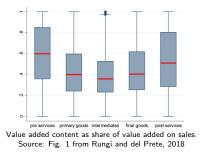
Quality upgrading and firms' position in global value chains

Kossi Messanh Agbekponou, Angela Cheptea, Karine Latouche

Workshop "GVCs and Quality"

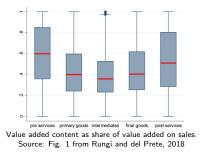
Groningen, 15 - 16 may 2024

- Product quality plays an important role in explaining international trade patterns:
 - Higher income countries and more productive firms export higher quality goods (Schott, 2004; Hummels and Klenow, 2005; Baldwin and Harrigan, 2011; Fajgelbaum et al., 2011)
 - Quality upgrading permits firms to increase their export performance (Crozet et al. 2012)


- Product quality plays an important role in explaining international trade patterns:
 - Higher income countries and more productive firms export higher quality goods (Schott, 2004; Hummels and Klenow, 2005; Baldwin and Harrigan, 2011; Fajgelbaum et al., 2011)
 - Quality upgrading permits firms to increase their export performance (Crozet et al. 2012)

• GVCs have transformed international trade

- Production processes are highly fragmented across country borders
- An increasing number of firms organize production on a global scale
- A higher content of imported inputs in exports and of services in manufacturing $\approx 45\%$ of global trade in agricultural and food products goes to intermediate consumption
- A reorganization (reshoring, regionalization, friendshoring) of GVCs since 2020



- How firms position in GVCs?
 - Upper and lower ends of the value chain provide higher value added and profit margins (the *smile curve*: Mudambi, 2008; Rungi and del Prete, 2018; Baldwin and Ito, 2021)

More productive firms internalize a larger span of production stages (Chor et al., 2021) ⇒ Chinese firms have increased their participation in GVCs by integrating more upstream stages.

- How firms position in GVCs?
 - Upper and lower ends of the value chain provide higher value added and profit margins (the *smile curve*: Mudambi, 2008; Rungi and del Prete, 2018; Baldwin and Ito, 2021)

- More productive firms internalize a larger span of production stages (Chor et al., 2021) ⇒ Chinese firms have increased their participation in GVCs by integrating more upstream stages.
- How quality affects boundary choices of firms involved in GVCs?

Outline of the presentation

Question: How product quality affects boundary choices of firms involved in GVCs?

Hypotheses

- 2 Theoretical model
- Main prediction: effect of quality upgrading
- Oata
 - ★ Data sources
 - ★ Upstreamness / position in GVC
 - ★ Quality
- 5 Test main prediction: OLS, IV, different quality measures
- 6 Test other predictions
- Conclusion

Main hypotheses

H1: Participation to GVCs = firm's joint involvement in import and export activities (Baldwin and Yan, 2014; Antras, 2020)

 \Rightarrow We focus on firms in GVCs, i.e. that both import and export in a given year.

H2: Firms' imports and exports reflect their purchases and outputs in terms of product composition

 $\Rightarrow \text{Imports (from all sources)} \quad \sim \text{firm's input purchases} \\\Rightarrow \text{Exports (to all destinations)} \quad \sim \text{firm's sales of produced output}$

We disregard the origin and destination of products and focus on the global market.

H3: Position in the chain = the level of transformation (processing) of goods used and produced by the firm.

(Fally, 2012; Antras et al., 2012; Antras and Chor, 2013)

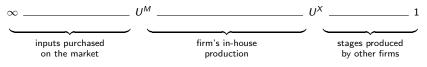
 \Rightarrow Input-Output table data to identify the level of transformation of each industry

- H4: More upstream products are traded at lower prices
- H5: Quality is costly and appreciated by consumers

• Consumers value quality (λ) and maximize a CES utility function over available varieties Ω_{υ} :

$$\Upsilon = \left(\int_{\Omega_{\upsilon}} \left[\lambda(\upsilon)q(\upsilon)\right]^{rac{arepsilon-1}{arepsilon}}
ight)^{rac{arepsilon}{arepsilon-1}}$$

• Consumers value quality (λ) and maximize a CES utility function over available varieties Ω_{υ} :


$$\Upsilon = \left(\int_{\Omega_{\upsilon}} \left[\lambda(\upsilon)q(\upsilon)\right]^{rac{arepsilon-1}{arepsilon}}
ight)^{rac{arepsilon}{arepsilon-1}}$$

• Production of each variety v requires the completion of a continuum of tasks u, indexed by their remoteness from final demand (upstreamness), using a CES aggregator:

$$q = \theta \left(\int_{U^X}^{U^M} x(u)^{\frac{\sigma-1}{\sigma}} du + q_M^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\rho\sigma}{\sigma-1}}$$

 θ – firm productivity ρ – decreasing returns to scale

Production/value chain

• Consumers value quality (λ) and maximize a CES utility function over available varieties Ω_{υ} :

$$\Upsilon = \left(\int_{\Omega_{\upsilon}} \left[\lambda(\upsilon) q(\upsilon)\right]^{rac{arepsilon-1}{arepsilon}}
ight)^{rac{arepsilon}{arepsilon-1}}$$

• Production of each variety v requires the completion of a continuum of tasks u, indexed by their remoteness from final demand (upstreamness), using a CES aggregator:

$$q = \varphi \, \lambda^{-\gamma} \left(\int_{U^X}^{U^M} x(u)^{\frac{\sigma-1}{\sigma}} du + q_M^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\rho\sigma}{\sigma-1}}$$

Producing higher-quality goods is harder ($0 \le \gamma < 1$), Hallak and Sivadasan (2013) and incurs fixed costs λ^{α} .

