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Highlight : Tomato response to nitrogen deficiency is genetically controlled by a few QTLs and 

impacts the expression of a large number of genes, among which some are good targets for breeding 

sober varieties. 
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Abstract 

Optimising plant nitrogen (N) usage and inhibiting N leaching loss in the soil-crop system is crucial to 

maintaining crop yield and reducing environmental pollution. This study aimed at identifying 

quantitative trait loci (QTLs) and differentially expressed genes (DEGs) between two N treatments in 

order to list candidate genes related to nitrogen-related contrasting traits in tomato varieties. We 

characterised a genetic diversity core-collection (CC) and a multi-parental advanced generation 

intercross (MAGIC) tomato population grown in greenhouse under two nitrogen levels and assessed 

several N-related traits and mapped QTLs. Transcriptome response under the two N conditions was 

also investigated through RNA sequencing of fruit and leaves in four parents of the MAGIC 

population. 

Significant differences in response to N input reduction were observed at the phenotypic level for 

biomass and N-related traits. Twenty-seven (27) QTLs were detected for three target traits (Leaf N 

content, leaf Nitrogen Balance Index and petiole NO3
-
 content), ten and six at low and high N 

condition, respectively; while 19 QTLs were identified for plasticity traits. At the transcriptome level, 

4,752 and 2,405 DEGs were detected between the two N conditions in leaves and fruits, respectively, 

among which 3,628 (50.6%) in leaves and 1,717 (71.4%) in fruit were genotype specific. When 

considering all the genotypes, 1,677 DEGs were shared between organs or tissues. 

Finally, we integrated DEGs and QTLs analyses to identify the most promising candidate genes. The 

results highlighted a complex genetic architecture of N homeostasis in tomato and novel putative 

genes useful for breeding tomato varieties requiring less N input. 

 

Keywords: Solanum lycopersicum L., abiotic stress, nitrogen, RNA-seq analysis, quantitative trait 

loci (QTL), genome-wide association study (GWAS). 
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Introduction 

Nitrogen (N) is considered the most used fertilizer in cropping systems, accounting by weight for 

nearly 60% of all the applied fertilizers (FAOSTAT, 2022). Their use has been steadily increasing 

over the past 60 years, from a world usage of 11 Tg N year
−1

 in 1961 to 109 Tg N year
−1

 in 2021 

(FAOSTAT, 2022). As a result, a dramatic increase in crop yield has been achieved, although 

accompanied by considerable negative impacts on the environment. Indeed, more than half of the N 

added to cropland is lost in the environment, leading to adverse environmental impacts including 

nitrate (NO3
-
) leaching, eutrophication of water surface as well as the emission of the greenhouse gas 

nitrous oxide (N2O) (Snyder et al., 2009). Compared to other farming systems, greenhouse vegetable 

production requires higher watering and N inputs. The absence of nutritive solution recirculation, 

resulted in massive NO3
-
 leaching loss and N2O emissions, estimated by a meta-analysis to be 64% 

and 137% higher than open-field vegetable production in China, respectively (Wang et al., 2018). 

Among the greenhouse-based vegetable production system, tomato is the most important crop in 

terms of cultivation area (FAOSTAT, 2022). It is also one of the most over-fertilized crops, with often 

a large difference between the optimal N rate and the actual N application rate (Ren et al., 2022).The 

European legislation to reduce NO3
-
 leachates led to many technical innovations to improve N 

management in the past decades. The most promising are closed-loop irrigation systems, which can 

reduce up to 75% the total N supply (Méndez-Cifuentes et al., 2020). However, apart from 

Netherlands, Belgium and France, the majority (> 90%) of soilless greenhouses in Europe are still 

free-draining (Incrocci et al. 2020). Indeed, aside from economic considerations, the main limitation 

of this system is the increasing salinization of the recirculation solution due to the saline irrigation 

water frequently occurring in many Mediterranean coastal areas (Magán et al., 2008). Beyond 

environmental issues related to the fertilizer overuse, the excessive N-fertilization implies other 

detrimental effects. Frequently, the N regime alters the tomato leaf metabolome and its relationship 

with pest response. As an example, high-N fertilization is linked to an increased attractiveness to 

Bemisia tabaci through an altered volatile compound emission (Islam et al., 2017). Furthermore, N 

over-fertilization does not significantly improve tomato yield, by contrast it reduces fruit quality by 

decreasing sugar and increasing acid content (Bénard et al., 2009; Truffault et al., 2019). All these 

considerations support the assumption that maintaining yield with a decreased N supply rate can be 

beneficial for the environment and the fruit quality of tomato crop. Most of the knowledge on the N 

use efficiency (NUE), a genetic complex trait, comes from Arabidopsis and cereals. It is defined as 

the total biomass (or yield) per unit N supplied (Moll et al. 1982). NUE is divided in two main 

components: the nitrogen uptake efficiency (NUpE), defined as the plant ability to take up N from the 

soil, and the nitrogen utilization efficiency (NUtE), the plant ability to utilize (assimilate and transfer) 

N to the seeds (Xu et al. 2012). These two components involve several and interacting physiological 

traits including N absorption, translocation, assimilation, amino acid synthesis and catabolism, protein 

synthesis, sensing and signaling processes (The et al. 2021). In addition, some morphological traits 

are also playing a leading role in NUE. The best example is the introduction of the dwarfing genes in 

rice and wheat in the 1970s, which is arguably the largest improvement of the NUE achieved in crops 

(Liu et al. 2022).  

Although considerable progress has been made for NUE understanding, relatively few studies have 

been performed on vegetables. In tomato, several genes involved in N-response have been identified 

through functional genomic studies. Reverse genetic approaches have been used to characterise 

several genes involved in N uptake (Fu et al., 2015), assimilation (Vallarino et al. 2022) or 

remobilization (Cao et al., 2022). In addition, many transcriptomic (Renau-Morata et al. 2021, Sunseri 

et al. 2023), proteomic (Xun et al., 2020) and metabolomic (Urbanczyk-Wochniak and Fernie, 2005; 
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Larbat et al., 2014; Sung et al., 2015) approaches have identified differentially expressed genes and 

metabolic pathways involved in nitrogen metabolisms. Previous studies made progress in identifying 

nitrogen uptake efficiency (NUpE) QTLs in tomato. Several studies have characterised genotypes 

contrasting for NUE (Abenavoli et al. 2016, Rosa-Martínez et al. 2021, Aci et al. 2021) and proposed 

multiple physiological and molecular traits explaining these differences (e.g., root length and 

thickness, NO3
-
 influx rate, NO3

-
 storage, nitrate reductase activity, root cell electrical potentials, 

expression of NO3
-
 transporters). Rosa-Martínez et al. (2021) further characterised the variability and 

organoleptic qualities of a collection of „de penjar‟ tomato varieties, identifying potential sources of 

resilience to low N fertilisation levels. However, none of these studies identified QTLs for N 

response. Two studies explored NUpE through linkage studies. Asins et al. (2017) used a population 

of RILs derived from Solanum pimpinellifolium as rootstock. They identified 62 significant QTLs and 

their results suggested a link between the content of hormones cytokinin and salicylic acid in roots 

and NUpE. Renau-Morata et al. (2024) studied a collection of 29 introgression lines resulting from a 

cross between the To-937 accession of S. pimpinellifolium and the S. lycopersicum cv Moneymaker 

and identified four candidate genes in the specific introgressed region associated with a greater 

photosynthetic capacity and biomass production under N deficiency conditions. Despite these studies, 

the overall identification of QTLs for N response in tomato remains notably limited.  

