0, 30]2

quare with a grid triangulation of 𝑁𝑆 = 900 spatial points. The time window is [1, 10] with unit time step and 𝑁𝑇 + 1 = 10. The
𝑆 = 100 observations are randomly located into the spatial domain and their position do not change during the 𝑁𝑇 time steps (hence
= 1000). Since the sizes of both the dataset and the spatio-temporal mesh are reasonable, we report the estimations computed
ith both the Cholesky decomposition approach and the matrix-free approach.

As initial values, we use estimated values obtained from the variograms of the spatial and temporal traces of the process.
pecifically, the initial value for 𝜅 is the estimated scale parameter of a Matérn covariance function with smoothness parameter
= 𝛼 + 𝛼𝑆 − 1 = 2 considering independent temporal repetitions, the initial value for 𝑐 is deduced from the estimated parameter of
𝑆 independent repetitions of AR(1) processes of length (𝑁𝑇 +1) and 𝜏2 is computed from Eq. (8) with 𝜎2 being the empirical variance
omputed on the data. Finally, the initial value for 𝜸 is the null vector. The parameters for the matrix-free approach are set to the
ollowing: the order of the Chebyshev polynomial to approximate the logarithm is set to 30 and the number of terms in the sum of
he Hutchinson’s estimator is set to 10. The results are reported in Table 1. They show that all parameters are accurately estimated
ith both approaches. In almost all cases, the true value of the parameter is within the mean ± 2 standard deviations interval. We

emark how the matrix-free approach takes more time to estimate the parameters. This is due to the iterative computations, that
ncrease the computational time. However, we know that the benefit of the matrix-free approach is the possibility of applying it to
uch larger spatio-temporal meshes, where the Cholesky decomposition cannot be applied at all.

. Application to a solar radiation dataset

With the constantly increasing installation of photovoltaic (PV) power and its volatility due to weather conditions, characterizing
hort-term variability of generated solar power (from the minute resolution to the 15-minute resolution) is important for the
ntegration of PV systems into the electrical grid, for balancing supply and demand (Kreuwel et al., 2020). Fluctuations in solar
roduction can have a significant impact on grid stability, and accurate prediction allows for planning necessary adjustments, such
10

s modulating the production of other energy sources, to avoid service interruptions and optimize resource utilization.
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Fig. 1. Left: spatial domain of study (red square). Right: zoom on the spatial domain along with measuring stations. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. GHI 𝐺 and Clear Sky Index 𝐾𝑐 for 4 different stations on the 28th of May 2013.

The approach detailed in the previous sections is now applied to a solar radiation dataset for which experts agree on the
presence of advection due to Western prevailing winds transporting clouds from one side of the domain to the other. The HOPE
campaign (Macke et al., 2017) recorded Global Horizontal Irradiance (GHI) (also called SSI, Surface Solar Irradiance) over a
10 × 16 km2 region in West Germany near the city of Jülich from April 2 to July 2, 2013. The sensors were located at 99 stations
located as pictured in Fig. 1 and GHI was recorded every 15 s. A detailed description of the campaign can be found in Macke et al.
(2017).

The dataset was cleaned for outlying values and non-operating sensors, and the temporal resolution was reduced from 15 s to
1 min. Fig. 2 (left panel) shows GHI as a function of time (in minute, during a full day — the 28th of May 2013) at 4 different
stations. These stations, represented in color in Fig. 1, are located at the border of the domain, far from each other. The GHI starts
close to 0, increases after sunrise, peaks at midday and tends to 0 at sunset. The maximal theoretical amount of irradiance reaching
the sensor follows an ideal concave curve. The divergence between the measured irradiance and the optimal curve can be slight or
important, depending on the presence of clouds. One can see on this example that the evolution among the 4 stations is similar,
with variations accounting for spatio-temporal variations of the clouds.

A first preprocessing was made in order to stationarize the phenomenon. Oumbe et al. (2014) showed that the solar irradiance at
ground level, GHI (denoted 𝐺 for short from now on), computed by a radiative transfer model can be approximated by the product
of the irradiance under clear atmosphere (called Clear Sky GHI, or 𝐺𝑐) and a modification factor due to cloud properties and ground
albedo only (Clear Sky Index, or 𝐾𝑐 , Beyer et al. (1996)):

𝐺 ≃ 𝐺𝑐𝐾𝑐 . (26)

The error made using this approximation depends mostly on the solar zenith angle, the ground albedo and the cloud optical
depth. In most cases, the maximum errors (95th percentile) on global and direct surface irradiances are less than 15 Wm−2 and
less than 2 to 5% in relative value, as recommended by the World Meteorological Organization for high-quality measurements of
the solar irradiance (Oumbe et al., 2014). Practically, it means that a model for fast calculation of surface solar irradiance may
be separated into two distinct and independent models: a deterministic model for 𝐺𝑐 , under clear-sky conditions, as computed
according to Gschwind et al. (2019), considered as known in this study, and a model for 𝐾𝑐 , which accounts for cloud influence
on the downwelling radiation and is expected to change in time and space. 𝐾𝑐 is modeled as a random spatio-temporal process
and will be the subject of our analysis. Fig. 2 (right panel) shows the variable 𝐾𝑐 corresponding to the variable 𝐺 shown on the
left panel. In general, 𝐾𝑐 lies between 0 and 1, but in rare occasions, values above 1 can be observed. This phenomenon is called
overshooting (Schade et al., 2007) and is due to light reflection by surrounding clouds.
11
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Fig. 3. Left: Histogram of 𝐾𝑐 over 20 time steps. Right: Time series of 𝐾𝑐 for all the stations over 20 time steps, along with the mean value for each time step
(in red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Estimated parameters and log-likelihood for 6 different models from all data on a 20-minute window.

