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Abstract

In human-dominated landscapes, rebounding bear populations share space with
people, which may lead to bear—human conflicts and, consequently, a decrease in
acceptance and an increase in bear mortality linked to human causes. Previous ana-
lyses of brown bear (Ursus arctos) movement data have shown that bears adopt a
security-food trade-off strategy in response to variable human-related risk. How-
ever, brown bear flexibility to cope with these risky situations may be reduced
when resting, mating or stocking fat in preparation for hibernation. In this study,
we measured the multi-scale spatial response of brown bears to human-related risk
and food resource distribution in a highly heterogeneous human-dominated land-
scape. We examined habitat selection both within the population range (‘second-
order’ selection) and at bedding site locations (‘third-order’) for GPS-tagged brown
bears of a recently reintroduced population in the Italian Alps. We identified resting
locations by field-validated spatio-temporal cluster analysis of telemetry locations.
We mapped food availability and distribution using dynamic geographic layers of
fruiting wild berries, and human-related risk using human mobility data
(Strava-based Cumulated Outdoor activity Index). Brown bears appeared to com-
promise their need for food resources for avoidance of anthropogenic disturbance
when selecting home ranges, as they utilized areas richer in wild berries less when
human use of outdoor tracks was higher. Furthermore, selection of resting site loca-
tions strongly depended on the avoidance of human-related risk only, with less fre-
quented, more concealed and inaccessible sites being selected. We conclude that
humans compete for space with bears beyond their infrastructural impact, that is,
by actively occupying key areas for bear survival, thereby potentially restricting
the bears’ realized niche. We propose mitigating actions to promote bear—human
coexistence by selectively restricting human access to key areas during sensitive
annual physiological phases for bear survival.

emerges as structural (e.g. roads) and functional (e.g. actual
presence of humans) disturbances (Ellis-Soto er al., 2023).

As land use by humans increases dramatically around the
world (Foley et al., 2005) and recreational activities spread
beyond urban contexts (Knight & Gutzwiller, 1995), the spa-
tial overlap between humans and wildlife is intensifying. In
the landscape, humans—wildlife competition for space

This exposes a growing number of species to direct risk (i.e.
human-caused mortality; Creel & Christianson, 2008), induc-
ing behavioural responses (Tuomainen & Candolin, 2011).
Animals may respond by displacing into safer and less dis-
turbed habitats (Martin ef al., 2010), by adjusting their
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Risk exposure drives Alpine brown bear behaviour

activity cycles (Gaynor et al., 2018) or both (Schuette
et al., 2013). For example, fear of humans can change diel
activity patterns (Bonnot ef al., 2020) or habitat use
(Salvatori et al., 2022) in large herbivores; or reduce feeding
time in medium-sized (Suraci ef al., 2019) and large carnivores
(Smith et al., 2017). Understanding how species respond to dif-
ferent types of anthropogenic disturbance is becoming central
in ecology and conservation (Rutz et al., 2020). The relative
effect of anthropogenic disturbance varies by observation scale
(Levin, 1992); hence, some responses to human disturbance
only emerge at specific scales of inference (Ciarniello
et al., 2007; Suraci et al., 2019; Nisi et al., 2022).

Coexisting with humans is costly: in addition to
human-induced mortality, such as vehicle collision, poaching
or culling, animals sustain additional physiological or ener-
getic costs as a result of adopting antipredator behavioural
responses to human presence, such as the aforementioned
changes in habitat use, vigilance or feeding habits (i.e. risk
effect; Creel & Christianson, 2008). Large carnivores are no
exception, with humans ‘super predators’ regarded as an
integral part of their ecosystem, echoing a predator—prey
relationship  (Chapron & Lépez-Bao, 2016; Smith
et al., 2017). Risk perception by large carnivores may vary
with spatial and resource requirements across different ‘bio-
logically sensitive’ periods (i.e. resting, mating, or fattening
up for hibernation; sensu Yovovich et al., 2020). For some
species, food intake is particularly critical at certain times of
the year (e.g. hyperphagia before entering hibernation; Swen-
son et al., 2020; or weaning in grey wolf Canis lupus; Sand
et al., 2008). A human-induced landscape of fear can com-
promise access to these resources (Lodberg-Holm
et al., 2019), with cascading consequences on individual fit-
ness if disturbance is high. Furthermore, at the diel scale,
resting is an especially vulnerable behavioural phase as ani-
mals have a much lower ability to cope with risky situations
due to minimal mobility (Lima et al., 2005). Understanding
how species respond to human disturbance during annual
physiological phases at multiple spatial scales is therefore
pivotal for the long-term conservation of carnivores.