The aim of this article is to investigate the genetic diversity and the genetic architecture of the 

response to long-term NO3
-
 deficiency in tomato. To this end, we characterised two large populations, 

an eight-way multi-parental genetic intercross (MAGIC) population and a diversity panel (core-

collection of cherry type tomato accessions), to identify traits and QTLs linked to nitrogen response. 

These two populations offered the advantage of capturing a large genetic diversity, thus increasing the 

likelihood of identifying new genomic regions and candidate genes. Furthermore, a transcriptome 

analysis of differentially expressed genes in both fruit and leaves between NUE-contrasting genotypes 

was performed and allowed us to precise candidate genes under the QTLs. Overall, our findings offer 

new perspectives for understanding tomato plant responses to nitrogen stress condition and underline 

application in breeding programs. 

 

Materials and methods 

Plant materials and growth conditions 

Two panels were studied to analyse the genetic response to low N input: a core-collection (CC) of 143 

cherry-type tomato genotypes and a collection of 228 lines from an eight-parent multi-parental genetic 

intercross (MAGIC) population. The CC panel is slightly modified compared to that described by 

Albert et al. (2016) (Supplementary table S1). It is composed of 115 genotypes from S. 

lycopersicum var. cerasiforme (SLC), 9 genotypes from S. pimpinellifolium (SP), and 19 admixed 

genotypes. The MAGIC panel is a subset of 228 lines of the population introduced and described by 

Pascual et al. (2015). 

The CC and MAGIC populations were evaluated in the same greenhouse in Avignon INRAE 

Research Centre (Avignon, France) from August to November 2021 and March to July 2022, 

respectively. Each trial was conducted with the same culture conditions as described below. For each 

panel, 800 plants were grown, and two treatments were applied: optimal N (control) and N limited 

conditions (N stress). The experiments were carried out in rockwool-based hydroponic conditions. 

The nutritive solution included 10 mM and 2 mM NO3
-
 for the control and the N stress condition, 

respectively. It was provided by drip irrigation using a Nutricontrol Minimac A® (Nutricontrol, 
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Spain) fertigation equipment. A constant nutrient concentration and conductivity (EC) were 

maintained in the hydroponic solution throughout the experiment. In the stress condition, Nitrate was 

substituted by Sulfate. 

The experimental design included two and three replicates per genotype for the control and N-stress 

conditions, respectively in the CC panel. In the MAGIC panel experiment, the eight parents of the 

population and their four F1 hybrids were used as controls and replicated twice. In addition, each of 

the 228 recombinant lines was replicated once (156 lines) or twice (72 lines) in the control treatment, 

and all the lines twice in the low N treatment.  

 

Phenotyping 

Both panels were phenotyped for phenological, morphological, nitrogen-related and fruit quality 

traits. The morphological traits included stem diameter, leaf and sympode length and weight 

(measured between truss 3 and 6). To assess plant N status, different traits were recorded on the same 

samples: NO3
-
 petiole content, leaf nitrogen and carbon content. Petioles were frozen into Bioreba® 

extraction bags (Bioreba, Switzerland) and stored at −20°C until the analyses. Petiole sap was 

extracted by squeezing the sample using a paddle lab blender. NO3
-
 content was recorded using an 

ionometer (LAQUAtwin NO3-11C, Horiba Scientific, Japan). Before each measurement series and 

after every 15-25 samples, a two-point calibration was conducted using the 150 and 2000 mg NO3
-
.L

-1
 

standards provided by the manufacturer. All the samples from the control condition were diluted 10 

times with demineralized water to maintain concentrations under 1500 mg.L
-1

 to avoid 

underestimation of NO3
-
-N content (Peña-Fleitas et al. 2021). Leaflets were dried in a forced-air oven 

(70°C) for 48:00 h before grinding. N and C contents of each sample were measured from 5 mg of 

powder using an auto-analyser (Flash EA 1112, Thermo Firmingam Milan, Italy). Three harvests 

(three to ten fruits each according to the fruit size) of red ripe fruits were conducted, from the 3
rd

 to 

the 6
th
 truss, for the analysis of fruit quality traits. The fruits were pooled by genotype and harvesting 

time to measure fruit weight. Then, crushed fruit pericarp was used to measure soluble solid content 

using an electronic refractometer (Atago PR-101, Atago Co. Ltd, Japan), and pH using a 

potentiometric titrator (TitraLab AT1000© series, HACH Company, USA). Phenotypic data are 

provided in Supplementary Tables S2 and S3. 

 

SNP calling, raw data filtering 

Seventy-two (72) out of 143 CC genotypes were already sequenced and the data are available at the 

NCBI platform (Supplementary Table S1). Sequence quality was examined with V0.11.8 

(https://github.com/s-andrews/FastQC) and trimmed with fastp 0.20.0 (Chen et al. 2018) with the 

following parameters: max_len1 350, cut_mean_quality 20, cut_window_size 4, 

complexity_threshold 30. For each genotype, fastq files from several libraries were merged if 

available, and they were aligned on the reference genome Heinz_1706 v.4.0.0 using bwa 0.7.17, PCR 

duplicates were removed with SAMtools v1.9 (Li et al. 2009). Variant calling was performed by 

gatk4 v4.1.4.1 (https://github.com/broadinstitute/gatk).  

The remaining CC genotypes were newly sequenced. Genomic DNA was extracted from 3-week-old 

plants using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) following the manufacturer‟s 

instruction. The amount of DNA was quantified using a Qubit fluorometer (Invitrogen, Carlsbad, CA, 

USA) and the 260/280 and 260/230 ratios were assayed using the NanoDrop 1000 spectrophotometer 
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(ThermoFischer, Waltham, MA, USA). DNA samples were sent from ENEA (Casaccia Res. Ctr., 

Rome, Italy) to NOVOGENE for sequencing (10X depth). Finally, all the genotypes were combined 

in a single database and the SNP extracted (filter parameters QUAL < 30.0, QD < 2.0, FS > 60, MQ < 

40, SOR > 3, MQRankSum < –12.5, ReadPosRankSum <–8 and depth <3.). The whole pipeline was 

implemented in Snakemake v5.8.1 (Köster and Rahmann 2012) and the containers were built for all 

the software using Singularity v3.5.3 (Kurtzer et al. 2017). SNPs with minor allele frequencies (MAF) 

<0.05 and call rates <80% were discarded using PLINK 2.0 (https://www.cog-

genomics.org/plink/2.0/). After filtering, missing genotypes were imputed using BEAGLE v4.0 

(https://faculty.washington.edu/browning/beagle/b4_0.html) with default settings and filtered once 

more for markers under a 5% MAF. Finally, a 6 million (6,251,927) SNPs panel was defined for 

further analysis. 

 

Phenotypic data processing and statistics 

On each panel, a random-effect analysis of variance was conducted on the whole population evaluated 

in both control and low N condition to test for genotype (G), treatment (T), and their interaction 

(GxT) effects with the following model using R/lme4: 

                             

where     is the phenotype of genotype i in the treatment j;   is the overall mean,    is the genotypic 

effect of i
th
 genotype;    is the effect of the j

th
 treatment; and     is the random residual effect with 

            
   .  