Model 𝛼 𝛼𝑆 log-likelihood 𝜅̂ 𝛾̂𝑥 𝛾̂𝑦 𝑐 𝜏 𝜎̂0 𝜇̂

(1) adv-diff 0 2 2587 1.477 9.642 −5.382 11.659 2.254 0.052 0.570
(2) adv-diff 1 0 2577 0.237 4.718 −0.928 9.315 0.458 0.045 0.598
(3) adv-diff 1 2 2579 1.299 17.325 −8.442 41.017 3.072 0.058 0.574
(4) diff 0 2 2507 1.240 0 0 12.558 1.081 0.059 0.569
(5) diff 1 0 2545 0.246 0 0 6.594 0.436 0.047 0.577
(6) diff 1 2 2512 0.940 0 0 34.607 1.248 0.064 0.580

A time window of 20 min around 4 p.m. on May 28, 2013 is extracted with observations every minute at the 73 stations with
well recorded values. The histogram and time series of the data are shown in Fig. 3. Parameters are estimated on this 20-minute
window using the method described in Section 3.1. The spatio-temporal grid contains 𝑁𝑇 +1 = 20 one-minute time steps, from 𝑡 = 1
to 𝑡 = 20 and 𝑁𝑆 = 900 regular spatial mesh points.

4.1. Estimation and prediction

Six different models are fitted to the data and used for prediction: 3 models with advection (called ‘‘adv-diff’’) and 3 models
without advection (called ‘‘diff’’) obtained by setting 𝜸 = 𝟎. Both groups contain the three following sub-models: (i) a model with
diffusion included only in the stochastic forcing term, with a Matérn spatial trace with 𝜈 = 1; (ii) a nonseparable model that
does not have a Matérn spatial trace, but a generalized covariance function instead (the spatial covariance function exists only if
𝛼 + 𝛼𝑆 > 𝑑∕2, where 𝑑 = 2 in this case, see Proposition 1); in this case, the SPDE generates a process which only has meaning
as a random measure, and cannot strictly be interpreted at individual locations; (iii) a nonseparable model with a Matérn spatial
trace with 𝜈 = 2. In the general model of Eq. (5) they correspond respectively to (𝛼, 𝛼𝑆 ) = (0, 2), (1, 0), (1, 2). The parameters of the
statistical model of Eq. (15) are estimated for each model separately. The fixed effects term does not include any covariates and is
denoted 𝜇. The results are reported in Table 2.

The log-likelihoods of the models that include advection are within a range of variations of 10 log-likelihood units and are
between 34 to 80 units larger than those with diffusion only. As a point of comparison, if all spatio-temporal dependencies were
ignored, the BIC penalization for the advection parameters would be 2ln(1460) ≃ 14.5. These results indicate strong evidence
in favor of models with advection, but no significant differences among them. The parameters vary substantially from one
model to the other, but it must be remembered that, when considered independently, their physical interpretation is model
dependent. Some combinations are interpretable however. For example, following Proposition 1, the overall variance is equal to
(8𝜋)−1𝜏2𝜅−2 (or (8𝜋)−1𝜏2𝜅−2|𝐈 + ℎ‖𝜸‖−1𝜸𝜸⊤|−1∕2 in the stabilized case) when 𝛼tot = 𝛼 + 𝛼𝑆 = 2 and it is equal to (16𝜋)−1𝜏2𝜅−4 (or
(16𝜋)−1𝜏2𝜅−4|𝐈 + ℎ‖𝜸‖−1𝜸𝜸⊤|−1∕2) when 𝛼tot = 3. Accordingly, the estimated standard deviations for models (1), (3), (4) and (6) are
equal to 0.160, 0.119, 0.174 and 0.199 respectively, with the experimental standard deviation being equal to 0.184. For the same
models, the practical ranges computed as

√

8𝜈∕𝜅 (Lindgren et al., 2011) are equal to 1.915, 3.079, 2.281 and 4.255 respectively.
Notice that among pairs of models that differ by the presence or absence of advection, the estimated range is larger for those without
advection in an attempt to account for the larger correlation distance due to transport.

With the objective of improving the predictions at the 15-minute resolution needed for the electrical grid management, we then
perform prediction with two different validation settings containing 80% of conditioning data and 20% of validation data. In the
first case (called ‘‘Uniform’’) the validation locations are uniformly randomly selected. In the second case (called ‘‘South-East’’)
the validation locations are located downwind (i.e. South-East) with respect to the estimated advection direction. See Fig. 4 for a
representation of the validation settings.

Recall that a time window containing 20 unit time-steps, from 𝑡 = 1 to 𝑡 = 20, has been selected. For each validation setting
and considering each time the end of the time window from 𝑇 = 11 to 𝑇 = 20, three prediction configurations using conditioning
data from time (𝑇 − 9) to 𝑇 are computed and compared to the real values, allowing us to compute a root mean square error
12
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Fig. 4. Validation settings: Uniform (left) and South-East (right).

Fig. 5. Predictions of 𝐾𝑐 at (𝑇 +1), (𝑇 +2) and (𝑇 +3) with model (3) (‘‘adv-diff’’ with 𝛼 = 1 and 𝛼𝑆 = 2). The black contoured dots are the conditioning locations
and the white contoured dots are the validation locations for the Uniform setting. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 6. Averaged RMSE for ST prediction configuration for 6 different models and 2 validation settings: Uniform (left) and South-East (right).