Brown bears (Ursus arctos) are among the world’s largest
carnivores, yet they show fear reactions to encounters with
humans (Moen et al., 2012; Steen et al., 2015), suggesting
that individuals perceived human-derived risk and adopted
behavioural strategies to reduce risk exposure (i.e. antipreda-
tor response; Ordiz et al., 2013). Further, unlike most other
large carnivores, they need to store enough energy during
their active months to sustain 3 to 7 months of hibernation
and pregnancy. This is important for their life cycle and,
consequently, for their survival and reproductive capacity,
particularly in females (Robbins et al., 2012). Nevertheless,
bears’ ecological plasticity and especially their omnivory
allows them, on the one side, to modify their diet based on
physiological needs and variations in food resource availabil-
ity (Mowat & Heard, 2006); on the other side, to live in a
broad range of environments, some of which are character-
ized by significant levels of human encroachment (McLellan
et al., 2017). In Europe, for example, despite a remarkable
recovery of large carnivores over the past decades (Chapron
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et al., 2014), the availability of suitable habitats for brown
bears is still largely determined by human population density
(Cimatti et al., 2021). Hunting has also been demonstrated
to have a considerable impact on their life history (Bischof
et al., 2018), while some populations remain geographically
isolated and exhibit low genetic variability due to past
human persecution and current lack of habitat connectivity
(Kaczensky et al., 2012).

The expanding population of brown bears living in the
Central Alps represents one of the most emblematic exam-
ples of recovery in human-dominated Europe. Reinforced
through a reintroduction project in the early 2000s (Dupre,
Genovesi, & Pedrotti, 2000), the population has settled in
Western Trentino, an area with relatively high human
encroachment, and is currently estimated to be around 100
individuals (Groff et al., 2022). However, despite significant
improvement, the population is currently listed as Critically
Endangered due to the small number of mature individuals
(<50, Criteria D1; IUCN, 2001) (Huber, 2018). Adult sur-
vival is still mainly driven by anthropogenic mortality
(Tenan et al., 2016), with a significant proportion of road-
kills and poaching (Groff et al., 2022). In this context, alpine
brown bears have been shown to respond to the functional
presence of humans, with human mobility significantly
reducing habitat connectivity (Corradini et al., 2021b), while
human outdoor recreation activities limit the use of suitable
space (Corradini et al., 2021a). Such evidence shows that
bears in the Alps are currently exposed to multiple sources
of anthropogenic disturbance (Morales-Gonzalez et al.,
2020), with humans acting as direct competitors for space,
hence potentially constraining the bears’ realized niche
(sensu Hutchinson, 1957) and leading to conflicts (PACO-
BACE, 2010). Yet, a multi-scale spatial evaluation of
human-derived risk responses of this reintroduced population
and derived indications for conflict mitigation are lacking.

In this study, we aimed to assess the effect of multi-scale
anthropogenic disturbance on behavioural decisions by bears.
Specifically, we intended to characterize the behavioural
trade-off between risk avoidance and seasonal resource selec-
tion at two ecologically relevant scales: the home range
selection within the population range and resting site loca-
tion. Using the Alpine bear population, and newly developed
covariates for this region, we tested two main hypotheses: (i)
when selecting for home ranges within their population range
(‘second-order’ of selection; Johnson, 1980), bears should
weigh their energetic requirements in different annual physio-
logical phases against risk perception, while accounting for
seasonal resource availability. We modelled bears’ resource
selection in dependence of topographic variability, habitat
productivity, functional anthropogenic disturbance (i.e.
Cumulated Outdoor activity Index, a Strava-derived index of
disturbance; Corradini et al., 2021a) and monthly resource
availability (i.e. seasonal fruit richness index; Tattoni
et al., 2019), interpreted against their main annual physiolog-
ical phases (hypophagia, mating season and hyperphagia);
(i1) when selecting for resting sites within their home range
(‘third-order’; Johnson, 1980), bears should prioritize areas
with low functional anthropogenic disturbance, even to the
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detriment of resource proximity, by applying a security-food
trade-off strategy (Cristescu, Stenhouse, & Boyce, 2013). For
this purpose, we modelled the individual selection of resting
sites in dependence of topographic variability, human-derived
risk perception, forest canopy structure and monthly resource
availability.

Materials and methods

Study area and brown bear movement data

The research was conducted in the province of Trento, com-
monly known as Trentino (10.5°E, 45.6°N - 12.0°E,
46.5°N), a mountainous region in the Central-Eastern Italian
Alps (Fig. 1). The area covers 6200 km® within the Alpine
biogeographical region (EEA, 2002) and is characterized by
a complex set of microclimates due to a morphologically
diverse landscape (from 65 to 3.769 m a.s.l.). The slopes are
characterized by dense forest cover, followed by alpine

Legend

Risk exposure drives Alpine brown bear behaviour

grasslands in the upper portions and bare terrain at the
highest altitudes. The valleys have the highest concentration
of human presence: they are densely populated
(187 people km ™ below 600 m a.s.l.) and have a developed
infrastructure network (95 km/100 km?). The Adige valley,
the region’s largest and most developed valley (crossed by
the homonymous river, a highway, a railway, as well as
numerous minor roads and urban areas; Fig. 1), poses a
major threat to ecological connectivity for many animal spe-
cies, including the brown bear (Peters ef al., 2015).