Broad-sense heritability was calculated from the above model according to Cullis et al. (2006): 

        

    
   

 ⁄  

Where   
  is the genotype variance,   

    
the average standard error of the genotypic BLUPs. 

Phenotypic plasticity traits were computed per accession as                             .  

This index was then used as a phenotype per se for QTL analysis. The average effect of the stress was 

reported as the mean relative variation and converted in percentage of increase or decrease due to the 

stress. The significance of the treatment effect was then calculated using a likelihood ratio test 

(R/lmtest) comparing the goodness-of-fit between two models, the first considering the treatment 

effect, the second one didn‟tt taking it into account. A Box-Cox transformation (Box and Cox 1964) 

of the means calculated from replicates was applied to correct for heteroscedasticity and non-

normality of error terms, before QTL mapping and GWAS analyses. 

 

Multi-parental QTL mapping 

Linkage mapping in the MAGIC population was carried out with a set of 1,345 SNP markers selected 

from the genome resequencing of the eight parental lines (Pascual et al. 2015). The founder to 

offspring probabilities were predicted using the Hidden Markov algorithm implemented in 

calc_genoprob from R/qtl2 package (Broman et al. 2019) using the genetic map generated by Pascual 

et al. (2015). Then, the founder probabilities were used with the Haley–Knott regression model 

implemented in R/qtl2 for QTLs detection. Significance threshold was set to a LOD threshold of –
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log10(α/number of SNPs), where α was fixed at the 1% level. Then 2-LOD drop confidence intervals 

were calculated using the find_peaks() expanding it to a true marker on both sides of the QTL. 

Finally, candidate causal variants in accordance with the estimated founder effects were filtered as 

described in Pascual et al. (2015), by selecting the most contrasted pair of genotypes. For table 

summaries and transcriptome comparison, MAGIC variant-level p-values were grouped to obtain 

gene-level p-values by assuming a linear interpolation of the p-values. 

 

GWAS analysis 

A univariate GWAS was performed by implementing the following linear mixed model in 

R/GENESYS (Gogarten et al. 2019) : 

                

where y is the vector of phenotypic means for one environment, X is the molecular marker score 

matrix, β is the vector of marker effects, Z is an incidence matrix, u is the vector of random 

background polygenic effects with variance σ
2
u = K σ

2
G (where K is the kinship matrix, and σ

2
G is the 

genetic variance), and   is the vector of residuals.  

The null model was fit using the NullModel() function using only the fixed-effect covariates. We 

included the first three eigenvectors estimated from the PCA based overall genotypic matrix using 

PLINK 2.0 (Purcell et al. 2007). Single-variant association tests were performed with 

assocTestSingle() function using Average Information REML (AIREML) procedure to estimate the 

variance components and score statistics. A LOD score of 5 was used as threshold. To estimate the 

proportion of variance explained (PVE) by lead SNP, we used the following formula proposed by 

Shim et al. (2015) using outputs from R/GENESYS:  

      
   ̂            

   ̂                    ̂                  
 

 

where  ̂ is the effect size,     ̂   is the standard error for the effect size,     the minor allele 

frequency and   the sample size. 

The GWAS-significant SNPs were grouped into peaks based on linkage disequilibrium (LD), for QTL 

summary. In brief, for each trait/chromosome combination, the LD between the significant SNPs and 

all the other SNPs was computed. All the SNPs with a r
2
 > 0.5 were grouped together. The procedure 

was repeated for the remaining SNPs. 

GWAS variant-level p-values were aggregated to obtain gene-level p-value, keeping the lowest p-

value in a 10-kilobase window around the transcription start and stop sites, for candidate gene 

summary and transcriptome comparison. Likewise, genes located within an arbitrary 10 kb-window 

around the significant SNPs in a LD group flanking a QTL were reported as candidate genes. Leaf 

NBI was excluded from GWAS analysis due to insufficient phenotypic records. 
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RNA extraction 

Four parental lines of the MAGIC population, Cervil, Ferum TMV, Levovil and LA1420 were 

selected for transcriptome analysis. For each accession, twelve plants were grown following the 

protocol described Abro et al. (2013), from February to June 2021 in a heated greenhouse at Avignon 

INRAE Centre (Avignon, France). Out of the twelve plants, six were fertigated with a solution 

containing 2 mM NO3
- 

(stress condition) and six with a solution containing 10 mM NO3
- 

(control 

conditions). The six plants were divided into three biological replicates of two plants. We performed 

RNA extraction on the three biological replicates obtained from pools of either young leaves sampled 

after the emergence of the fifth truss or tomato pericarp of at least five fruits picked at the turning 

stage. Total RNA was extracted and their purity and quality were assessed following the protocol 

described in Bineau et al. (2022). 

 

RNA sequencing, data processing and analysis 

Library construction and sequencing (100 bp paired-end) strand of the 48 samples (4 accessions x 3 

replicates x 2 organs x 2 treatments) were subcontracted to BGI genomics. The minimal, maximal, 

and average amounts of raw sequencing data per sample were estimated to be 20,389,318 bp, 

21,047,855 bp and 20,493,477 bp, respectively. Raw data quality assessment, sequence cleaning, 

alignment and filtering were performed following the methodology described in Bineau et al. (2022). 

On average, 98.80 % of reads were properly paired (min = 95.36 %, max = 99.37 %). The insert size 

average was 493bp (min = 458bp, max = 559bp). The data from leaves and fruits were considered 

independently in the following analyses. We filtered out genes mapped on chromosome 0 and 

performed quality control, read count normalisation and sampling of genes expressed in the 

experiment using the workspace DiCoExpress with recommended parameters(Lambert et al. 2020). 

Twelve thousand eight hundreds twenty-seven (12,827) and 15,264 genes in fruit and leaf samples, 

respectively remained after the quality control (37.6 % and 44.8 % of all detected genes, respectively) 

for further analyses. DEG analysis was then performed on this subset using the workspace 

DiCoexpress with recommended parameters. After normalisation, to assess the differences in the 

transcriptome among the 4 lines and between N conditions, a principal component analysis (PCA) 

was performed. Then DEGs were detected for all possible contrasts - 29 - between the four lines and 

two N conditions. The p-values were corrected for multiple comparisons using the false discovery rate 

(Benjamini and Hochberg 1995) using a global threshold of 0.05. Gene enrichment was performed 

thanks to an adapted version of the Enrichment function of the DICoExpress workspace using the 

MAPMAN classification as reference (Provart and Zhu 2003). 

 

 

Results 

Impact of nitrate reduction on tomato  

To assess the impact of limited NO3
-
 supply, two different panels of genotypes were studied: (i) a 

diversity panel (core collection, CC) of 143 small fruit accessions analysed by GWAS and (ii) an 

eight-way multi-parental genetic intercross (MAGIC) population composed of 228 lines derived from 

the cross of four large- and four small-fruited accessions, analysed using QTL mapping. Both 

populations were grown under two nitrogen conditions (2 and 10 mM NO3
-
, which we will refer to as 

the stress and control conditions, respectively), in the same greenhouse, during autumn and the 

following spring for CC and MAGIC, respectively. Several traits, including quality traits (fruit 
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weight, soluble solid content (SSC) and pH), plant growth related traits (stem diameter, leaf length, 

sympode weight) and N-related traits (leaf Nitrogen Balance Index (NB, defined as the ratio of 

chlorophyll to epidermal flavonoids), nitrate petiole content, leaf nitrogen and carbon content) were 

measured. To explore how these traits responded to N reduction, phenotypic plasticity was quantified 

as the ratio between the mean values in both conditions at the genotype level. All the traits showed a 

large phenotypic variability in both panels (Figure 1 - Supplementary Figure S1). 