(RMSE) validation score. First, the kriging is performed spatially only (hereafter referred to as ‘‘S’’ kriging). Second, a temporal
extrapolation is computed at the conditioning locations at time horizons (𝑇 + 1), (𝑇 + 2) and (𝑇 + 3) (‘‘T1’’, ‘‘T2’’, ‘‘T3’’ kriging).
Third, the spatio-temporal prediction is computed at the validation locations at time horizons (𝑇 + 1), (𝑇 + 2) and (𝑇 + 3) (‘‘ST1’’,
‘‘ST2’’, ‘‘ST3’’ kriging). We thus have a total of 6 models × 2 validation settings × 3 prediction configurations. RMSEs are averaged
over the 10 repetitions. Results are reported in Table 3 and those of the ST prediction configuration are also shown in Fig. 6.

For all tested validation settings and prediction configurations, the models with advection show better RMSE scores than models
without advection. This result is a confirmation of the results already observed on log-likelihoods. Models with advection have similar
prediction scores in the prediction configurations S and T, model (1) having slightly better performances in the configuration S. In
the 𝑇 and ST configurations, models (2) and (3) have in general quite similar RMSEs, except in the South-East setting with ST
configuration where model (2) is clearly the best model. In this case, prediction is made in a space–time domain lying downstream
with respect to the advection. It is thus expected that the model best representing the underlying physics should lead to the best
prediction performances.

An example of prediction maps on  at time horizons (𝑇 + 1), (𝑇 + 2) and (𝑇 + 3) is reported in Fig. 5, along with the observed
values (black contoured dots). The white contoured dots are the locations used for validation in the Uniform setting.
13
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Table 3
Averaged RMSE computed at 10 successive time steps for 6 different models, 2 validation settings (Uniform and South-East) and 3 prediction configurations (S,
T and ST); see text for details. In each case, the best score among the models is in bold font.

Uniform

Model 𝛼 𝛼𝑆 S (min,max)

(1) adv-diff 0 2 0.088 (0.052,0.127)
(2) adv-diff 1 0 0.103 (0.064,0.142)
(3) adv-diff 1 2 0.102 (0.062,0.134)
(4) diff 0 2 0.119 (0.074,0.140)
(5) diff 1 0 0.094 (0.060,0.131)
(6) diff 1 2 0.110 (0.066,0.132)

Model 𝛼 𝛼𝑆 T1 (min,max) T2 (min,max) T3 (min,max)

(1) adv-diff 0 2 0.095 (0.067,0.120) 0.146 (0.111,0.186) 0.181 (0.131,0.236)
(2) adv-diff 1 0 0.071 (0.046,0.090) 0.093 (0.054,0.124) 0.102 (0.060,0.143)
(3) adv-diff 1 2 0.072 (0.046,0.093) 0.095 (0.054,0.127) 0.104 (0.055,0.144)
(4) diff 0 2 0.094 (0.058,0.123) 0.137 (0.091,0.181) 0.166 (0.102,0.231)
(5) diff 1 0 0.079 (0.058,0.098) 0.108 (0.082,0.135) 0.124 (0.099,0.158)
(6) diff 1 2 0.083 (0.054,0.108) 0.110 (0.077,0.149) 0.125 (0.085,0.180)

Model 𝛼 𝛼𝑆 ST1 (min,max) ST2 (min,max) ST3 (min,max)

(1) adv-diff 0 2 0.105 (0.067,0.144) 0.147 (0.106,0.193) 0.179 (0.140,0.231)
(2) adv-diff 1 0 0.091 (0.052,0.131) 0.103 (0.062,0.161) 0.110 (0.071,0.165)
(3) adv-diff 1 2 0.085 (0.050,0.127) 0.094 (0.058,0.142) 0.100 (0.061,0.157)
(4) diff 0 2 0.123 (0.072,0.186) 0.150 (0.081,0.237) 0.170 (0.116,0.257)
(5) diff 1 0 0.104 (0.070,0.153) 0.122 (0.095,0.181) 0.131 (0.095,0.187)
(6) diff 1 2 0.108 (0.073,0.153) 0.126 (0.085,0.188) 0.134 (0.082,0.199)

South-East

Model 𝛼 𝛼𝑆 S (min,max)

(1) adv-diff 0 2 0.103 (0.051,0.138)
(2) adv-diff 1 0 0.105 (0.045,0.158)
(3) adv-diff 1 2 0.109 (0.054,0.149)
(4) diff 0 2 0.134 (0.092,0.181)
(5) diff 1 0 0.136 (0.067,0.187)
(6) diff 1 2 0.140 (0.085,0.192)

Model 𝛼 𝛼𝑆 T1 (min,max) T2 (min,max) T3 (min,max)

(1) adv-diff 0 2 0.095 (0.065,0.122) 0.142 (0.106,0.185) 0.172 (0.121,0.228)
(2) adv-diff 1 0 0.074 (0.045,0.099) 0.097 (0.065,0.128) 0.109 (0.069,0.148)
(3) adv-diff 1 2 0.074 (0.049,0.097) 0.096 (0.062,0.122) 0.106 (0.061,0.139)
(4) diff 0 2 0.090 (0.063,0.116) 0.128 (0.097,0.167) 0.154 (0.113,0.209)
(5) diff 1 0 0.081 (0.057,0.105) 0.111 (0.090,0.147) 0.128 (0.100,0.169)
(6) diff 1 2 0.084 (0.056,0.109) 0.109 (0.086,0.152) 0.123 (0.091,0.176)

Model 𝛼 𝛼𝑆 ST1 (min,max) ST2 (min,max) ST3 (min,max)

(1) adv-diff 0 2 0.102 (0.081,0.121) 0.158 (0.130,0.180) 0.210 (0.160,0.241)
(2) adv-diff 1 0 0.079 (0.044,0.119) 0.075 (0.039,0.127) 0.070 (0.038,0.132)
(3) adv-diff 1 2 0.090 (0.052,0.121) 0.099 (0.056,0.149) 0.109 (0.057,0.172)
(4) diff 0 2 0.128 (0.092,0.157) 0.165 (0.112,0.195) 0.199 (0.116,0.236)
(5) diff 1 0 0.107 (0.050,0.201) 0.100 (0.042,0.223) 0.094 (0.0380,0.217)
(6) diff 1 2 0.114 (0.060,0.204) 0.111 (0.058,0.229) 0.108 (0.059,0.223)