Between 2006 and 2019, 18 adult bears (11 females and
7 males) were captured throughout the study area and fit
with GPS collars (Vectronic Aerospace GmbH, Berlin,
Germany) as part of the management programme carried out
by the Autonomous Province of Trento for bears target of
monitoring (i.e. dwelling in proximity of human properties,
exhibiting confident behaviour or having shown aggressive
defensive behaviour: PACOBACE, 2010; Data S1 for details
about bear trapping protocol). Bears were tracked for

(b)

@ Available
0 Used

(c) A

I Artificial land use A
[ Brown bear population area A
O GPS telemetry locations
N A Resting locations A
U 0 10 20km (A\ _
p— & A A Available
A ysed

Figure 1 (a) Map of the study area and its location in the Italian Alps. The blue area indicates the brown bear population area, the yellow
dots the GPS telemetry locations (for clarity, only the locations of one individual are shown), and the dark pink triangle the resting locations
of all adult bears identified through spatiotemporal clustering. In light grey, the distribution of artificial surfaces (i.e. altered by humans). (b)
Second-order selection: ‘Available’ points (shown in blue) selected at random from the population range, and yearly individual GPS locations
(‘Used’, shown in yellow). (c) Resting site selection: ‘Available’ locations (shown in light grey) generated from the ‘used’ resting location
(shown in dark pink) by resampling turning angles and step lengths from the empirical distribution.
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management needs from one to several years, for a total of
44 animal-year (i.e. yearly location data for tracked indivi-
duals). GPS collar acquisition intervals varied between indi-
viduals, therefore we used different resolutions based on the
type of ecological question we wanted to answer (second-
vs. third-order). Following the methodology described by
Urbano, Basille, & Cagnacci (2014), the GPS locations asso-
ciated with impossible movement parameters (i.e. ‘spikes’)
and locations (e.g. over a lake) as well as missing timestamp
information were removed, leaving only ‘valid locations’ for
analysis. Lastly, we subsetted the trajectories by only consid-
ering the GPS locations within Western Trentino (i.e. exclud-
ing dispersers; Fig. 1) and non-hibernating period (i.e. 1
April to 31 October), for a total of 6309 and 18 319 GPS
locations for the second- and third-order, respectively.

Spatial covariates

It is particularly challenging to derive ecologically-
meaningful covariates of anthropogenic disturbance and
resource availability using field surveys and observations,
especially in Alpine habitats, where field accessibility is a
limiting factor. To overcome this constraint, and to later ren-
der region-wide spatial predictions, we used a set of newly
developed covariates. These ecologically-meaningful covari-
ates were obtained at the highest resolution available from a
combination of space-, air- and human-borne sensors
(Data S2 for a detailed description), specifically: we derived
(a) Slope (Slp) from an airborne laser scanning survey (i.e.
LiDAR, with an original spatial resolution of 2 m), a covari-
ate known to be informative when modelling bear space use
in the Alps (Peters et al., 2015; Corradini et al., 2021a); (b)
Canopy Height Model (CHM) from the same data source
(i.e. LiDAR) and (c) Tree Cover Density (7CD) using satel-
lite imagery from the Copernicus Programme (Langanke
et al., 2017) as measurements of forest canopy vertical and
horizontal structure, respectively. These covariates were used
as proxies for perceived security towards human-derived risk
(i.e. sites with lower canopy height and higher tree cover
density should be perceived as more secure; Sahlén, Steen,
& Swenson, 2011); (d) monthly Enhanced Vegetation Index
(EVI) wusing multispectral satellite imagery from the
NASA-MODIS sensors (with an original spatial resolution
of 250 m) as a proxy for habitat quality and productivity
(Pettorelli et al., 2005; Zedrosser et al., 2011); (e) the
monthly fruit richness availability (r-berry) over the land-
scape of 44 plant species commonly eaten, or considered
edible, by brown bears (Table S2.2) based on the GIS
approach previously developed by Tattoni et al. (2019). The
fruit richness maps were derived from vector maps of forest
types (scale 1:10 000) and were used as a proxy for resource
availability of high-quality food for bears. This was based
on the analysis of their dietary habits, which showed a pre-
dominantly plant-based diet (De Barba et al., 2014), and on
the knowledge that fleshy fruits are an important part of the
species’ diet (Garcia-Rodriguez et al., 2021). Due to the lack
of variability in species richness of fruiting plants, we dis-
carded April and considered the richness of fruiting plants

A. Corradini et al.

from May to October only. We included wild fruits in the
analysis as they were widespread and readily available
throughout the landscape, while alternative food sources
were ephemeral and difficult to quantify, as their production
(e.g. hard mast) and accessibility (e.g. orchards) were hardly
measurable over large areas (e.g. region-wide); (f) the den-
sity of Cumulated Outdoor activity Index (dCOI) from a
newly developed Strava-based index of human mobility
(Corradini et al., 2021a). The index was used as a proxy for
functional anthropogenic disturbance, as it depicted a spatial
variation of risk perception (Gaynor et al., 2019). All covari-
ates were resampled to a spatial resolution of 20 m pixel
size, except for the EVI (with a resolution of 250 m), and
were normalized by subtracting the mean and dividing by its
standard deviation. We managed, processed and analysed
spatial data through Free and Open-Source Software (FOSS),
that is R 4.0.0 (R Core Team, 2020), QGIS 3.4.4 (QGIS
Development Team, 2019) and GRASS 7.4 (GRASS Devel-
opment Team, 2018) under Ubuntu 16.04.3 LTS (Canonical
Ltd., London, UK).