 

Significant differences between treatments for each trait, except plant height, were detected. Other 

plant growth traits were largely negatively impacted by low NO3
- 
. Among these variables and for 

each panel, the plant weight was the most affected trait (on average -50.18% and -68.07% for CC and 

MAGIC panel, respectively). Fruit quality related traits (fruit weight, SSC and pH) were not strongly 

impacted by low NO3
-
 : the reduction in fruit weight was significantly different only in the MAGIC 

panel (CC: -2.75%; MAGIC -5.83%). Likewise, the increase in SSC was significantly different only 

in the CC panel (CC: +9.27%; MAGIC -0.78%). All the nitrogen related traits (NBI, petiole NO3
-
, leaf 

N, leaf C, leaf N:C ratio) were significantly impacted by the low NO3
-
, with nitrate content the most 

impacted variable (CC: -64.52%; MAGIC: -93.49%), as expected. Analysis of variance was 

conducted per each panel and trait (Figure 1a). Genetic variance was consistently higher in the CC 

panel. Furthermore, the treatment was higher than the genotypic effect for all the biomass and N-

related traits. The broad sense heritabilities (h
2
) of the traits were moderate to high, ranging from 0.49 

(Carbon content under low N) to 0.89 (Leaf N:C ratio for the CC under low N). Also, the h
2
 were 

consistent between conditions in most of the cases. Pairwise Pearson correlations (r) were calculated 

between pairs of traits within a treatment and for each trait between treatments (Figure 1b). In this 

last comparison, the correlations between traits were all significant (p < 0.05). However, the 

correlations were weaker between traits within each N condition. At low N, the correlations were 

higher compared to high N (presumably due to a narrower variability) in both panels. The highest 

correlation resulted between the variables petiole NO3
-
 and leaf N. The distribution of these two 

variables suggested a linear relationship under low NO3
-
 reaching a plateau under high N condition 

(Figure 1c). Finally, most of the significant correlations for plasticity traits were higher compared to 

low and high NO3
-
 conditions. 

 

Genetic dissection of N-related traits 

Linkage analysis in the MAGIC population revealed 15 QTLs for N related traits. Among these, five 

were identified at high N (C), three QTLs at low N (S), and seven for plasticity traits (P), which 

represent the percentage of difference between the two conditions relative to the control condition. 

Notably, no significant QTLs were found for N content. Considering the overlapping confidence 

intervals as a single association, the analysis resulted in seven distinct QTL regions (Table 1 and 

Supplementary Figure S2). The most significant QTLs for NBI under low and high N, as well as 

plasticity conditions (NBI:NO3_2) were observed on chromosome 2. Likewise, a QTL hotspot on 

chromosome 3 for petiole NO3
-
 content was detected across all the conditions (NO3_3). The 

confidence intervals (CIs) for QTLs ranged from 1.81 Mbp (NBI_4) to 59.1 Mbp (NBI_12). The 

overlapping confidence intervals and the similarity in founder haplotype assignment of phenotypic 

effects supported the hypothesis that these QTL clusters represented the same QTL. To reduce the 

candidate gene list, we applied a filter based on contrasts for the most different QTL founder allelic 

effects, and identified the genes showing differences in term of SNP in the region, as described in 

Pascual et al (2015). This strategy significantly reduced the gene lists, with almost half reduction for 
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NBI_4. However, for NBI_12 and NBI:NO3_2, more than 500 candidate genes remained. QTL 

analyses were also carried out on the agronomic and fruit quality characteristics (Supplementary 

Table S4). As most of these traits (except plant weight) were not strongly influenced by nitrogen 

reduction, a large proportion of the QTLs detected were identified for both N conditions. In detail, 11 

and 12 associations were detected under high and low N, respectively; 10 QTLs were shared between 

N conditions. 

 

GWAS analysis in the CC panel revealed 12 QTLs for N-related traits (Table 2 and Supplementary 

Figure S3). Among these, one and seven associations were identified for high (C) and low N (S) 

conditions, respectively; while 12 associations were related to plasticity traits (P). By contrast to the 

MAGIC linkage analysis, the GWAS approach yielded only three colocalized QTL clusters on 

chromosomes 6, 11 and 12. To determine the number of candidate genes, we opted to filter all genes 

within an arbitrary 10-kb window surrounding each significant marker (not only lead SNP). 

Consequently, the number of candidate genes per QTL was significantly reduced compared to the 

MAGIC panel, ranging from 0 to 9 genes.  

GWAS analyses for fruit quality and agronomic traits were also conducted (Supplementary Table 

S5). As observed in the MAGIC, a large number of QTLs were identified in both conditions: 18 and 

16 associations were found under high (C) and low N (S), respectively; 15 QTLs were shared between 

N conditions. 

 

Transcriptomic analysis of N-responsive genes 

The transcriptome profiles of four tomato accessions were analysed under the same contrasted N-

regime (2 and 10 mM NO3
-
). The accessions Ferum, Levovil, Cervil and LA1420, showing the most 

contrast for fruit weight and plant vigour (thus expected to differ for N response), were chosen among 

the parents of the MAGIC population. The transcriptomes were analysed on leaves and fruits. The 

RNA sequencing firstly yielded 26,544 and 25,414 expressed genes in leaves and fruits, respectively, 

resulting in 15,264 and 12,827 genes after filtering for sufficient and consistent expression across the 

samples. Principal Component Analysis (PCA) for differential gene expression was conducted on 

normalised counts (Supplementary Figure S4 & S5). The first two components of the PCA 

accounted for 41.4 % and 40.6 % in fruit and leaves, respectively. The variation was mainly related to 

genotypes and/or treatments while no effect of the replicates appeared. The differences between 

genotypes were clearer on fruit while the treatment impact was more significant in the leaves. The 

higher number of DEGs was identified between genotypes regardless of N-treatment. Indeed, in 

leaves, this number ranged from 4,465 (Ferum control vs Levovil control) to 8,906 (Ferum vs 

LA1420) with an average of 6,818 DEGs (Supplementary Figure S6). At high N (Control, C) the 

small-fruited accessions showed contrasting expression profiles, at low N (S) they tended to exhibit 

similar expression responses, as opposed to the big-fruited accessions. In fruit, the number of DEGs 

ranged from 5,171 (Ferum stress vs Levovil stress) to 9,740 (Cervil vs Levovil) with an average of 

7,088 DEGs. At high N (7,741 DEGs) and low N (8,543 DEGs) the most contrasted genotypes were 

Cervil and Levovil. The least contrasted genotypes were LA1420 and Levovil at high N (5,236 

DEGs), Ferum and LA1420 at low N (5,171 DEGs). The number of DEGs between N-treatments was 

lower than the comparisons between genotypes. About four thousand (4,056) and 6,526 DEGs were 

found in response to N treatment in fruit and leaves, respectively, among which 1,677 (19%) were 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article/doi/10.1093/jxb/erae265/7692959 by Biochem

ie & Physiologie user on 17 June 2024



Acc
ep

ted
 M

an
us

cri
pt

shared between tissues. In the comparison between N treatments (C vs S), 4,752 and 2,405 DEGs 

were detected in leaves and fruit, respectively when considering all the genotypes. Among these 

genes, 3,628 (76.3%) in leaves and 1,717 (71.4%) in fruit were also found at least once in a genotype-

specific contrast (e. g. C vs S in Levovil only). Then, they could be considered as genotype specific, 

the significance of the differential expression being supported mostly by the results of a single 

genotype (Figure 2a & 2b). Among the 4,752 DEGs found in leaves, 1,124 were detected in the C vs 