4.2. Conditional simulations

Fig. 7 shows 100 conditional simulations of 𝐾𝑐 computed at time 𝑇 = 11 and horizons (𝑇 + 1), (𝑇 + 2),… , (𝑇 + 6) with the
advection–diffusion model (3). Two validation stations have been selected: one in the North-West part of the domain (the orange
star in the left panel of Fig. 4) and one in the South-East part of the domain (the green star in the right panel of Fig. 4). Given that
there is an advection from NW to SE, it is therefore expected that the advection–diffusion model should be able to transport the
information in that direction. The mean of the 100 simulations and the envelopes corresponding to twice the pointwise standard
deviation have also been represented, along with the true values. As expected, most of the conditional simulations lie within the
envelopes in both cases and at all time horizons. The remarkable result is that the variance of the conditional simulations at the
green station is smaller than that at the orange one at every time step, especially when the time horizon increases. This is due to
the advection term in model (3), able to propagate information from North-West to South-East.

5. Conclusion

The spatio-temporal SPDE approach based on advection–diffusion equations proposed in this work combines elements of
physics, numerical analysis and statistics. It can be seen as a first step towards physics informed geostatistics, which introduces
14
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Fig. 7. Real 𝐾𝑐 , mean of conditional simulations of 𝐾𝑐 and ±2𝜎 envelope at time horizons 𝑇 , (𝑇 + 1), (𝑇 + 2),… , (𝑇 + 6). Left: orange station in the North-West
part of the domain. Right: green station in the South-East part of the domain. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

physical dynamics into a statistical model, accounting for possible hidden structures governing the evolution of the spatio-temporal
phenomenon. The different terms of the SPDE (advection, diffusion) directly influence the spatio-temporal dependencies of the
process, by controlling its variability in space and time. Compared to spatio-temporal models built on covariance functions such
as the Gneiting class (Gneiting, 2002), we gain in interpretability since the parameters of the model can be linked to the physical
coefficients of SPDEs.

We showed that it is possible to build an accurate space–time approximations of the process driven by the advection–diffusion
SPDE using a combination of FEM in space and implicit Euler scheme in time. It leads to sparse structured linear systems. We
obtained promising results for the estimation and for the prediction of processes both in terms of precision and speed. When the
size of the dataset is moderate, direct matrix implementation is possible. We showed how matrix-free methods can be implemented
in order to obtain scalable computations even for very large datasets. The application to the solar radiation dataset demonstrated
that the nonseparable advection–diffusion model exhibited the best prediction performances on a phenomenon that is certainly
governed by advection and diffusion processes. Nonetheless, further work is necessary to better assess the prediction accuracy and
the computational complexity. Applications to larger and more complex datasets, in particular using the matrix-free approach, will
be considered.

Further work is also necessary to compare the proposed approach to competing ones. In the spirit of Heaton et al. (2019),
which focused on spatial models, a comparison aimed at spatio-temporal processes showing dominating advection would be of great
interest. For example, Okasaki et al. (2022) considered spatio-temporal SPDEs without advection or with an advection that does not
dominate diffusion. Moreover, the moderate size of the dataset considered allowed the use of direct matrix computations whereas,
as discussed above, our approach is scalable. Comparison to models expressing the advection in a Lagrangian framework (Ailliot
et al., 2011; Benoit et al., 2018; Salvaña and Genton, 2021) should also be performed.

A maximum likelihood procedure was implemented. As a follow-up work, it would be interesting to implement this space–time
model as part of a Bayesian hierarchical construction, possibly within the INLA/SPDE framework (Rue et al., 2009; Krainski et al.,
2018), which already propose separable spatio-temporal models and will probably soon include the diffusion spatio-temporal SPDE
model proposed in Lindgren et al. (2023). The Bayesian framework would enable the assessment of estimation and prediction
uncertainty. Extending the INLA approach to deal with advection–diffusion models is left for future work. Different parameter
estimation methods could also be investigated, such as ‘‘online’’ methods, which recursively estimate the unknown model parameters
based on the continuous stream of observations (Sharrock and Kantas, 2022).

One of the main advantages of the SPDE formulation is that it is easy to generalize to nonstationary settings. Nonstationary fields
can be defined by letting the parameters 𝜅(𝑡, 𝐬) and 𝜸(𝑡, 𝐬) be space–time-dependent. This generalization implies only minimal changes
to the method used in the stationary case concerning the simulation, but needs more work for estimation and prediction, since the
maximum likelihood approach becomes much more expensive. We can also incorporate models of spatially varying anisotropy by
modifying the general operator ∇⋅𝐇(𝑡, 𝐬)∇𝑋(𝑡, 𝐬) with a nonstationary anisotropic matrix 𝐇(𝑡, 𝐬). The introduction of nonstationarities
could allow to better describe phenomena where local variations are clearly present. The approaches by Fuglstad et al. (2015)
and Pereira et al. (2022) have being investigated and generalized to the spatio-temporal framework, but are left for a follow-up
publication. In a nonstationary context, a comparison to the echo state networks proposed in Huang et al. (2022) would also be of
great interest.

Another interesting consequence of defining the models through local stochastic partial differential equations is that the SPDEs
still make sense when R𝑑 is replaced by a space that is only locally flat. We can define nonstationary Gaussian fields on manifolds,
and still obtain a GMRF representation. Important improvements were obtained in the spatial case (Pereira et al., 2022). The
generalization to space–time processes is being explored further (Pereira, 2023).