Home range selection (second-order)

We modelled monthly resource selection at the population
range via Resource Selection Functions (RSFs), with a
use—availability design (Manly et al, 2002). For each
animal-year, GPS locations from bears monitored with a 6-h
sampling protocol were considered as ‘used’ locations. The
available space was defined by the population range, as indi-
cated by the combination of all the annual individual 90%
utilization distributions (Worton, 1989) calculated using the
kernelUD function (with smoothing parameter = ‘href’) and
extracted the area using the getverticeshr function in the R
package ‘adehabitatHR’ (Calenge, 2006) and using the GPS
locations of all individuals throughout the active season with
availability of high-quality food for bears (i.e. May to Octo-
ber). We sampled for each animal-year 100 times as many
resource units (i.e. ‘available’ locations) as the used
GPS-based locations within such range to ensure stability in
parameter estimates (Fieberg et al., 2021). We spatio-
temporally matched both used and available locations with
the underlying covariates. We, therefore, estimated resource
selection by fitting generalized linear mixed models
(GLMMs) with a binomial error distribution via maximum
likelihood, using a Laplace approximation, using the glmer
function in the R package ‘lme4’ (Bates et al., 2015). We
assigned a weight W = 1,000 for each available sample,
while keeping W =1 for the used locations (Muff, Signer,
& Fieberg, 2020). We fitted monthly models including
ecologically-meaningful, non-collinear covariates as fixed
effects (Pearson correlation coefficient |r| < 0.6; Figure S2.3).
For each month (from May to October), we fitted a model
including slope (as both linear and quadratic effect to
account for potential nonlinear relationships, as we expect a
negative relationship at very high levels of slope) and den-
sity of COI (dCOI) as static variables, while the EVI and
species richness of fruiting plants (r-berry) as dynamic (i.e.
monthly-varying) variables. Because TCD and CHM were
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positively correlated with one another and with EVI, we did
not include them in the models. We considered an interaction
term between the species richness of fruiting plants and the
density of COI to better understand the link between the
selection of high-quality resources and avoidance of
human-derived risk, that we evaluated against the
additive-only model by AIC, and, for equally likely models,
Chi-squared based difference in deviance. We included indi-
viduals as random intercepts to account for among-individual
variability (Gillies et al., 2006). However, for this study, we
estimated marginal (population-level) responses only. We
fitted a model for each month because fruit richness varies
considerably throughout the year (Data S2), thus avoiding
biased model output due to varying availability (Boyce &
McDonald, 1999). For further interpretation of these models,
we considered the following annual physiological phases of
brown bears: (i) hypophagia and mating season: from 1 May
to 31 July; (ii) hyperphagia: from 1 August to 30 October.

Resting site selection (third-order)

Resting sites were identified using a spatiotemporal cluster-
ing method, thereby GPS locations were grouped based on
their spatial and temporal proximity. We used a higher proto-
col sampling for this analysis by selecting individuals whose
GPS collar acquisition interval was at least 3 hours and fill-
ing any gaps in the sampling via linear interpolation. In
practice, we identified hotspots (clusters) of use (i.e. potential
resting sites) using the R package ‘recurse’ (Bracis,
Bildstein, & Mueller, 2018), based on ad hoc parameteriza-
tion. First, a circle with a radius of 25 m was drawn for
each GPS location, and the time spent inside that buffer was
determined using each GPS location’s timestamp within that
radius. Next, we categorized every cluster as a ‘resting site’
when it included locations for at least 9 consecutive hours
(Figure S3), that is, at least four fixes. We chose a detection
radius of 25 m to account for GPS measurement error and a
time interval larger than 9 h to reduce the detection of
non-target hotspots (i.e. foraging areas) while having a con-
sistent detection even in case of missing values (e.g. for sites
under dense canopy cover). We used the highest resolution
available, even though in related studies, resting locations
were identified using even higher sampling rates (Cristescu,
Stenhouse, & Boyce, 2013; Skuban, Find’o, & Kajba, 2018).
This was done to trade off the inclusion of as many individ-
uals as possible (for meaningful population-level inference),
with robustly identified resting sites. When multiple buffers
that were designated as ‘resting sites’ overlapped, the cen-
troid based on all neighbouring clusters was generated and
that location was considered for the analysis. We also dis-
carded any revisit of the same resting site to reduce autocor-
relation problems. Last, we performed field validation to
assess the cluster analysis’ capacity to identify actual resting
sites (false positive rate; Data S3 for specifications on field
validation).