S comparison, regardless of the genotypes. The remaining DEGs were genotype-specific in the same 

comparison. The higher number of DEGs were found in big-fruited accessions (4,213 DEGs), while 

only 313 DEGs were specific to the small-fruited accessions. Finally, 71 genes were found 

differentially expressed in all the five comparisons. It was observed in the PCA that leaves were more 

sensitive to the low N and fruit to genotype differences. The same trend was observed when 

considering the number of DEGs by tissue and by contrast. When focusing solely on DEGs identified 

in the C vs S comparison but gathered by accession, more DEGs were detected in big fruited 

tomatoes, 3,982 DEGs in Ferum leaves and 2,372 DEGs in Levovil leaves, while in the small-fruited 

accessions, 559 DEGs were detected in Cervil leaves and 446 in LA1420 leaves. The difference 

between accessions was reduced in the fruit but followed the same pattern. Roughly the same number 

of genes were differentially expressed in the small-fruited accessions but the number of DEGs 

decreased in big-fruited accessions (with 1,460 DEGs in Ferum and 1,555 DEGs in Levovil).  

To obtain an overview of the biological pathways regulated in response to N-treatments, a gene 

enrichment analysis based on the MAPMAN classification was first performed on the 1,124 DEGs 

(Figure 2d) detected in leaves for all genotypes. Twelve pathways were found enriched. Among these 

pathways, most genes belonged to the ones corresponding to protein modification and degradation. 

Vesicle trafficking and solute transport were also enriched as well as cellular respiration, carbohydrate 

metabolism and cell wall. Focusing on the 511 DEGs up-regulated in N-stress condition, protein 

modification, degradation and biosynthesis pathways remained enriched as well as cellular respiration 

and carbohydrate metabolism. For the 613 DEGs down-regulated in N-stress condition, the protein 

modification and degradation pathways were still enriched together with the vesicle trafficking and 

solute transport pathways. Interestingly, for the “protein modification” pathway, the genes of the sub-

pathway “protein modification.phosphorylation” were down-regulated in N-stress condition while the 

genes of the sub-pathway “protein modification.dephosphorylation” were up-regulated. The same 

analysis was performed on DEGs detected in fruit (Figure 2c). Although only 688 DEGs were 

considered, five pathways were enriched. At the first level of classification, the same pathways were 

found enriched (“Protein biosynthesis”, “Protein degradation”, “Protein modification”, “Vesicle 

trafficking”). The only pathways shared between tissues were “Protein biosynthesis.cytosolic 

ribosome” and “Protein modification;dephosphorylation”. In fruit, “Protein biosynthesis.cytosolic 

ribosome” was also enriched for genes down-regulated in N-stress condition, while in leaves it was 

enriched for down-regulated genes. Finally, a focus on genes involved in nitrogen metabolism through 

a list of 185 genes established based on published data and annotation (Supplementary table S8) was 

performed. Among these 185 genes, 33 and 53 were found differentially expressed in the present 

experiment, in the fruit and leaves, respectively. Their average expression profiles across the eight 

samples are presented in Figure 3. The clustering of samples confirmed that the differences were 

more important between genotypes rather than N treatments in fruit. The clustering of DEGs matched 

roughly with gene families, a first cluster corresponding to Amino acids biosynthesis, a second one to 

Autophagy / senescence and Nitrate reductases and the last cluster to Amino acids transporters. Most 

of the genes presented a positive logFC or if negative close to zero, with the exception of 

Solyc01g080280 (logFC = -3.43) in Ferum and three genes in Levovil: Solyc04g077050 (logFC = -

2.56), Solyc07g051950 (logFC = -2.27) and Solyc06g060110 (logFC = -2). These genes were mainly 
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expressed in N stress condition. In leaves, the candidate genes showed a specific profile in Ferum 

under N-stress, by contrast to LA1420 under control condition and fairly different compared to Ferum 

under control. Three main gene clusters appeared differentially expressed, in the first, up-regulated 

genes related to autophagy and senescence under control were included. In the second cluster, genes 

up-regulated under control condition related to the Amino acid transporters. The last cluster gathered 

genes from the same class but less expressed in stress conditions. 

 

Candidate gene identification 

In order to identify candidate genes for the QTLs, we first focused on QTLs that included less than 

500 candidate genes in their confidence intervals for the analysis of genes derived from MAGIC. 

Consequently, two clusters (NBI:NO3_2 and NBI_NO3_12) were excluded from subsequent 

analyses. To identify potential candidate genes, we focused on candidate genes included in the QTL 

intervals and differentially expressed between N treatments (C vs S). Following this strategy, we 

significantly narrowed down the list of candidate genes (Figure 4; list available in Supplementary 

Table S6). Most of the identified candidate genes were associated with nitrogen remobilization 

functions. Among them, two genes were involved in senescence and autophagy (Solyc01g104080, 

Solyc04g076720), as well as three nitrogen compound transporters (Solyc02g065680, 

Solyc07g008440, Solyc07g008520). The list of candidate genes identified by GWAS is more limited 

compared to linkage mapping QTLs. Indeed, only 35 genes were in or close (within a 10kb-window) 

to a significant SNPs for N related traits (Table 2 and Supplementary Table S7). Among these, five 

genes showed differential expression in leaves, five in fruit, and two genes were differentially 

expressed in both tissues. Notably, within the significant DEGs identified at the chr02_NO3_S QTL, 

Solyc02g077560, that codes for the Auxin Response Factor 3 (SlARF3), emerged as the most 

interesting candidate gene. More interestingly, it was the only gene among the candidates associated 

with SNPs in the chr02_NO3_S QTL that exhibited differential expression in both tissues. The 

comparative sequence analysis among genotypes was not able to identify any polymorphism in the 

coding region. Thus, the variation in gene expression was probably due to a polymorphism in the 

regulation sequences.  In SlARF3 RNAi mutants, substantial morphological changes were observed, 

including a decrease in the density of epidermal cells and trichomes in leaves, as well as inhibited 

xylem tissue development (Yifhar et al. 2012). Furthermore, cis-eQTL analysis revealed the presence 

of regulatory variants influencing its expression at the fruit level  (Zhu et al. 2018).  

We identified several other promising candidate genes associated with different QTLs: 

Solyc08g077480 encoding for a SnRK1-interacting factor and belonging to the senescence-associated 

family protein. It was also found to be differentially expressed in fruit; Solyc11g008830, an homolog 

of A. thaliana ASYMMETRIC LEAVES2 whose mutant is involved in the generation of leaf lobes 

and leaflet-like structures (Capua and Eshed 2017); Solyc12g044610: also known as MYB1R1 or 

MYBS3, encodes a stress-responsive MYB transcription factor. It is upregulated in response to cold 

conditions (Guo et al. 2022) and low phosphate levels. 
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Discussion 

 

Phenotyping NUE-related traits in tomato 

The assessment of NUE stricto sensu, i.e., net dry mass production per unit of N uptake, in 

indeterminate (vine) tomato plants is more complex than in other crops such as cereals as it is a long-

cycle crop harvested multiple times. Thus, this crop is subject to an export of biomass over time, in 

both fruit and leaf biomass (towards senescent leaves and lateral shoots which are removed). We thus 

chose to report an index of biomass production per unit of internode as N-response biomass trait. 