Production/value chain

• Consumers value quality (λ) and maximize a CES utility function over available varieties Ω_{υ} :

$$\Upsilon = \left(\int_{\Omega_{\upsilon}} \left[\lambda(\upsilon)q(\upsilon)\right]^{rac{arepsilon-1}{arepsilon}}
ight)^{rac{arepsilon}{arepsilon-1}}$$

• Production of each variety v requires the completion of a continuum of tasks u, indexed by their remoteness from final demand (upstreamness), using a CES aggregator:

$$q = \varphi \, \lambda^{-\gamma} \left(\int_{U^X}^{U^M} x(u)^{\frac{\sigma-1}{\sigma}} du + q_M^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\rho\sigma}{\sigma-1}}$$

Producing higher-quality goods is harder ($0 \le \gamma < 1$), Hallak and Sivadasan (2013) and incurs fixed costs λ^{α} .

• Firms choose the quantity $(q_M, x(u))$ and processing level (U^M, U^X) of inputs they purchase and produce in-house, and the quality of output (λ) that maximize their profits:

$$\pi = pq - \left(p_M q_M + \int_{U^X}^{U^M} \left[c(u)x(u) + F(u)\right] du + \lambda^{\alpha}\right)$$

Mechanisms at work

• Demand effect: quality upgrading permits to charge a higher price: $\frac{dp}{d\lambda} > 0$

 \Rightarrow a higher demand \Rightarrow higher firm revenues: $\frac{d(pq)}{d\lambda} > 0$

• Cost effect: producing higher quality is binding and lowers market share:

 $\begin{array}{l} \Rightarrow \text{ adverse selection towards low-quality varieties:} \quad \frac{d(pq)}{d\lambda} < 0 \\ \Rightarrow \text{ requires more inputs:} \quad \frac{dq_M}{d\lambda} > 0 \text{ , } \quad \frac{dx(u)}{d\lambda} > 0 \\ \Rightarrow \text{ higher fixed costs:} \quad \frac{d(F(u)+\lambda^{\alpha})}{d\lambda} > 0 \\ \Rightarrow \text{ higher marginal costs:} \quad \frac{d(c(u)x(u))}{d\lambda} > 0 \end{array}$

• Ambiguous overall effect on profits: $\frac{d\pi}{d\lambda} \ge 0$

Model predictions

Under reasonable assumptions:


• it is profitable to increase production in order to match a higher demand: $\rho > \frac{\sigma - 1}{\sigma}$

• difference in the cost of inputs if purchased or produced in-house: $\frac{c(U^M) \times (U^M)}{p_M q_M} \text{ and } \frac{F_M}{p_M q_M} \text{ are sufficiently small}$

- **Quality upgrading** $(\lambda \uparrow)$ determines firms to:
 - purchase more upstream (less processed) inputs:
 - produce more downstream (more processed) goods:
 - \Rightarrow perform in house a larger span of production stages:

 $\frac{dU^{M}}{dN} > 0$

Model predictions

Under reasonable assumptions:

- it is profitable to increase production in order to match a higher demand: $\rho > \frac{\sigma 1}{\sigma}$
- difference in the cost of inputs if purchased or produced in-house: $\frac{c(U^M) \times (U^M)}{p_M q_M} \text{ and } \frac{F_M}{p_M q_M} \text{ are sufficiently small}$
- **Quality upgrading** $(\lambda \uparrow)$ determines firms to:
 - purchase more upstream (less processed) inputs:
 - produce more downstream (more processed) goods:
 - \Rightarrow perform in house a larger span of production stages:
- $\frac{d(U^M U^X)}{d\lambda} > 0$

 $\frac{dU^M}{dN} > 0$

 $\frac{dU^{X}}{dY} < 0$

- Quality upgrading (λ ↑) and a larger span of in-house produced stages (U^M - U^X ↑) leads to:
 - an increase in variable & fixed costs, input purchases, and value added;
 - an ambiguous effect on profits

Data

Necessary data (firm level):

- \bullet upstreamness (\neg transformation) of purchased inputs and produced goods
- quality of produced goods
- firm level controls

Employed data:

▷ on French agri-food firms, 2004–2017

AMADEUS	turnover, $\#$ employees, , economic activity (NACE code)
	productivity = turnover per employee
	size class: small, medium, large
French customs	product-level bilateral imports and exports $(q \text{ and } p)$
Sample:	4,595 importing ∩ 5,068 exporting = 3,111 firms in GVCs Exclusion of re-exports at 8-digit CN8 level

▷ US input-output table (BEA), 2012

- + US/French industry correspondences
- + for multiple correspondences, assume equal weights for all industry pairs
- \Rightarrow an input-output table at the level of French industries

405 US industries (42 agrifood) \rightarrow 604 NACE industries (88 agrifood) (NACE I-O table

Upstreamness and position in GVC

- Follow Fally (2012), Antràs et al. (2012), Antràs and Chor (2013)
- Industry upstreamness = weighted average of the number of production stages from final demand for which the industry provides inputs:

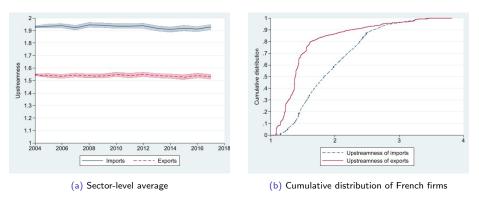
$$\boldsymbol{U}_{r} = 1 \cdot \frac{F_{r}}{Y_{r}} + 2 \cdot \frac{\sum_{s} b_{rs} F_{s}}{Y_{r}} + 3 \cdot \frac{\sum_{s} \sum_{k} b_{rk} b_{ks} F_{s}}{Y_{r}} + \dots \quad \in [1, \infty]$$

 F_r , Y_r , and b_{rs} from a highly disaggregated input-output table

high U_r : close to production factors; low U_r : close to final demand

Upstreamness and position in GVC

- Follow Fally (2012), Antràs et al. (2012), Antràs and Chor (2013)
- Industry upstreamness = weighted average of the number of production stages from final demand for which the industry provides inputs:


$$\boldsymbol{U}_{r} = 1 \cdot \frac{F_{r}}{Y_{r}} + 2 \cdot \frac{\sum_{s} b_{rs} F_{s}}{Y_{r}} + 3 \cdot \frac{\sum_{s} \sum_{k} b_{rk} b_{ks} F_{s}}{Y_{r}} + \dots \quad \in [1, \infty]$$

 F_r , Y_r , and b_{rs} from a highly disaggregated input-output table

high U_r : close to production factors; low U_r : close to final demand

- Firm-level upstreamness: combine industry-level upstreamness with the product composition of firm's imports and exports
 - Upstreamness of imports: $U_f^M = \sum_r \frac{M_{f_r}}{M_f} U_r$ purchased inputsUpstreamness of exports: $U_f^X = \sum_r \frac{X_{f_r}}{X_f} U_r$ produced outputPosition in GVC: $GVC_f = U_f^M U_f^X$ span of in-house production stages

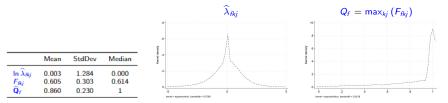
NACE industry	Upstreamness
Seed processing for propagation	3.61
Growing of cereals (except rice), leguminous crops and oil seeds	3.45
Raising of dairy cattle	2.98
Manufacture of oils and fats	2.72
Manufacture of starches and starch products	2.16
Processing of tea and coffee	1.47
Processing and preserving of meat	1.44
Manufacture of wine from grape	1.23
Manufacture of prepared meals and dishes	1.20
Manufacture of bread; manufacture of fresh pastry goods and cakes	1.10
Retail sale of bread, cakes, flour confectionery and sugar confectionery in specialised stores	1.01
Retail sale of fruit and vegetables in specialised stores	1.01

Agbekponou • Cheptea • Latouche

Quality of produced goods

• Trade literature: quality is identified relative to other firms for each product×destination. Khandelwal et al. (2013): at the same price, higher quality products face higher demand

$$\ln q_{fkj} + \varepsilon_k \ln p_{fkj} = FE_{jkt} + e_{fkj} \qquad \Rightarrow \qquad \ln \widehat{\lambda}_{fkj} = \frac{e_{fkj}}{\varepsilon_k - 1}$$


Quality of produced goods

- Trade literature: quality is identified relative to other firms for each product × destination. Khandelwal et al. (2013): at the same price, higher quality products face higher demand $\ln q_{fkj} + \varepsilon_k \ln p_{fkj} = FE_{jkt} + e_{fkj} \implies \ln \hat{\lambda}_{fkj} = \frac{\hat{e}_{fkj}}{2\pi i \pi}$
 - $\cdots q_{ikj} + \varepsilon_k \cdots \rho_{ikj} + \varepsilon_{jkl} + \varepsilon_{ikj} + \cdots + \varepsilon_{ikj} + \varepsilon_{k-1}$
- Obtain firm-level quality by combining results across all products and destinations
 - $\Rightarrow \text{Cumulative distribution of estimated quality } \widehat{\lambda}_{fkj}, \text{ obtained with } \varepsilon_k \text{ from Ossa (2015)}$ $F_{fkj} = Pr\left(\lambda \leq \widehat{\lambda}_{fkj}\right) \quad \text{the share of firms with lower quality than firm } f$ $\widehat{\mathbf{Q}}_f = \max_{kj} \left(F_{fkj}\right) \qquad f' \text{s top-quality product } \left(0 < \widehat{\mathbf{Q}}_f \leq 1\right) \qquad \widehat{\mathbf{Q}}_f \uparrow = \text{quality upgrading}$

Quality of produced goods

- Trade literature: quality is identified relative to other firms for each product × destination. Khandelwal et al. (2013): at the same price, higher quality products face higher demand $\ln q_{fkj} + \varepsilon_k \ln p_{fkj} = FE_{jkt} + e_{fkj} \Rightarrow \ln \hat{\lambda}_{fkj} = \frac{\hat{e}_{fkj}}{\varepsilon_{j+1}}$
- Obtain firm-level quality by combining results across all products and destinations
 - $\Rightarrow \text{Cumulative distribution of estimated quality } \widehat{\lambda}_{fkj}, \text{ obtained with } \varepsilon_k \text{ from Ossa (2015)}$ $F_{fkj} = \Pr\left(\lambda \leq \widehat{\lambda}_{fkj}\right) \text{ the share of firms with lower quality than firm } f$