We considered the selection of resting sites within their
home range as a discrete choice influenced by movement;
therefore, we opted for a matched case—control approach

Risk exposure drives Alpine brown bear behaviour

where each resting site location is matched with a condi-
tional set of available locations, which represented a stratum.
We applied a mixed Conditional Logistic Regression (CLR)
to model individual resource selection, using the mixed-
effects cox model from the R packages ‘coxme’ (Ther-
neau, 2020). Each resting site (i.e. the case) was paired with
25 random points (i.e. the controls) generated from the rest-
ing site centroid by resampling turning angles and step
lengths from the empirical distribution (Fortin et al., 2005)
of brown bear 3-h GPS locations. We assessed the individual
selection of resting sites with respect to topography, forest
structure, resource availability and anthropogenic disturbance
by spatio-temporally joining locations with the same environ-
mental covariates as described for the second-order selection
analysis. Specifically, we included slope (linear and quadratic
effect) as a proxy of topographic variability; TCD and CHM
as measurements of the horizontal and vertical structure of
the forest canopy, respectively; the density of COI (dCOI) as
a proxy of functional anthropogenic disturbance; and the
monthly species richness of fruiting plants (r-berry) as a
proxy of food resources. We excluded EVI because the reso-
lution was too coarse (250 m) for the analysis. To further
understand the link between the selection of high-quality
resources and the avoidance of human-derived risk, we again
included an interaction term between resource availability
and anthropogenic disturbance. All the covariates included in
the final model were also tested for collinearity (Pearson cor-
relation coefficient || < 0.6; Figure S2.4). Finally, individuals
were treated as random slopes in the model with respect to
anthropogenic disturbance to account for among-individual
variability (Gillies et al., 2006).

We finally mapped the relative probability of selection of
a given location as a resting site, based on a model includ-
ing all covariates that were significant in the full model (i.e.
the most parsimonious model, also based on AIC differ-
ences; Hosmer Jr, Lemeshow, & Sturdivant, 2013). We vali-
dated the predictive ability of the CLR model by 10-fold
cross-validation (Boyce et al., 2002), training our model iter-
atively on k—1 data sets, validating it on the remaining test
set and testing the model performance of spatially explicit
predictions using Spearman’s rank correlation coefficient.

Results

Home range selection (second-order)

The final data set we based the second-order selection analy-
sis upon included GPS locations at 6-hour intervals from 12
animals (eight females and four males), for a total of 21
animals-year (out of 44 animal-year). At the population
range, brown bears selected home ranges in steeper terrain,
at sites with higher productivity and fruit diversity. However,
bears traded off the selection of high-quality food against
functional human disturbance avoidance. Specifically, habitat
quality and productivity were the predictors with the largest
effect size for most months (bgy; = +0.545 to +1.028,
P < 0.001; Table 1). Topographical variability was also an
important predictor, as bears selected for steep areas
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(bsip = 10.331 to +0.612, P < 0.001; Table 1), but avoided
extreme slope values in certain months (bgjpr, = —0.054 to
—0.178 when there is a significant relationship, P < 0.05 to
P < 0.001; Table 1). In June, August and October (Table 1;
Table S4), the positive selection of species richness of the
fruiting plants by bears was inversely dependent on human
disturbance increase  (bacorr-bery = —0.116 to  —0.176,
P <0.05 to P<0.01; Fig. 2, Table 1). In May, July and
September when the interaction was not significant
(Table S4), bears selected for areas with high species rich-
ness of fruiting plants (brpery = +0.106 to  +0.2417,
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P < 0.01 to P <0.001; Table 1) and avoided high density of
functional  disturbance  (bgcor = —0.587 to  —0.798,
P < 0.001; Table 1).

Resting site selection (third-order)

Through the spatiotemporal clustering of GPS bear locations,
we were able to classify a total of 557 resting sites. Bears
primarily selected their resting sites in areas with a low den-
sity of functional anthropogenic disturbance (bgcor =
—0.752, P < 0.001; Fig. 3, Table 2), more so than any other
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Figure 3 Fitted regression lines with standard error showing the empirical association between resting site use and the significant environ-
mental predictors, estimated using conditional logistic regression. The regression coefficients are derived from the best-fitting model (i.e.

with slope, tree cover density, canopy height model and density of COI).

Animal Conservation ee (2024) ee—ee © 2024 The Author(s). Animal Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of

London.