Furthermore, single trait cannot unravel the intricacies of NUE genetic control, regulated by several 

pathways and physiological mechanisms. Therefore, we targeted other N related traits including leaf 

N and C content, petiole NO3
-
 and used Dualex Leaf-Clip to assess the NBI. Correlation analysis 

showed that there was no strong correlation between leaf nitrogen content and other nitrogen-related 

traits, and therefore dismissed the idea of strong pleiotropy between these traits. The correlation 

between leaf N content and NBI was weak to moderate for both nitrogen treatments and panels (r = 

0.25-0.43). The large diversity of leaf structure within the two panels of genotypes could probably 

explain this moderate relationship. Besides, several studies have already reported the relationship 

between chlorophyll-based measurements (NBI) and leaf N content is cultivar dependant (Minotti et 

al. 1994, Monostori et al. 2016, de Souza et al. 2020). The petiole NO3
-
 content was only significantly 

correlated with the leaf N content under low N condition. This relationship could be explained as a 

luxury uptake of N. At high N condition, significant correlations between N-traits were not observed 

because they were at the plateau of the curve (Figure 1c). Surprisingly, the correlation between 

sympode weight and N content was not significant (except at low N condition in the CC). Renau-

Morata et al. (2024) reported the same result using a S. pimpinellifolium introgression line panel. In 

addition, as mentioned above, this measure is probably too biased by biomass exports during tomato 

life cycle and the difference in senescence rate observed between genotypes. To get a true estimate of 

biomass, it would be more accurate to switch to non-destructive imaging techniques. The analysis of 

NUE could then be similar to that described for potato, by analysing canopy development parameters 

(Khan et al. 2010). This type of approach is particularly suitable for drone phenotyping and seems to 

work well even for wild genotypes with indeterminate development in the field  (Johansen et al. 

2020). Finally, the characterization of senescence rate in relation to nitrogen remobilization is a 

promising trait to be investigated. 

 

Transcriptome insight into N deficiency 

The RNAseq transcriptome analysis of four tomato accessions grown under two contrasted N supply 

conditions did not highlight a unique biological pathway differentially regulated, whether the analysis 

was performed without a priori on gene function or when we focused on genes related to nitrogen 

metabolism and response. Nevertheless, the biological pathways found enriched when considering 

DEGs identified in response to the N-treatment were involved in protein biosynthesis, modification 

and degradation. These pathways were found enriched both for genes up- and down-regulated under 

N stress condition. The vesicle trafficking and solute transport pathways were also found significantly 

enriched mainly in the down-regulated DEGs under N stress condition. The different N rates supplied 

induced variability in the transcriptome across the four genotypes under study. However, this 

variability was lower under N-stress compared to the variation identified between genotypes 

regardless of N treatment. The contrasting pattern of gene expression in the fruit between Levovil and 

Cervil was expected due to their smallest and largest fruit weight and plant vigour. The other 
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similarities and differences in gene expression were not easily explained by morphological traits. 

Indeed, Ferum and Levovil were expected the most similar accessions for their responses in all the 

conditions, because they were both big-fruited tomatoes and similar for many morphological traits, 

but also highly convergent when comparing their sequence polymorphisms against the reference 

genome (Causse et al. 2013). The specificity of genotype response and the prevalence of genotype 

effect over treatments emphasises the necessity to follow several accessions in physiological and 

genetic analysis to obtain the most complete possible overview of N use efficiency for a species. A 

buffering effect between leaves and fruits was observed for the number of DEGs identified in 

response to N-treatment. It was not the case for DEGs identified between genotypes regardless of N-

treatment. Such buffering effect in fruit was already described for small-fruited accessions in response 

to water deficit (Albert et al. 2018), but this effect seemed stronger in our experiment, with a similar 

number of DEGs between leaf and fruit for the small-fruited accessions and a significant decrease for 

the big-fruited accessions. Nevertheless, despite this low number of DEGs in fruit, it was still 

expected to induce phenotypic differences at the fruit level in response to N stress. By contrast, the 

impact of N stress on fruit, albeit significant, was limited compared to the effect on plant biomass 

production. This indicates that in stress conditions, fruit growth was maintained at the expense of 

vegetative growth which induced specific regulation.  

The current knowledge of plant response to low N conditions at the expression level has been mostly 

obtained in the model plant Arabidopsis thaliana (Krapp et al. 2011, Balazadeh et al. 2014, Luo et al. 

2020) or row crops such as durum wheat (Curci et al. 2017), wheat (Zhang et al. 2021), rapeseed 

(Ahmad et al. 2022), or rice (Shin et al. 2018). However, limited information is available on 

vegetables such as tomato. It is even more scarce when looking for RNA-seq analysis. Two recent 

studies tried to tackle this question. The transcriptome response of 35-day plant of the cultivar 

Moneymaker was assessed when cultivated with a solution containing 4 mM (stress) or 8 mM 

(control) of nitrogen (Renau-Morata et al., 2021). The other study focused on the short term (8h – 

24h) transcriptome response differences in shoot and root between a pair of high-NUE (Regina 

Ostuni) and low-NUE (UC82) cultivars (Sunseri et al., 2023). The plants were grown for 20 days and 

then stressed (0.5 mM N) or maintained in controlled conditions (10 mM). By comparison, the first 

study focused on only one genotype in less stressful conditions while the second study applied a 

stronger but shorter stress. Despite these differences between our protocol and that from Renau-

Morata et al. (2021), shared DEGs between the experiments were identified (Supplementary Figure 

S7). Indeed, Renau-Morata and colleagues highlighted 257 and 1,440 DEGs in roots and leaves (61 

were shared between tissues), respectively, 31.5 % (81) and 49.5 % (713) of which were respectively 

also detected in leaves in the present study. Overall, in four sets of DEGs, leaves and fruits in the 

present study, roots and leaves in Renau-Morata et al. (2021), 12 DEGs were shared among all the 

sets (Supplementary Figure S7). The higher overlap between studies was found in leaves with 471 

shared DEGs. Our results appeared consistent due to the relatively high overlap between comparable 

organs, however the present study detected more DEGs. Furthermore, Renau-Morata and colleagues 

identified a specific role of the alternative respiration and chloroplastic cyclic electron transport in 

tomato, not observed in other crops. The alternative oxidase respiration (AOX) consumes sugars and 

starch in excess in leaves and is involved in the plant C/N balance under N stress (Noguchi 2006). In 

our experiment, the pathway “Carbohydrate metabolism.starch metabolism” was significantly 

enriched in the DEGs identified in leaves for the N-stress response. The pathways “Carbohydrate 

metabolism.sucrose metabolism” and “Cellular respiration.glycolysis” were significantly enriched in 

the DEGs up-regulated in N-stress condition, in all the genotypes. Only one of the genes specifically 

associated with the AOX pathway was sufficiently expressed to be analysed (Solyc08g075540) and 

was found down-regulated in the control (high N) in fruit (C vs S, Cervil C vs S and Levovil C vs S). 
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The three genes related to the chloroplastic cyclic electron flow (CEF) pathway (Solyc08g007770; 

Solyc09g090570; Solyc08g080050) were differentially expressed. The first two genes were down-

regulated in fruit, while Solyc08g080050 was also down-regulated in leaves. However, at low N, 

Solyc09g090570 was up-regulated in fruits and down-regulated in leaves.  