 $\widehat{\boldsymbol{\mathsf{Q}}}_{f} = \max_{\textit{kj}} \left(\textit{F}_{\textit{fkj}} \right) \qquad \textit{f's top-quality product } \left(0 < \widehat{\boldsymbol{\mathsf{Q}}}_{f} \leq 1 \right) \qquad \widehat{\boldsymbol{\mathsf{Q}}}_{f} \uparrow = \textit{quality upgrading}$

Empirical strategy

• Test model prediction 1

$$\{U_{ft}^{M}, U_{ft}^{X}, U_{ft}^{M} - U_{ft}^{X}\} = \beta + \delta \widehat{\mathbf{Q}}_{ft} + \Lambda \operatorname{Controls}_{f,t-1} + FE_{f} + FE_{rt} + u_{ft}$$

$\widehat{\mathbf{Q}}_{ft}$	-	measure of product quality
$egin{array}{lll} U^M_{ft} & (U^X_{ft}) \ U^M_{ft} - U^X_{ft} \end{array}$	=	upstreamness of imports (exports) of firms
$U_{ft}^M - U_{ft}^X$	=	Intensity of GVC participation
Controls _{f,t-1}	=	time-varying firm characteristics (productivity and size group)
FE _f	-	firm fixed effects
FErt	-	industry-by-year dummies (firm's main activity NACE Rev.2 4-digit)
U _{fjt}	-	error term

Reverse causality: endogeneity of quality

⇒ Instrument: the change in foreign demand for firms' products.

$$\mathit{Inst}_{\mathit{ft}} = \mathsf{ln}\left(X_{\mathit{f},\mathit{t-1}}\left(1 + \sum_{j \neq \mathsf{France},\mathit{k}} \frac{X_{\mathit{fjk},0}}{X_{\mathit{f},0}} \cdot \frac{X_{\mathsf{RoW},j\mathit{kt}} - X_{\mathsf{RoW},j\mathit{k},\mathit{t-1}}}{X_{\mathsf{RoW},j\mathit{k},\mathit{t-1}}}\right)\right)$$

- OLS estimates and IV regressions
- Test model predictions 2.1 and 2.2

 $\Theta_{ft} = \beta + \delta \{ \widehat{\mathbf{Q}}_{ft}, U_{ft}^{M}, U_{ft}^{X}, U_{ft}^{M} - U_{ft}^{X} \} + \Lambda \operatorname{Controls}_{ft} + FE_{f} + FE_{rt} + u_{ft}$

 Θ_{ft} – log of raw material purchases, wage bill, value added and profits

OLS estimates

Agbekponou • Cheptea • Latouche

Test the model prediction 1: Quality $\uparrow \Rightarrow U^{M} \uparrow, U^{X} \downarrow, GVC \uparrow$

Sample	OLS			IV			
	(1)	(2)	(3)	1st Stage (4)	(5)	(6)	(7)
	(U_{ft}^M)	(U_{ft}^X)	$(U_{ft}^M - U_{ft}^X)$	Quality _{ft}	(U_{ft}^M)	(U_{ft}^X)	$(U_{ft}^M - U_{ft}^X)$
Instrument _{ft}				0.0147*** (0.0021)			
Quality _{ft}	0.0448* (0.0233)	-0.0722 ^{**} (0.0338)	0.1170 ^{***} (0.0420)		0.2784 (0.1906)	-0.8690*** (0.2661)	1.1474 ^{***} (0.3320)
In $Productivity_{f,t-1}$	0.0128 (0.0155)	-0.0209* (0.0114)	0.0337* (0.0201)	0.0184** (0.0079)	0.0087 (0.0165)	-0.0064 (0.0149)	0.0150 (0.0230)
Firm size:							
$Small_{f,t-1}$	reference	reference	reference	reference	reference	reference	reference
$medium_{f,t-1}$	0.0291 (0.0324)	-0.0121 (0.0233)	0.0412 (0.0401)	0.0126 (0.0149)	0.0223 (0.0337)	-0.0087 (0.0291)	0.0310 (0.0455)
$large_{f,t-1}$	0.0657 (0.0488)	-0.0024 (0.0409)	0.0681 (0.0564)	0.0264 (0.0221)	0.0574 (0.0511)	0.0197 (0.0488)	0.0377 (0.0648)
Fixed effects		firm, indust	ry-year		firm, ind	ustry-year	
Observations	8,358	8,358	8,358	7,872	7,872	7,872	7,872
R^2	0.777	0.822	0.726	0.600	0.779	0.832	0.737
F-stat Endogeneity test					50.1864 1.5431	50.1864 10.4039***	50.1864 11.1024***

Table: Test of model predictions - Quality and firms' position in GVCs

- ⇒ High quality firms import more upstream inputs and export more transformed products, therefore are engaged in more production stages. The between component Omission of controls
- ⇒ Weak or non significant effect of productivity on firms' upstreamness and intensity of GVC participation.
 Productivity effect