Possible generalization to spatio-temporal SPDEs with a fractional exponent in the diffusion term could also be considered. A
development of the methods proposed by Bolin and Kirchner (2020) and Vabishchevich (2015) should be explored.
15
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ppendix A. Relation between advection–diffusion SPDE and infinite dimensional SDE

Let us consider the advection–diffusion SPDE (5), here recalled:

[ 𝜕
𝜕𝑡

+ 1
𝑐
(𝜅2 − ∇ ⋅𝐇∇)𝛼 + 1

𝑐
𝜸 ⋅ ∇

]

𝑋(𝑡, 𝐬) = 𝜏
√

𝑐
𝑍(𝑡, 𝐬), (A.1)

𝑍(𝑡, 𝐬) = 𝑊𝑇 (𝑡)⊗𝑍𝑆 (𝐬). (A.2)

The spatio-temporal forcing as defined in Eq. (A.2) is a GeRF on functions of 𝐿2([0, 𝑇 ])×𝐿2(R𝑑 ). Then, for any (𝜙𝑇 , 𝜙𝑆 ), (𝜓𝑇 , 𝜓𝑆 ) ∈
2([0, 𝑇 ]) × 𝐿2(R𝑑 ), (𝑊𝑇 ⊗𝑍𝑆 )(𝜙𝑇 , 𝜙𝑆 ) and (𝑊𝑇 ⊗𝑍𝑆 )(𝜓𝑇 , 𝜓𝑆 ) are centered Gaussian random variables with covariance

Cov[(𝑊𝑇 ⊗𝑍𝑆 )(𝜙𝑇 , 𝜙𝑆 ), (𝑊𝑇 ⊗𝑍𝑆 )(𝜓𝑇 , 𝜓𝑆 )] = ∫

𝑇

0
𝜙𝑇𝜓𝑇 d𝑡∫R𝑑

𝑍𝑆 (𝜙𝑆 )𝑍𝑆 (𝜓𝑆 ) d 𝐬.

The space–time forcing term 𝑊𝑇 ⊗𝑍𝑆 can be identified with a cylindrical Wiener process {𝑊𝑡}𝑡∈[0,𝑇 ] in 𝐿2(R𝑑 ) through

𝑊𝑡(𝜙𝑆 ) = (𝑊𝑇 ⊗𝑍𝑆 )(1[0,𝑡], 𝜙𝑆 ), 𝜙𝑆 ∈ 𝐿2(R𝑑 ), 𝑡 ∈ [0, 𝑇 ],

where 1[0,𝑡] is the indicator function over [0, 𝑡]. Moreover, we can write

(𝑊𝑇 ⊗𝑍𝑆 )(𝜙𝑇 , 𝜙𝑆 ) = ∫R𝑑

(

∫

𝑇

0
𝜙𝑇 d𝑊𝑡

)

𝜙𝑆 d 𝐬 𝜙𝑆 ∈ 𝐿2(R𝑑 ), 𝑡 ∈ [0, 𝑇 ],

which leads to the interpretation of 𝑊𝑇 ⊗𝑍𝑆 as the time derivative of the cylindrical Wiener process {𝑊𝑡}𝑡∈[0,𝑇 ]. This analogy allows
us to rewrite the SPDE (A.1) in the SDE form in infinite dimensions (Da Prato and Zabczyk, 1992)

𝑑𝑋 = −1
𝑐
[

(𝜅2 − ∇ ⋅𝐇∇)𝛼 + 𝜸 ⋅ ∇
]

𝑋 d𝑡 + 𝜏
√

𝑐
d𝑊𝑡 .

ppendix B. Proof of Proposition 1

We present here the proof of Proposition 1.

roof. The covariance function of the spatial trace between 𝑋(𝑡, 𝐬) and 𝑋(𝑡, 𝐬′) for a spatial lag 𝐡 = 𝐬 − 𝐬′ does not depend on the
maginary part of the spatial symbol function (Carrizo-Vergara et al., 2022), hence it can be written as

Cov(0,𝐡) = ∫R𝑑 ∫R
exp(𝑖𝐡 𝝃)𝑆(𝝃, 𝜔) d𝜔 d 𝝃

= ∫R𝑑
exp(𝑖𝐡 𝝃)

[

∫R
𝑆(𝝃, 𝜔) d𝜔

]

d 𝝃

= ∫R𝑑
exp(𝑖𝐡 𝝃)𝑆𝑆 (𝝃) d 𝝃, (B.3)

here 𝑆(𝝃, 𝜔) is the spectral density defined as

𝑆(𝝃, 𝜔) = 𝜏2

(2𝜋)(𝑑+1)
[

𝜔2 + 𝑐−2(𝜅2 + 𝝃⊤𝐇 𝝃)2𝛼
]

𝑐(𝜅2 + 𝝃⊤𝐇 𝝃)𝛼𝑆
.

ntegrating over 𝜔, we obtain the spatial spectral density

𝑆𝑆 (𝝃) =
𝜏2

(2𝜋)𝑑𝑐(𝜅2 + 𝝃⊤𝐇 𝝃)𝛼𝑆 ∫R
1

2𝜋
[

𝜔2 + 𝑐−2(𝜅2 + 𝝃⊤𝐇 𝝃)2𝛼
]
d𝜔

= 𝜏2

(2𝜋)𝑑𝑐(𝜅2 + 𝝃⊤𝐇 𝝃)𝛼𝑆
1

2
[

𝑐−2(𝜅2 + 𝝃𝐇 𝝃)2𝛼
]1∕2

= 𝜏2

2(2𝜋)𝑑 (𝜅2 + 𝝃⊤𝐇 𝝃)𝛼tot
. (B.4)