Sunseri et al (2023) identified 297 and 154 DEGs in response to N treatment in shoot and root, 

respectively, which must be compared to the 923 (154) DEGs for the genotype by treatment 

interaction, 5,102 (3,800) DEGs for the time x treatment interaction and finally 5,480 (4,054) DEGs 

for the genotype x treatment x time interaction. Overall, they identified 7,667 and 6,015 unique DEGs 

in shoot and root, respectively. In this study, they identified a number of DEGs consistent with our 

study but their results also underlined the importance of considering the kinetic of gene expression 

(Sunseri et al. 2023). One of the hypotheses for our results might be that the long duration of the stress 

ended homogenising the plant‟s responses or allowed compensation by other unknown mechanisms. 

Interestingly, both studies highlighted the role of nitrogen transporters. In our study, the high-sensitive 

N transporter (NRT2.1, NRT2.2, NRT2.3 and NRT2.4) were not highlighted as DEGs, most probably 

because at 2 mM we were already outside of N range of NRT2 gene family activity. However, at low 

N, the low affinity transporter NRT1 (Solyc08g078950) was up-regulated in leaves for all the 

genotypes. Other transporters were also found as DEGs in leaves: AMT1.1 (Solyc09g090730), 

AMT1.3 (Solyc03g045070), NF-YA5 (Solyc08g062210) and NF-YA9 (Solyc01g008490), all being 

down-regulated at low N.  

Thus, several studies studying different genetic stocks and methodologies highlighted shared 

regulated genes which might consist in a common basis of regulation. However, the differences on 

plant genetic origin and in N stress application and duration induced variation in the direction of 

regulation (up- and down-). Furthermore, the majority of DEGs were specific to the study indicating 

that tomato plant response to limiting N conditions requires fine tuning and depends on a multiplicity 

of mechanisms. 

We did not confirm the RNAseq differences observed for candidate genes by RT-qPCR experiments, 

but Sunseri et al (2023) and Renau-Morata et al (2021) observed highly significant correlations 

between both experiments. Furthermore, as we studied contrasted accessions, they may also present 

variations of the reference genes at RT-qPCR level, on the contrary to RNAseq, which are normalized 

by the whole transcriptome.  

 

 

QTLs analysis: low pleiotropy for N-related traits and candidate genes 

The genetic architectures of the nitrogen related traits exhibited a marked reliance to specific mapping 

population adopted, based on the different quantitative trait loci (QTLs) identified between the 

populations. This observation aligns with previous findings that reported similar outcomes for 

different traits within the same populations (Pascual et al. 2016, Bineau et al. 2021). The detection of 

population-specific QTLs probably arises from different reasons. Firstly, the two populations show 

significantly different allelic compositions as they were composed to represent different genetic 

groups. For instance, the CC panel encompasses accessions from diverse geographical origins (Albert 

et al., 2016) and spans three unique genetic groups (SP, SLC, and mixture) covering the domestication 

stage of tomato evolution. Conversely, the MAGIC population segregates for alleles coming from 

eight very diverse cultivated lines derived from later breeding efforts, with four cherry and four large-
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fruited accessions. Thus it represents the allelic diversity of improved tomato breeding materials, as 

proposed by Lin et al. (2014). Secondly, the two populations were grown at different seasons and the 

stress conditions may have correspond to slightly different quantities of N received per plant, although 

the concentrations were the same. Beyond the inter-population disparities, a limited number of QTL 

clusters influencing multiple traits were detected, especially within the MAGIC panel. Notably, we 

pinpointed QTLs exerting influence across the treatments (e.g., NBI:NO3_2 and NO3_3). Each trait 

might be modulated by a distinct ensemble of genes or genetic variants. Hence, the non-convergence 

of QTLs may be indicative of trait-specific genetic regulation rather than a lack of genetic influence. 

Nevertheless, the MAGIC and the CC panels provided lists of candidate genes of drastically different 

sizes due to the different numbers of SNP markers between the two populations and LD structures. 

The intersection of the lists of candidate genes retained in the confidence intervals with that of DEGs 

derived from the RNA-seq experiment should be interpreted with caution. Indeed, the choice of 

tissues used for RNA-seq has a considerable impact on the results obtained. For instance, the 

expression of nitrate transporters (NRT) is negligible in fruit and leaf whereas these genes are 

particularly important for nitrate uptake. Thus the spotlighted candidate genes were mainly related to 

the N Utilization Efficiency (NUtE) component, such as nitrogen remobilization (Solyc01g104080, 

Solyc04g076720, Solyc08g077480), transport of nitrogen compounds (Solyc02g065680, 

Solyc07g008440, Solyc07g008520) or involved in morphogenesis (Solyc02g077560, 

Solyc11g008830). These genes emerged as potential candidates for functional validation.  

 

 

Conclusion 

In this study, several nitrogen related traits were analysed in tomato under greenhouse experiments. 

Our results revealed a large range of responses to reduced N supply, albeit the genomic interactions 

with N treatment appeared limited. The QTLs identified for these traits exhibited little colocalization, 

suggesting that multiple genes underlie the genetic diversity of response to low N availability. In 

addition to QTL analysis, we conducted a differential gene expression experiment in fruit and leaves 

based on the contrasting N supply and revealed a large number of genes impacted by N level. The 

impact of genetic background on the gene expression was also underlined. The analysis of genes 

included in the most significant QTLs and also differentially expressed allowed to highlight a few 

candidate genes as key players in nitrogen usage efficiency, mainly in the NUtE component. The 

present study confirmed the complex genetic architecture that governs NUE -related traits in tomato. 

Our results offer a promising set of candidate genes for breeding NUE-enhanced tomato varieties. 

Overall, harnessing genomic regions associated with N-related traits in tomato will contribute to the 

establishment of appropriate breeding schemes for an early selection of low N input -adapted 

genotypes. The functional validation of candidate genes identified in this work will contribute to their 

characterization. 
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Data availability 

The new genome reads corresponding to the 100 new accession sequences can be found in NCBI 

(https://www.ncbi.nlm.nih.gov/sra) database under accession number PRJNA1014227. RNA raw 

reads data can be accessed under number PRJNA817375.  

The VCF file, RNA-seq data and scripts used in the analysis are available at 

https://doi.org/10.57745/ELIUJ2. 

All other data supporting the findings of this study are available in the Supplementary data published 

online. 
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Figure Legends  

Figure. 1. Impact of nitrate reduction on plant growth and N-related traits 

Treatment effect (expressed as percentage of the difference between means in Stress and Control 

relative to Control condition) and variance decomposition (%) of 12 traits in the two genetic panels 

(CC, Core Collection; MAGIC, multi-parental genetic intercross population) grown in greenhouse 

under two N levels. SSC, Soluble Solid Content; Leaf NBI, Leaf Nitrogen Balance Index; Leaf N:C, 

Leaf Nitrogen/Carbon content. Significance of the P-value for the treatment effect: *** P < 0.001; ** 

0.001 < P < 0.01; *0.01 < P < 0.05; NS, not significant. (B) Correlations between selected nitrogen-

response traits at the whole level under low NO3
- 
(stress), high NO3

- 
(control)

 
and plasticity conditions. 