Agbekponou • Cheptea • Latouche

Test prediction 2.1: Quality $\uparrow \Rightarrow$ firms' costs \uparrow , value added \uparrow , profits $\uparrow\downarrow$

Table: Test of model predictions - Quality, input costs, value added and profits

Dep. variables:	Log Raw In	puts	Log Wagb	Log Wagbill		Log Value added		fits
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Quality _{ft}	0.1526*** (0.0336)	0.0976 ^{***} (0.0363)	0.0540*** (0.0195)	0.0310* (0.0178)	0.0613** (0.0260)	0.0155 (0.0277)	-0.0133 (0.0677)	0.0368 (0.0868)
In Productivity _{ft}		0.6912*** (0.0732)		0.0663 (0.0451)		0.2926*** (0.0488)		0.6832*** (0.0727)
Firm size:								
Small _{ft} medium _{ft} large _{ft}		reference 0.5923*** (0.0533) 1.4593*** (0.1624)		reference 0.4289*** (0.0377) 1.0908*** (0.1237)		reference 0.4268*** (0.0445) 0.9594*** (0.1188)		reference 0.3581*** (0.0995) 0.7308*** (0.2082)
Fixed effects		(0.1024)		()	ustry-year	(0.1188)		(0.2082)
Observations R ²	13,423 0.959	8,722 0.971	13,431 0.970	8,778 0.980	12,835 0.959	8,402 0.965	10,789 0.851	6,900 0.861

- ⇒ High quality firms increase total costs and value added mainly through scaling up of firms' operations.
- \Rightarrow Non-significant relationship between quality and profits: "demand effect" and "cost effect" offeset each other
- ⇒ The between component of the effect of quality on firm's attributes is stronger, even in the profit regression which become significantly positive. Between effect

Test prediction 2.2: *GVC* $\uparrow \Rightarrow$ firms' costs \uparrow , value added \uparrow , profits $\uparrow\downarrow$

Table: Firms' position in GVCs, input costs, value added and profits - The within effect

Dep. variables:	Log Raw	Inputs	Log Wa	Log Wagbill		Log Value added		Log Profits	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
$(U_{ft}^M-U_{ft}^X)$	0.0214 (0.0132)	0.0108 (0.0124)	0.0060 (0.0119)	0.0027 (0.0092)	0.0106 (0.0129)	0.0014 (0.0124)	0.0153 (0.0285)	0.0068 (0.0345)	
In Productivity _{ft}		0.6915*** (0.0719)		0.0690 (0.0442)		0.2981*** (0.0480)		0.6730*** (0.0714)	
Firm size:									
Small _{ít} medium _{ít} large _{ít}		reference 0.5813*** (0.0520) 1.4460*** (0.1627)		reference 0.4170*** (0.0370) 1.0780*** (0.1236)		reference 0.4197*** (0.0432) 0.9522*** (0.1185)		reference 0.3569*** (0.0967) 0.7306*** (0.2069)	
Fixed effects				firm, in	dustry-year				
Observations R ²	13,956 0.960	8,983 0.971	13,967 0.970	9,043 0.981	13,349 0.959	8,662 0.965	11,224 0.848	7,106 0.861	

 \Rightarrow No confirmation of model prediction 2.2 (the *within effect*)

⇒ However, confirmation mainly through scaling up of firms' operations with the between component.
Between effect

Robust tests

 Infer quality measure by exploiting the trade elasticity parameters from Fontagné et al. (2022).

⇒ Similar results with elasticity parameters from Fontagné et al. (2022). Robust Prediction 1 Robust Prediction 2.1

• Alternative measures of quality

Recall: $\ln \hat{\lambda}_{fjk}$ - estimated quality of firm f output for product k sold in destination j

$$\Rightarrow \text{ Exports-weighted average quality:} \quad \text{Standardize } \ln \widehat{\lambda}_{fjk} \text{:} \quad \Xi_{fjk} = \frac{\ln \widehat{\lambda}_{fjk} - \ln \widehat{\lambda}_{fjk}}{\text{SE}[\ln \widehat{\lambda}_{fjk}]} \\ \widehat{\mathbf{Q1}}_{f} = \sum_{j,k} \frac{X_{fjk}}{X_{f}} \cdot \Xi_{fjk}$$

 \Rightarrow Average (standardized) value of firm-level component of estimated quality $\widehat{\lambda}_{fkj}$

$$\ln q_{fkj} + \varepsilon_k \ln p_{fkj} = FE_{jk} + FE_f + e_{fkj} \quad \Rightarrow \quad \widehat{\mathbf{Q2}}_f = \frac{\widehat{FE}_f - \widehat{FE}_f}{\operatorname{StdErr}(\widehat{FE}_f)}$$

 $\widehat{\mathbf{Q2}}_f = -$ the average standardized quality produced by firm (across product and destinations)

\Rightarrow Similar results with alternative quality measures.

Robust Prediction 1 Robust Prediction 2.1

Conclusion

Question: How product quality affects firms' position in GVCs?