7

25U9017 SUOWILIOD BATERD) 3|0 [dde Uy AQ pouenob a2 a1 WO ‘8N J0 3N 10} ARl BUIIUO AB]IV UO (SUOTHPUIOD-pUE-SUWLB] WO A8 W ATe.ql1pUI|UO)//ST1IL) SUOIIPUOD) PUB SWLS | 8L 295 *[7202/20/0E] U A1 78Ul A8]1M ‘80U BURIL0D Ad G96ZT A%R/TTTT 'OT/I0P/W" 81w ATeqIpul U0 SuO DI nd 52//:Sdny LLoJ papeojumod ‘0 ‘G6.T69vT



Risk exposure drives Alpine brown bear behaviour

Table 2 Results of the fitted mixed-effects conditional logistic
regression used to assess brown bear selection of resting sites

Explanatory variable Coefficient Cl (95%) P-value
Slope 0.241 0.065-0.417 <0.01
Slope? —0.067 —0.159 to 0.026 >0.05
Tree cover density 0.412 0.244 to 0.581 <0.001
Canopy height model ~ —0.308 —0.458 to —0.158  <0.001
dCol —0.752 —1.083 to —0.421  <0.001
Berry richness 0.046 —0.124 to 0.215 >0.05
dCOl:Berry richness -0.016 —0.266 to 0.234 >0.05

The explanatory variables, parameter estimates (conditionally stan-
dardized), 95% confidence intervals and P-values are reported.
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Figure 4 Map of the predicted relative probability of use as resting
location by brown bears in Western Trentino. The prediction is
based on the estimated coefficient values from the mixed-effects
conditional logistic regression model. The map has a resolution of
20 m pixel size.

spatial covariate. Bears also selected for resting sites under
higher horizontal (brcp = +0.412, P < 0.001; Fig. 3, Table 2)
and lower vertical canopy cover (bcpym = —0.308,
P < 0.001; Fig. 3, Table 2). Slope was positively selected as
a linear effect (bg, = +0.241, P < 0.01; Fig. 3, Table 2), but
not when included as a quadratic term (bgpo = —0.067,
P > 0.05; Table 2). Importantly, the availability of resources
did not significantly affect the selection of resting sites, nei-
ther as an additive factor (bypeny = +0.046, P > 0.05;
Table 2) or in interaction with human-derived disturbance

A. Corradini et al.

(bacor:r-verry = —0.016, P > 0.05; Table 2). The spatial pre-
diction (Fig. 4) was obtained including only the significant
terms, namely Slp, TCD, CHM and dCOI (Fig. 3). The
k-fold cross-validation of such model provided consistent
spatial predictions of the relative probability of resting site
use (average Spearman’s correlation coefficient: r = +0.98,
P < 0.001).

Discussion

Our results indicate that brown bears in the Alps try to
reduce human-derived risk exposure by modulating their
behaviour at different ecological scales and annual physio-
logical phases. By analysing their movement data in combi-
nation with recently developed covariates, we showed that
bears weighed the selection for areas with high-quality food
against high functional human disturbance avoidance, par-
ticularly during late hyperphagia, supporting hypothesis (i).
By analysing the distribution of resting sites, we also found
that the overall perception of risk influenced fine-scale
selection more than available resources, supporting a
security-food trade-off strategy (hypothesis (ii)). These
results suggest that humans, as the largest predator and
competitor in the Alpine ecosystem, played a primary role
in modifying space use, resting patterns and foraging
behaviour of the brown bear. In a community ecology
framework (Chapron & Lodpez-Bao, 2016), the ecological
niche (sensu Hutchinson, 1957) of the bear was potentially
reduced as a result of both risk perception and habitat
competition.

Risk perception drives the selection of
space, resources and resting sites in
Alpine bears

Previous studies (Preatoni et al., 2005; Peters et al., 2015)
have shown that the Alpine brown bear tends to avoid prox-
imity to human settlements and infrastructure (i.e. a struc-
tural effect). By including human mobility data, it has been
recently demonstrated that functional anthropogenic distur-
bance primarily drives selection within the home ranges
(Corradini et al., 2021a). Our results complement those find-
ings by showing that bears, within their population range,
selected for home ranges with high habitat quality but low
anthropogenic disturbance, independently of annual physio-
logical phases. In particular, human mobility offered an eco-
logically meaningful proxy of perceived risk (‘landscape of
fear’; Gaynor et al., 2019) for bears in the Alpine region.
Rugged areas were also selected as likely less disturbed by
humans (Martin et al., 2010).

The presence of people in the environment likely induced
bears to balance risk with access to areas with high-quality
food, that is, higher richness of fruiting plants, throughout
the active season. During hyperphagia, when highly caloric
food is needed for accumulating fat for winter denning (i.e.
particularly important for the reproductive capacity of
females; Robbins et al., 2012), fleshy fruits such as berries
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represent an important food source for bears (Ciucci
et al., 2014). Bears selected areas with high fruit richness,
likely because they provide predictable and profitable food
sources. However, when the perception of anthropogenic risk
was high, bear selection was less influenced by fruit rich-
ness. This indicates a behavioural response to humans (i.e.
risk effects; Creel & Christianson, 2008), resulting in
decreased foraging efficiency for fleshy fruits (Fig. 2). While
bears would likely redirect feeding towards other energetic
sources, being a wide spectrum omnivore with plastic trophic
behaviour (Coogan et al., 2018), this shift in fruit consump-
tion could potentially have cascading impacts on seed dis-
persal  services and plant regeneration  processes
(Garcia-Rodriguez et al., 2021). Alternatively, bears may be
occasionally attracted to high-quality food sources in proxim-
ity to human settlements during periods of high nutritional
demand, potentially leading to ecological traps (Penteriani
et al., 2018).