Using the change of variable 𝝃 = 𝜅𝐇−1∕2𝐰 and plugging Eq. (B.4) into (B.3), we obtain

Cov(0,𝐡) = 𝜏2 𝑒𝑖𝐡𝝃 d 𝝃
16

2 ∫R𝑑 (2𝜋)𝑑 (𝜅2 + 𝝃⊤𝐇 𝝃)𝛼tot
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a

= 𝜏2

2 ∫R𝑑

𝑒𝑖𝐡 𝜅𝐇−1∕2𝐰
|𝜅𝐇−1∕2

|

(2𝜋)𝑑 (𝜅2 + 𝜅2𝐰⊤𝐰)𝛼tot
d𝐰

= 𝜏2

2𝜅2(𝛼tot−𝑑∕2)
|𝐇|

1∕2 ∫R𝑑

𝑒𝑖𝐡 𝜅𝐇−1∕2𝐰

(2𝜋)𝑑 (1 + 𝐰⊤𝐰)𝛼tot
d𝐰

=
𝜏2𝛤 (𝛼tot − 𝑑∕2)

2𝛤 (𝛼tot)(4𝜋)𝑑∕2𝜅2(𝛼tot−𝑑∕2)
|𝐇|

1∕2
𝐶𝑀𝛼tot−𝑑∕2

(

𝜅‖‖
‖

𝐇−1∕2𝐡‖‖
‖

)

.

The last result comes from the computation of ∫R𝑑 (1 + 𝐰⊤𝐰)−𝛼totd𝐰 with polar coordinates.

Appendix C. Discretization of spatio-temporal advection–diffusion SPDE

We detail here the discretization scheme of the advection–diffusion spatio-temporal SPDE (5).
For the sake of a clearer exposition, we set 𝐇 = 𝐈, 𝛼 = 1 and we consider a spatio-temporal white noise 𝑍(𝑡, 𝐬) = 𝑊 (𝑡, 𝐬). The

proof for the general case follows exactly the same lines as the proof below. The considered SPDE is
[ 𝜕
𝜕𝑡

+ 1
𝑐
(𝜅2 − 𝛥) + 1

𝑐
𝜸 ⋅ ∇

]

𝑋(𝑡, 𝐬) = 𝜏
√

𝑐
𝑊 (𝑡, 𝐬). (C.5)

For the discretization of the temporal derivative in Eq. (C.5), we opt for the implicit Euler scheme, which considers the differential
equation

𝜕𝑋(𝑡)
𝜕𝑡

= 𝑓 (𝑡, 𝑋),

ith initial value 𝑋(0) = 𝑋(𝑡0). The method produces a sequence {𝑋(𝑘)}𝑁𝑇𝑘=0, such that 𝑋(𝑘) approximates 𝑋(𝑡0 + 𝑘𝑑𝑡), where 𝑑𝑡 is the
ime step size. The approximation reads

𝑋(𝑘+1) = 𝑋(𝑘) + 𝑑𝑡𝑓 (𝑡(𝑘+1), 𝑋(𝑘+1)). (C.6)

n the specific case of Eq. (C.5), the implicit Euler discretization step reads

𝑋(𝑘+1)(𝐬) −𝑋(𝑘)(𝐬) + 𝑑𝑡
[1
𝑐
(𝜅2 − 𝛥) + 1

𝑐
𝜸 ⋅ ∇

]

𝑋(𝑘+1)(𝐬) =
√

𝑑𝑡𝜏
√

𝑐
𝑊 (𝑘+1)
𝑆 (𝐬), (C.7)

here 𝑊 (𝑘+1)
𝑆 (𝐬) is a spatial white noise obtained by integrating out the temporal white noise.

For ease of notation, we denote 𝑋(𝑘+1) = 𝑋(𝑘+1)(𝐬), 𝑋(𝑘) = 𝑋(𝑘)(𝐬) and 𝑊𝑆 = 𝑊 (𝑘+1)
𝑆 (𝐬), since the spatial noise is independent of

the temporal step 𝑘.
At each time step of the temporal discretization, a spatial finite element method is applied. In our case, we use the continuous

Galerkin with Neumann boundary condition. The weak form of Eq. (C.7) is

∫𝛺
𝑋(𝑘+1)𝑣 d 𝐬 + 𝑑𝑡

𝑐

(

∫𝛺
𝜅2𝑋(𝑘+1)𝑣 d 𝐬 − ∫𝛺

𝛥𝑋(𝑘+1)𝑣 d 𝐬 + ∫𝛺
𝜸 ⋅ ∇𝑋(𝑘+1)𝑣 d 𝐬

)

=

= ∫𝛺
𝑋(𝑘)𝑣 d 𝐬 +

√

𝑑𝑡𝜏
√

𝑐 ∫𝛺
𝑣𝑊𝑆 (d 𝐬), ∀𝑣 ∈  , (C.8)

here  is the Hilbert space in which we search the solution and 𝑊𝑆 (𝑣) is the white noise applied to the test function 𝑣.
By applying Green’s first identity, i.e., by writing

∫𝛺
𝛥𝑋(𝑘+1)𝑣 d 𝐬 = −∫𝛺

∇𝑋(𝑘+1) ⋅ ∇𝑣 d 𝐬 + ∫𝜕𝛺
𝑣 ⋅ (∇𝑋(𝑘+1) ⋅ 𝐧̂) d𝜎 ,

ith 𝐧̂ being the normal vector on the boundary, and by simplifying the second term thanks to the Neumann boundary condition,
e obtain

∫𝛺
𝑋(𝑘+1)𝑣 d 𝐬 + 𝑑𝑡

𝑐

(

∫𝛺
𝜅2𝑋(𝑘+1)𝑣 d 𝐬 + ∫𝛺

∇𝑋(𝑘+1) ⋅ ∇𝑣 d 𝐬 + ∫𝛺
𝜸 ⋅ ∇𝑋(𝑘+1)𝑣 d 𝐬

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(𝑋(𝑘+1) ,𝑣)

= ∫𝛺
𝑋(𝑘)𝑣 d 𝐬

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
(𝑋(𝑘) ,𝑣)

+

√

𝑑𝑡𝜏
√

𝑐 ∫𝛺
𝑣𝑊𝑆 (d 𝐬)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(𝑣)

, ∀𝑣 ∈  .