Approach and results:

- Extend Chor, Manova and Yu (2021) to include firms' decision on product quality Prediction 1: Quality ↑ ⇒ a larger span of in-house production stages

 - $\begin{array}{rll} \mbox{Prediction 2.2:} & \mbox{Production stages} \uparrow & \Rightarrow & \mbox{an increase in firms' costs and value-added} \\ & & \mbox{ambiguous (no) effect on profits} \end{array}$
- Test predictions with data on French agri-food firms
- Reverse causality between quality and position in GVC
- Predictions confirmed by data with different quality measures
- More decisive role of quality than productivity in agri-food industry

What strategies for food processors firms and countries?

- How can the industrial policies of developed countries aimed at reconsidering global supply chain decisions towards more reshoring and regionalization be fostered?
- How does quality allow firms to be successful in GVCs?
- Promote high-quality production through optimal trade policies and individual and sectoral innovation.

Test the model prediction 1: The between component

Sample	OLS			IV			
	(1)	(2)	(3)	1st Stage (4)	(5)	(6)	(7)
	(U_{ft}^M)	(U_{ft}^X)	$(U_{ft}^M - U_{ft}^X)$	Quality _{ft}	(U_{ft}^M)	(U_{ft}^X)	$(U_{ft}^M - U_{ft}^X)$
Instrument _{ft}				0.0364*** (0.0015)			
Quality _{ft}	0.0436 (0.0331)	-0.0811** (0.0351)	0.1247*** (0.0471)		0.3214*** (0.1145)	-0.4243*** (0.0998)	0.7457*** (0.1467)
In $Productivity_{f,t-1}$	0.0322* (0.0165)	0.0446*** (0.0137)	-0.0123 (0.0189)	0.0016 (0.0042)	0.0274 (0.0173)	0.0546*** (0.0150)	-0.0272 (0.0199)
Firm size:							
$Small_{f,t-1}$	reference	reference	reference	reference	reference	reference	reference
$medium_{f,t-1}$	0.0191 (0.0218)	0.0123 (0.0191)	0.0068 (0.0265)	0.0237*** (0.0067)	0.0002 (0.0237)	0.0416* (0.0218)	-0.0415 (0.0303)
$large_{f,t-1}$	0.1039* ^{***} (0.0353)	0.0300 (0.0292)	0.0740*´ (0.0438)	0.0316* ^{***} (0.0093)	0.0674*´ (0.0382)	0.0777* ^{**} (0.0318)	-0.0102 (0.0485)
Fixed effects		industry-yea	r	-	indust	ry-year	
Observations <i>R</i> ² F-stat Endogeneity test	8,834 0.222	8,834 0.421	8,834 0.152	8,306 0.277	8,306 0.213 598.1634 7.2388***	8,306 0.426 598.1634 15.1403***	8,306 0.167 598.1634 22.8765***

Table: Quality and firms' position in GVCs - The between effect

Test the model prediction 1: Without controls

Table: Quality and firms' position in GVCs

Sample	OLS			IV			
	(1)	(2)	(3)	1st Stage (4)	(5)	(6)	(7)
	(U_{ft}^M)	(U_{ft}^X)	$(U_{ft}^M - U_{ft}^X)$	Quality _{ft}	(U_{ft}^M)	(U_{ft}^X)	$(U_{ft}^M - U_{ft}^X)$
Sample			Panel A: San	nple with observed	controls on	ly	
Instrument _{ft}				0.0164 ^{***} (0.0021)			
Quality _{ft}	0.0546** (0.0236)	-0.0806** (0.0324)	0.1352*** (0.0408)	()	0.3037* (0.1821)	-0.9146*** (0.2419)	1.2182*** (0.2998)
Observations R^2 F-stat Endogeneity test	8,803 0.773	8,803 0.813	8,803 0.714	8,183 0.612	8,183 0.771 63.5697 2.0132	8,183 0.828 63.5697 14.1762***	8,183 0.726 63.5697 15.6961***
Sample		Pa	nel B: Sample w	vith observed and	unobserved o	controls	
Instrument _{ft}				0.0167 ^{***} (0.0015)			
Quality _{ft}	0.0194 (0.0150)	-0.0481** (0.0215)	0.0675** (0.0265)	()	0.1343 (0.1233)	-0.7380*** (0.1598)	0.8723*** (0.1962)
Observations R ² F-stat Endogeneity test	18,204 0.745	18,204 0.792	18,204 0.685	16,710 0.588	16,710 0.742 121.1356 0.9193	16,710 0.809 121.1356 21.5429***	16,710 0.697 121.1356 19.1468***
Fixed effects In Productivity _{ft} <i>Firm size</i>	f N N	irm, industry N N	-year N N	N N	firm, inc N N	lustry-year N N	N N

Productivity effect: Productivity $\uparrow \Rightarrow U^{M} \uparrow, U^{X} \downarrow, GVC \uparrow$