Previous research on bear activity patterns (Tattoni
et al., 2015; Oberosler, Tenan, & Rovero, 2020), assessed by
systematic camera trapping, showed a reduced daytime activ-
ity alongside increasing human presence. Because shifting
areas of use is an important mechanism by which animals
can decrease the risk of interaction with humans (Tablado &
Jenni, 2017), periods of inactivity such as resting, when ani-
mals have a reduced capacity to detect changes in their sur-
roundings and cope with risky situations, can be particularly
vulnerable (Anderson, 1998). For this reason, it is expected
that resting site selection is first and foremost determined by
risk perception (i.e. ‘where to sleep’; Lima et al., 2005), as
observed for example in other large mammals (e.g. African
elephant; Wittemyer et al., 2017; or wild boars; Fradin &
Chamaillé-Jammes, 2023). In our research, we showed that
risk aversion influenced the resting site selection by brown
bears: not only did individuals select sites with reduced rec-
reational human use but also on steeper terrain and with
denser canopy cover. Resting sites were therefore chosen as
both inaccessible (i.e. more rugged terrain; Martin
et al., 2010) and concealed (possibly providing thermal com-
fort too; Lima er al., 2005) to humans, hence likely per-
ceived as safer. Further, bears prioritized individual security
over food intake during resting (Cristescu, Stenhouse, &
Boyce, 2013), as proximity to productive feeding areas did
not affect site choice.

The predictive map showed that, in our study area, large
sections are currently unsuitable for resting sites, because of
exposure to disturbance and high fragmentation. While vast
suitable contiguous areas are found to the west of the study
area, greater fragmentation and lower suitability characterize
the east, especially the southern sector, limiting the availabil-
ity of resting sites (Fig. 4). More secluded, steep and for-
ested areas could provide shelter, suggesting that bears can
currently locally segregate from humans at times of higher
disturbance (i.e. daytime). However, limited areas suitable
for resting, combined with concurrent limits on habitat con-
nectivity (Peters et al., 2015) and low local habitat suitability
(Corradini er al., 2021a), may provide additional hurdles to
individual space use, and consequently population range

Risk exposure drives Alpine brown bear behaviour

expansion beyond the reintroduction range (Tosi
et al., 2015).

Humans potentially shape bear’s niche

The ecological niche describes the habitat and factors that
locally determine the set of conditions required for the per-
sistence of the species (i.e. the realized Grinnellian niche;
Hirzel & Le Lay, 2008). We recognize that numerous defini-
tions of ecological niche exist (see review from Poche-
ville, 2015), enumerating many ‘dimensions’ defining its
space (Polechova & Storch, 2008). We decided to refer to
‘niche’ in the broadest sense of ‘species persistence’, as
pointed out by Pocheville (2015, pp. 575): */...] its [niche]
multiple meanings all revolve around the Darwinian view of
ecosystems that are structured by the struggle for survival’.

Humans are functioning as the main predator and space
competitor of bears in the Alps, driving their adult survival
(Tenan et al., 2016), and space distribution (Peters
et al., 2015; Corradini et al., 2021a; this work). Our findings
suggest that the spatial variation in human-related risk per-
ception (Gaynor et al., 2019), expressed as human functional
disturbance (Corradini et al., 2021a), influenced bear space,
resource and resting site selection, similar to what one would
expect in a community ecology framework (Chapron &
Lépez-Bao, 2016). To persist in the landscape, animals must
alter their realized niche in the presence of interspecific inter-
actions (i.e. predation and competition; Hutchinson, 1957).
In the Alps, bears may have altered their realized niche due
to the competition for space with humans. These types of
‘niche restrictions’ due to humans may have a cumulative
effect with other human impacts. Humans are the world’s
primary ecosystem engineers (Root-Bernstein & Ladle, 2019)
and their ‘footprint’ (e.g. urbanization, climate change;
Boivin et al., 2016) goes far beyond competition and preda-
tion. Anthropogenic impact thus changes the multidimen-
sional space of favourable conditions of species (i.e.
Hutchinson, 1957) even before ecological interactions are
taken into account.

Implications for coexistence

Following the conceptual framework proposed by Chapron
& Lopez-Bao’s (2016), the level of coexistence between
humans and bears in the Alps can be considered ‘weak’:
human competitive ability remains high due to lack of effec-
tive protection (human-caused mortality drives adult survival,
Tenan et al., 2016), but behavioural adaptations and plastic-
ity of bears (this study) and adequate human practices (i.e.
bear—human conflict prevention; PACOBACE, 2010; Groff
et al., 2022) increase niche differentiation. However, some
degree of niche overlap between the two species emerges,
and such overlap is potentially expanding, touching upon
farming activities (Peters et al., 2015) and human mobility
(Corradini et al., 2021a; this work; see also Passoni, Coul-
son, & Cagnacci, 2023). Since population redistribution over
a larger area is unlikely because of species biological traits
(such as female philopatry) and habitat limitations (i.e. lack

Animal Conservation ee (2024) ee—ee © 2024 The Author(s). Animal Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of

London.