(C) Details on the relationships between Leaf N, Petiole NO3
-
, Leaf NBI, and Sympode weight. 

 

Figure 2. Differential Gene Expression and Enrichment Analysis in leaves and fruits 

Panels A and B are upset plots detailing the number of DEGs for each contrast, as represented by the 

left side barplot, in fruit (A) and leaf (B). The barplot illustrates the count of shared DEGs across 

contrasts, with combinations depicted in the central grid. The 'Control vs Stress' contrast encompasses 

all accessions, while other contrasts highlight treatment responses specific to individual accessions. 

Panels C (fruit) and D (leaf) present enrichment results based on the second pathway levels as defined 

by the MapMan classification. The y-axis lists pathways with at least one identified DEG, while the x-

axis represents the log-fold change between the two conditions under consideration. Point colour 

corresponds to the number of genes identified within a pathway. P-value of the enrichment test is also 

displayed. 

 

Figure 3. Expression profile and results of differential expression for genes involved in N 

metabolism and response to N stress in leaf (a) and fruit (b) 

Heatmap of the normalised count averaged over the samples for each combination of accession x 

treatment, for each of the genes found expressed either in the fruit (right panel) or the leaf (left panel). 

The genes are gathered and coloured based on their class and function. The right panel shows the 

contrasts in which the genes were found to be differentially expressed, the colour level corresponds to 

the log fold change between the tested conditions. A negative log fold change means that the gene is 

more expressed in stress conditions. Fe: Ferum, Le: Levovil, Ce: Cervil, LA: LA1420, C: Control 

condition, S: Stress condition. 

 

Figure 4. Intersection of numbers of candidate genes from linkage mapping in the MAGIC 

population and differentially expressed genes (DEG) between stress and control nitrogen 

treatments in leaf (DEG leaf) and fruit (DEG fruit) MAGIC: number of genes found in the QTL 

confidence interval; Allelic contrast: genes found within the confidence interval and whose 

polymorphisms correspond to the allelic effect estimated by the founder lines. 
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Table 1. QTLs detected under control (C), stress (S) and plasticity (P) conditions in the MAGIC panel for 

N related traits 

Chr. 

Position 

LOD Trait Cluster ID Nb. genes 

Founders estimated allelic effects 

Lower Upper Ce. Le. Cr. St. Pl. 1420 Fe. 0147 

1 90,901,338 93,475,357 5.38 Petiole NO3
- (P) NO3

- _1 317 (260) -0.53 -0.71 0.29 -0.40 0.80 -1.60 0.59 1.56 

2 

33,973,517 36,931,627 5.33 Leaf NBI (C) 

NBI_2 

240 (202) -0.21 1.08 -0.70 -0.85 -0.32 -1.26 1.55 0.70 

33,973,517 36,931,627 5.68 Leaf NBI (P) 240 (218) -0.09 1.46 0.18 -0.95 -0.62 -1.53 0.83 0.71 

2 

45,447,408 52,920,159 8.07 Leaf NBI (S) 

NBI: NO3
-
 _3 

1 007 (708) 0.37 -0.52 1.57 0.37 -1.19 0.62 -1.46 0.25 

45,447,408 55,336,340 9.54 Leaf NBI (P) 1315 (1039) -0.12 0.03 1.73 0.44 -1.35 0.47 -1.32 0.12 

49,740,098 55,336,340 5.84 Leaf NBI (C) 743 (591) -1.32 1.09 0.94 0.63 -1.34 0.08 -0.75 0.66 

3 

49,740,098 55,336,340 6.90 Petiole NO3
-
 (C) 

NO3
- _3 

743 (591) 0.18 0.62 1.72 -1.46 -0.57 0.18 -1.00 0.34 

65,020,764 70,779,030 5.62 Petiole NO3
- (S) 781 (261) -0.52 -0.34 0.32 -0.01 -1.52 0.09 2.04 -0.05 

65,831,575 70,779,030 5.47 Petiole NO3
- (P) 670 (158) -0.92 0.13 0.33 0.82 -1.95 0.25 1.21 0.14 

68,052,409 70,779,030 5.39 Petiole NO3
- (C) 363 (146) -1.00 0.85 1.04 1.00 -1.45 0.63 -0.78 -0.30 

4 60,952,746 66,467,941 5.97 Leaf NBI (P) NBI_4 693 (390) -1.00 0.12 0.60 0.32 -1.74 -0.13 0.30 1.54 

7 2,671,204 4,481,678 5.88 Leaf NBI (c) NBI_7 144 (129) 0.15 1.11 -1.79 1.38 -0.42 -0.12 -0.59 0.28 

12 4,892,313 64,046,622 8.38 Leaf NBI (S) NBI_12 1414 (1145) 1.25 -0.13 -0.30 -0.69 1.83 -0.88 -0.27 -0.81 

12 

5,047,381 64,046,622 7.83 Leaf NBI (P) 

NO3
- _12 

1401 (1135) 1.56 -0.06 -0.45 -0.88 1.53 -0.75 -0.13 -0.82 

9,476,793 64,125,346 5.21 Petiole NO3
- (P) 1 222 (974) 1.80 -0.56 -1.06 0.70 -0.08 -0.35 0.66 -1.12 

a: Trait nomenclature: Trait_Condition; C: Control; S: Stress; P: Plasticity.  

b: In parentheses the number of genes selected by allelic contrast. 

Ce: Cervil, Le: Levovil, Cr: Criollo, St: Stupicke Polni Rane, Pl: Plovidiv, 1420: LA1420, Fe: Ferum, 

0147: LA0147 
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Table 2. QTLs detected for petiole NO3
-
 and leaf N content by GWAS in the CC panel 

Ch
r. 

Position 
LO
D 

Trait 
MA

F 

Effect 
size 
(SE)a 

PV
E 

Candidate genes
b
 

2 
40,456,7

12 
5.8
9 

Petiole NO3
- 

(S) 
0.0
8 

1519 
(323) 

0.1
3 

Solyc02g077530 ; Solyc02g077550 ; Solyc02g077560 DEG FRUIT/LEAF ; Solyc02g077570 ; 
Solyc02g077580 ; Solyc02g077590 

4 
4,571,43

9 
5.3
4 

Petiole NO3
- 

(S) 
0.0
6 

1865 
(418) 

0.1
2 

Solyc04g014240 ; Solyc04g014250 ; Solyc04g014260 

6 
37,141,9

31 
5.0
5 

Petiole NO3
- 

(P) 
0.2
2 

0.07 
(0.02) 

0.0
8 

Solyc06g062570 ; Solyc06g062580 

6 
37,141,9

31 
5.7
1 

Petiole NO3
- 

(S) 
0.2
2 

796 
(176) 

0.1
2 

Solyc06g07342 ; Solyc06g073430 
DEG FRUIT/LEAF

 

6 
42,925,5

90 
5.5
6 

Leaf N (S) 
0.3
9 

0.24 
(0.05) 

0.1
4 

7 
39,956,3

13 
5.2
5 

Leaf N (P) 
0.0
9 

0.16 
(0.04) 

0.1
0 

- 

8 
59,551,0

98 
5.8
9 
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a: Effect size (standard error); b: All genes with a significant SNP in a 10kb window. MAF: Minor 

Allele Frequency; PVE: Percentage of Variance Explained 
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