Sample	OLS			IV			
	(1)	(2)	(3)	1st Stage (4)	(5)	(6)	(7)
	(U_{ft}^M)	(U_{ft}^X)	$(U_{ft}^M - U_{ft}^X)$	Quality _{ft}	$\overline{(U_{ft}^M)}$	(U_{ft}^X)	$(U_{ft}^M - U_{ft}^X)$
Instrument _{ft}				0.0092*** (0.0035)			
In Productivity _{ft}	0.0405** (0.0170)	-0.0142 (0.0115)	0.0547*** (0.0208)		0.6692* (0.3799)	-1.6613** (0.7672)	2.3304** (0.9982)
Firm size:							
Small _{ft}	reference	reference	reference	reference	reference	reference	reference
medium _{ft}	0.0698** (0.0276)	-0.0028 (0.0208)	0.0727** (0.0361)	-0.4329*** (0.0615)	0.3250* (0.1722)	-0.7098** (0.3565)	1.0348** (0.4668)
large _{ft}	0.0933*´ (0.0488)	0.0231 (0.0382)	0.0702 (0.0605)	-0.6849 ^{***} (0.1573)	0.5044*´ (0.2826)	-1.0992 [*] (0.6241)	1.6037* ^{**} (0.8153)
Fixed effects	fi	rm, industry-	vear		firm, in	dustry-year	
Observations	9,068	9,068	9,068	8,416	8,416	8,416	8,416
R^2	0.772	0.812	0.716	0.911	0.770	0.829	0.728
F-stat Endogeneity test					6.9958 4.1260**	6.9958 17.2461***	6.9958 21.3290***

Table: Productivity and firms' position in GVCs

 \Rightarrow High productivity firms perform in-house a larger span of production stages (CMY 2021).

 \Rightarrow However, more decisive role of higher quality than productivity .

-

Test prediction 2.1: The between component

Dep. variables:	Log Raw In	Log Raw Inputs		Log Wagbill		added	Log Profit	s
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Quality _{ft}	1.8792*** (0.1073)	0.2939*** (0.0601)	1.6970*** (0.0999)	0.3843*** (0.0635)	1.7169*** (0.1044)	0.3953*** (0.0741)	2.1243*** (0.1474)	0.6702*** (0.1415)
In Productivity _{ft}		1.1525*** (0.0273)		0.1941*** (0.0238)		0.4134*** (0.0321)		0.8515*** (0.0722)
Firm size:								
Small _{ft} medium _{ft} large _{ft}		reference 1.7941*** (0.0376) 3.6937*** (0.0607)		reference 1.7733*** (0.0354) 3.9045*** (0.0763)		reference 1.6698*** (0.0389) 3.8354*** (0.0869)		reference 1.5351*** (0.0702) 4.0293*** (0.1638)
Fixed effects				indu	stry-year			
Observations R^2	13,934 0.232	9,179 0.815	13,929 0.172	9,234 0.767	13,290 0.170	8,831 0.740	11,327 0.155	7,411 0.523

Table: Quality, input costs, value added and profits - Cross-firm specification

⇒ The effect of quality on firm's attributes is stronger, even in the profit regression which become significantly positive.
Back

Test prediction 2.2: The between component

Table: Firms' position in GVCs, input costs, value added and profits - The between effect

Dep. variables:	Log Raw I	nputs	Log Wagb	oill	Log Valu	e added	Log Profits	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$(U^M_{ft}-U^X_{ft})$	0.1134** (0.0522)	0.0300 (0.0264)	0.1333*** (0.0472)	0.0112 (0.0247)	0.1066 ^{**} (0.0479)	-0.0021 (0.0266)	-0.0215 (0.0635)	-0.0821 (0.0530)
In $Productivity_{\hat{\pi}}$		1.1638*** (0.0269)		0.2086*** (0.0240)		0.4318*** (0.0321)		0.8867*** (0.0716)
Firm size:								
Small _{ft} medium _{ft} large _{ft}		reference 1.8215*** (0.0370) 3.7431*** (0.0599)		reference 1.8109*** (0.0358) 3.9699*** (0.0731)		reference 1.7127*** (0.0394) 3.9044*** (0.0831)		reference 1.6280*** (0.0712) 4.1718*** (0.1595)
Fixed effects Observations R ²	14,466 0.172	9,446 0.813	14,462 0.111	indust 9,505 0.762	ry-year 13,801 0.102	9,092 0.736	11,770 0.092	7,618 0.518

⇒ Weak confirmation mainly through scaling up of firms' operations with the between component. Back

Robustness of Prediction 1: Elasticity from Fontagné et al. (2022)

Table: Quality and firms' position in GVCs – Estimated quality using elasticities from Fontagné et al. (2022)

Sample	OLS			IV			
	(1)	(2)	(3)	1st Stage	(1)	(2)	(3)
	(U_{ft}^M)	(U_{ft}^X)	$(U_{ft}^M - U_{ft}^X)$	Quality _{ft}	(U_{ft}^M)	(U_{ft}^X)	$(U_{ft}^M - U_{ft}^X)$
Instrument _{ft}				0.0136*** (0.0020)			
Quality _{ft}	0.0182 (0.0241)	-0.0728** (0.0323)	0.0910** (0.0410)		0.3046 (0.2063)	-0.9781*** (0.2922)	1.2828*** (0.3645)
In $Productivity_{f,t-1}$	0.0153 (0.0159)	-0.0236** (0.0118)	0.0390* (0.0206)	0.0228*** (0.0082)	0.0065 (0.0170)	0.0004 (0.0163)	0.0061 (0.0246)
Firm size:							
$Small_{f,t-1}$	reference	reference	reference	reference	reference	reference	reference
$medium_{f,t-1}$	0.0314 (0.0328)	-0.0053 (0.0238)	0.0367 (0.0411)	0.0182 (0.0155)	0.0212 (0.0346)	0.0057 (0.0306)	0.0155 (0.0480)
$large_{f,t-1}$	0.0684 (0.0491)	0.0002 (0.0406)	0.0682 (0.0565)	0.0291 (0.0216)	(0.0554 (0.0519)	0.0313 (0.0468)	0.0241 (0.0647)
Fixed effects	f	irm, industry	/-year		firm, ii	ndustry-year	
Observations	8,271	8,271	8,271	7,813	7,813	7,813	7,813
R ² F-stat	0.777	0.823	0.726	0.608	0.779 47.4342	0.833 47.4342	0.737 47.4342
Endogeneity test					2.1200	10.9452***	12.4967***