9

25U9017 SUOWILIOD BATERD) 3|0 [dde Uy AQ pouenob a2 a1 WO ‘8N J0 3N 10} ARl BUIIUO AB]IV UO (SUOTHPUIOD-pUE-SUWLB] WO A8 W ATe.ql1pUI|UO)//ST1IL) SUOIIPUOD) PUB SWLS | 8L 295 *[7202/20/0E] U A1 78Ul A8]1M ‘80U BURIL0D Ad G96ZT A%R/TTTT 'OT/I0P/W" 81w ATeqIpul U0 SuO DI nd 52//:Sdny LLoJ papeojumod ‘0 ‘G6.T69vT



Risk exposure drives Alpine brown bear behaviour

of connectivity, Peters et al., 2015; Corradini et al., 2021b),
bear mobility and presence could increasingly clash with
human activity. In some instances, this overlap can cause
individual brown bears to exhibit behavioural responses that
escalate to harmful attacks on humans (Bombieri
et al., 2019). While such incidents are uncommon, there
have been eight reported attacks in the Central Alps over the
past decade, one of which was lethal in April 2023 (Ufficio
Stampa della Provincia Autonoma di Trento, 2023). Current
measures to limit the probability of human-bear direct inter-
action include preventing access to anthropogenic food to
avoid the emergence of food conditioning, reducing confident
behaviour through aversive conditioning, and in extreme cir-
cumstances, the legal removal of bears for conflict manage-
ment (ISPRA-MUSE, 2021). Lack of legal responses may
result in retaliatory poaching, potentially affecting population
growth and jeopardizing the long-term viability of the
Alpine-Dinaric brown bear meta-population (Kaczensky
et al., 2012).

In this context, a shift from a weak to a strong level of
coexistence could be achieved by further reducing occur-
rences of human-bear direct competition (from human-
induced mortality to high tolerance of predators; Chapron &
Lépez-Bao, 2016) and implementing adequate human prac-
tices to increase niche differentiation. Legislative measures
can be put into effect to restrict or control retaliation killing.
In parallel, educational and outreach programmes can contrib-
ute to fostering greater tolerance towards bears, especially
while the population is re-establishing at the edge of highly
anthropic areas (Passoni, Coulson, & Cagnacci, 2023). On
the other hand, understanding how bears perceive risk can
help guide practices to increase niche differentiation. Using
the spatial predictions of this study (Fig. 4), specific measures
to limit anthropogenic disturbance in situations of vulnerabil-
ity for bears, such as when resting and during sensitive
annual physiological phases, could be implemented. For
example, modulating the spatio-temporal overlap between
humans and bears could potentially mitigate the risk of con-
flict. Human access rules have been successfully implemented
at different degrees in a variety of socio-ecological contexts.
These include extensive wilderness areas, such as Bear Man-
agement Areas (BMAs) in Yellowstone National Park (Cole-
man et al., 2013), or temporary limitation of human activities
in more human-dominated contexts, for example, closure of
bear breeding areas in Spain (Planella ef al., 2019), or motor-
ized access controls in Canada (Proctor et al., 2020), whereas
in the Pyrenees, hunting regulations were recently implemen-
ted to reduce disturbance and conflict (Farcaza, 2022).
Conversely, potential areas of conflict risk could be identified
through spatial prediction of connectivity corridors and the
dispersal of bears into new, uncolonized areas (Ditmer
et al., 2023). This could inform the implementation of local-
ized management measures (such as the provision of
bear-proof recycle containers) and targeted education
programs (Passoni, Coulson, & Cagnacci, 2023).

If embraced by the local community, without being seen
as a restriction on freedom of movement, some of these

A. Corradini et al.

strategies can reduce human-bear niche overlap and thus
conflict potential. Indeed, the effectiveness of these mea-
sures is specific to the landscape structure and its custom-
ary fruition by humans, which in turn is often linked to the
cultural-historical context. For example, a very dense net-
work of trails together with the traditional fruition of natu-
ral resources managed at the municipality scale (e.g. wood
harvesting, mushroom picking) may limit the effective
implementation of restricted access areas. Nevertheless, the
knowledge of spatio-temporal opportunities to decrease
human—bear conflicts via continued bear movement and
behaviour monitoring and modelling offers opportunities
for sets of suggestions to increase bear awareness and
induce safer human behaviours; while also underpinning
the application of preventive legal measures to manage
bear behaviour.

When communicated positively and effectively, also
highlighting opportunities for living with bears, co-existence
suggestions can be accepted by tourists and residents alike
(Abrams et al., 2020; Passoni, Coulson, & Cagnacci, 2023).
The bear is an iconic mammal that can promote
nature-oriented tourism (Tattoni, Grilli, & Ciolli, 2017). High
levels of coexistence in human-dominated landscapes are dif-
ficult to achieve (Morales-Gonzélez et al., 2020), but if rea-
sonable and targeted mitigation measures are taken, brown
bears could finally thrive in the Alps for many years
to come.
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