Let ℎ be the space of finite element solutions spanned by the basis functions {𝜓𝑖}
𝑁𝑆
𝑖=1 . The Galerkin method allows us to find an

pproximated solution 𝑋(𝑘+1)
ℎ ∈ ℎ ⊂  to the SPDE, such that

(𝑘+1) (𝑘)
17

(𝑋ℎ , 𝑣ℎ) = (𝑋ℎ , 𝑣ℎ) + (𝑣ℎ) ∀𝑣ℎ ∈ ℎ. (C.9)
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The functions 𝑋(𝑘+1)
ℎ , 𝑋(𝑘)

ℎ and 𝑣ℎ are linear combinations of the basis functions, with

𝑋(𝑘+1)
ℎ =

𝑁𝑆
∑

𝑖=1
𝑥(𝑘+1)𝑖 𝜓𝑖; 𝑋(𝑘)

ℎ =
𝑁𝑆
∑

𝑖=1
𝑥(𝑘)𝑖 𝜓𝑖; 𝑣ℎ =

𝑁𝑆
∑

𝑖=1
𝑣𝑖𝜓𝑖.

ecause of the linearity in the first argument of (⋅, ⋅) and (⋅, ⋅), we get
𝑁𝑆
∑

𝑖=1
(𝜓𝑖, 𝑣ℎ)𝑥

(𝑘+1)
𝑖 =

𝑁𝑆
∑

𝑖=1
(𝜓𝑖, 𝑣ℎ)𝑥

(𝑘)
𝑖 + (𝑣ℎ), ∀𝑣ℎ ∈ ℎ, (C.10)

where

(𝜓𝑖, 𝑣ℎ) = (𝜓𝑖, 𝑣ℎ) +
𝑑𝑡
𝑐

(

(𝜓𝑖, 𝑣ℎ) + (𝜓𝑖, 𝑣ℎ)
)

(𝜓𝑖, 𝑣ℎ) = (𝜓𝑖, 𝑣ℎ),

with (𝜓𝑖, 𝑣ℎ) = 𝜅2(𝜓𝑖, 𝑣ℎ) + (𝜓𝑖, 𝑣ℎ). Here,  and  are the mass and stiffness operators, respectively (𝑣,𝑤) = ∫𝛺 𝑣𝑤 d 𝐬
and (𝑣,𝑤) = ∫𝛺 ∇𝑣 ⋅ ∇𝑤 d 𝐬.  is the advection operator, i.e., (𝑣,𝑤) = ∫𝛺 𝜸 ⋅ ∇𝑣𝑤 d 𝐬. Finally,  is the operator of the form
(𝑣) =

√

𝑑𝑡𝜏
√

𝑐
∫𝛺 𝑣𝑊𝑆 (d 𝐬).

Since any 𝑣ℎ can be written as a linear combination of basis functions, the formulation (C.10) is equivalent to
𝑁𝑆
∑

𝑖=1
(𝜓𝑖, 𝜓𝑗 )𝑥

(𝑘+1)
𝑖 =

𝑁𝑆
∑

𝑖=1
(𝜓𝑖, 𝜓𝑗 )𝑥

(𝑘)
𝑖 + (𝜓𝑗 ), ∀𝑗. (C.11)

We define 𝐌 = [𝑀𝑖𝑗 ]
𝑁𝑆
𝑖,𝑗=1 = [(𝜓𝑖, 𝜓𝑗 )]

𝑁𝑆
𝑖,𝑗=1, 𝐆 = [𝐺𝑖𝑗 ]

𝑁𝑆
𝑖,𝑗=1 = [(𝜓𝑖, 𝜓𝑗 )]

𝑁𝑆
𝑖,𝑗=1, 𝐁 = [𝐵𝑖𝑗 ]

𝑁𝑆
𝑖,𝑗=1 = [(𝜓𝑖, 𝜓𝑗 )]

𝑁𝑆
𝑖,𝑗=1 the mass, stiffness and

advection matrices, respectively.
(𝜓𝑗 ) is a Gaussian random variable with expectation 0 and covariance equal to

Cov((𝜓𝑖), (𝜓𝑗 )) = 𝑑𝑡𝜏2

𝑐
Cov

[

𝑊𝑆 (𝜓𝑖),𝑊𝑆 (𝜓𝑗 )
]

= 𝑑𝑡𝜏2

𝑐 ∫𝛺
𝜓𝑖𝜓𝑗 d 𝐬 =

𝑑𝑡𝜏2

𝑐
𝑀𝑖𝑗 ,

y following the definition of white noise in Eq. (2).
If 𝐳(𝑘+1) is a (𝑁𝑆 )-Gaussian vector such that 𝐳(𝑘+1) ∼  (𝟎, 𝐈𝑁𝑆 ), 𝐱

(𝑘+1) is the vector containing the values {𝑥(𝑘+1)𝑖 }𝑁𝑆𝑖=1 and 𝐱(𝑘) is
he vector containing the values {𝑥(𝑘)𝑖 }𝑁𝑆𝑖=1 , then the sparse linear system corresponding to Eq. (C.11) reads

𝐌𝐱(𝑘+1) + 𝑑𝑡
𝑐
(𝐊 + 𝐁)𝐱(𝑘+1) = 𝐌𝐱(𝑘) +

√

𝑑𝑡𝜏
√

𝑐
𝐌1∕2𝐳(𝑘+1), (C.12)

where 𝐊 = 𝜅2𝐌 +𝐆 and 𝐌1∕2 is any matrix such that 𝐌1∕2𝐌1∕2 = 𝐌.
When the spatial noise is colored, i.e. 𝑍𝑆 (𝐬), the right-hand side operator (𝑣) becomes 𝑆 (𝑣), defined as

𝑆 (𝑣) =
√

𝑑𝑡𝜏
√

𝑐 ∫𝛺
𝑣𝑍𝑆 (d 𝐬),

and it satisfies

𝑆 (𝑣ℎ) =
𝑁𝑆
∑

𝑖=1
(𝜓𝑖, 𝑣ℎ)𝑧𝑆,𝑖.

Hence,
𝑁𝑆
∑

𝑖=1
(𝜓𝑖, 𝜓𝑗 )𝑥

(𝑘+1)
𝑖 =

𝑁𝑆
∑

𝑖=1
(𝜓𝑖, 𝜓𝑗 )𝑥

(𝑘)
𝑖 +

𝑁𝑆
∑

𝑖=1
(𝜓𝑖, 𝜓𝑗 )𝑧𝑆,𝑖, ∀𝑗.

If 𝐳𝑆 = {𝑧𝑆,𝑖}
𝑁𝑆
𝑖=1 has precision matrix equal to 𝐐𝑆 , then the sparse linear system is

𝐌𝐱(𝑘+1) + 𝑑𝑡
𝑐
(𝐊 + 𝐁)𝐱(𝑘+1) = 𝐌𝐱(𝑘) +

√

𝑑𝑡𝜏
√

𝑐
𝐌𝐋⊤𝑆𝐳

(𝑘+1), (C.13)

where 𝐳(𝑘+1) ∼  (𝟎, 𝐈𝑁𝑆 ) and 𝐋𝑆 is the Cholesky decomposition of 𝐐−1
𝑆 .

Remark 3. When the diffusion term includes an anisotropy matrix 𝐇, i.e., when 𝛥 is replaced by ∇ ⋅ 𝐇∇, the stiffness operator
becomes (𝑣,𝑤) = ∫ 𝐇∇𝑣 ⋅ ∇𝑤 d 𝐬, and the stiffness matrix changes consequently.
18
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Appendix D. Proof of Proposition 6

We present here the proof of Proposition 6.
Proof. Let us denote 𝐱0∶𝑁𝑇 = [𝐱(0),… , 𝐱(𝑁𝑇 )]⊤ the vector containing all spatial solutions until time step 𝑁𝑇 . Then,

𝐱0∶𝑁𝑇 = 𝐑
(

𝐱(0)
𝐳1∶𝑁𝑇

)

,

ith 𝐳1∶𝑁𝑇 = [𝐳(1),… , 𝐳(𝑁𝑇 )]⊤ and

𝐑 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐈𝑁𝑆 0 0 0 … 0
𝐃 𝐄 0 0 … 0
𝐃2 𝐃𝐄 𝐄 0 … 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ 𝐃2 𝐃 𝐄

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

𝐑 has a block structure which allows easy computation of its inverse

𝐑−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐈𝑁𝑆 0 0 0 … 0
−𝐄−1 𝐃 𝐄−1 0 0 … 0

0 −𝐄−1 𝐃 𝐄−1 0 … 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0
0 … … 0 −𝐄−1 𝐃 𝐄−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The precision matrix of 𝐱0∶𝑁𝑇 is thus

𝐐 = 𝐑−1⊤

⎛

⎜

⎜

⎜

⎜

⎝

Σ−1 0 … 0
0 𝐈𝑁𝑆 … 0
⋮ ⋱ ⋱ ⋮
0 0 … 𝐈𝑁𝑆

⎞

⎟

⎟

⎟

⎟

⎠

𝐑−1.

By denoting 𝐅 = 𝐄𝐄⊤, the global precision matrix reads

𝐐 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Σ−1 + 𝐃⊤ 𝐅−1 𝐃 −𝐃⊤ 𝐅−1 0 … 0
−𝐅−1 𝐃 𝐅−1 + 𝐃⊤ 𝐅−1 𝐃 −𝐃⊤ 𝐅−1 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ 0
⋮ ⋱ −𝐅−1 𝐃 𝐅−1 + 𝐃⊤ 𝐅−1 𝐃 −𝐃⊤ 𝐅−1

0 … 0 −𝐅−1 𝐃 𝐅−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

By replacing the values of 𝐃 and 𝐅 and by defining 𝐉 =
[

𝐌 + 𝑑𝑡
𝑐 (𝐊 + 𝐁 + 𝐒)

]

, we obtain

𝐐 = 𝑐
𝜏2𝑑𝑡

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Σ−1 +𝐐𝑆 −𝐐𝑆𝐌−1 𝐉 0 … 0
−𝐉⊤𝐌−1 𝐐𝑆 𝐉⊤𝐌−1 𝐐𝑆𝐌−1 𝐉 +𝐐𝑆 −𝐐𝑆𝐌−1 𝐉 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ 0
⋮ ⋱ −𝐉⊤𝐌−1 𝐐𝑆 𝐉⊤𝐌−1 𝐐𝑆𝐌−1 𝐉 +𝐐𝑆 −𝐐𝑆𝐌−1 𝐉
0 … 0 −𝐉⊤𝐌−1 𝐐𝑆 𝐉⊤𝐌−1 𝐐𝑆𝐌−1 𝐉

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.
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