Robustness of Prediction 1: Alternative measure of quality

Sample	OLS			IV			
	(1)	(2)	(3)	1st Stage (4)	(5)	(6)	(7)
	(U_{ft}^M)	(U_{ft}^X)	$(U_{ft}^M - U_{ft}^X)$	Quality _{ft}	(U_{ft}^M)	(U_{ft}^X)	$(U_{ft}^M - U_{ft}^X)$
Quality _{ft}			Pan	el A: Weighted qu	ality		
Instrument _{ft}				0.0604*** (0.0072)			
Quality _{ft}	-0.0031 (0.0070)	-0.0254** (0.0106)	0.0222* (0.0129)		0.0673 (0.0468)	-0.2051*** (0.0617)	0.2724 ^{***} (0.0778)
Observations R ² F-stat Endogeneity test	8,284 0.776	8,284 0.826	8,284 0.728	7,828 0.633	7,828 0.778 70.5047 2.6551	7,828 0.833 70.5047 9.4400 ^{***}	7,828 0.737 70.5047 11.6112***
Quality	Panel B: Average standardized quality						
Instrument _{ft}				0.0357*** (0.0079)			
Quality _{ft}	-0.0043 (0.0072)	-0.0174** (0.0079)	0.0132 (0.0112)	(*****)	0.1197 (0.0875)	-0.3249*** (0.1049)	0.4446 ^{***} (0.1430)
Observations R ² F-stat Endogeneity test	7,150 0.769	7,150 0.851	7,150 0.736	6,968 0.650	6,968 0.772 20.5186 2.1880	6,968 0.853 20.5186 9.4775***	6,968 0.740 20.5186 10.2720***
Fixed effects	Y	firm, industry	y-year Y	Y	firm, inc Y	lustry-year	Y
In Productivity _{f,t-1} Firm size _{f,t-1}	Y Y	Y Y	Y Y	Y Y	Y Y	Y Y	Y Y

Table: Quality and firms' position in GVCs -Alternative measure of quality

Robustness of Prediction 2.1: Elasticity from Fontagné et al. (2022)

Table: Quality, input costs, value added and profits – Estimated quality using elasticities from Fontagné et al. (2022)

Dep. variables:	Log Raw In	Log Raw Inputs		Log Wagbill		Log Value added		Log Profits	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Quality _{ft}	0.1235*** (0.0334)	0.0816 ^{**} (0.0369)	0.0735*** (0.0216)	0.0450*** (0.0167)	0.0504** (0.0242)	0.0299 (0.0262)	0.0081 (0.0641)	0.0367 (0.0815)	
In Productivity _{ft}		0.6895*** (0.0732)		0.0675 (0.0452)		0.2938*** (0.0487)		0.6684*** (0.0721)	
Firm size:									
Small _{ft} medium _{ft}		reference 0.5961*** (0.0540)		reference 0.4268*** (0.0379)		reference 0.4239*** (0.0446)		reference 0.3568*** (0.1010)	
large _{ft}		(0.0340) 1.4526*** (0.1601)		(0.0379) 1.0861*** (0.1252)		0.9553*** (0.1204)		(0.1010) 0.6979*** (0.2100)	
Fixed effects				firm, ind	dustry-year				
Observations R ²	13,247 0.959	8,637 0.971	13,257 0.972	8,695 0.981	12,683 0.959	8,327 0.965	10,653 0.851	6,836 0.862	

Robustness of Prediction 2.1: Alternative measure of quality

Table: Quality, input costs, value added and profits - Alternative measures of quality

Dep. variables:	Log Raw In	Log Raw Inputs		Log Wagbill		Log Value added		Log Profits	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Quality			Panel A:	Weighted qu	ality				
Quality _{ft}	0.0483***	0.0311***	0.0145*	0.0114*	0.0155**	0.0050	0.0327	0.0452*	
	(0.0111)	(0.0108)	(0.0075)	(0.0058)	(0.0072)	(0.0087)	(0.0201)	(0.0250)	
Observations R^2	13,309	8,652	13,320	8,709	12,734	8,340	10,697	6,843	
	0.959	0.971	0.970	0.981	0.959	0.965	0.851	0.863	
Quality		Par	el B: Avera	ge standardiz	ed quality				
Quality _{ft}	0.0139	0.0101	0.0017	0.0006	-0.0034	-0.0112	0.0470**	0.0341	
	(0.0127)	(0.0095)	(0.0063)	(0.0059)	(0.0073)	(0.0088)	(0.0202)	(0.0250)	
Observations R^2	11,252	7,430	11,271	7,474	10,861	7,193	9,101	5,940	
	0.961	0.973	0.974	0.980	0.959	0.966	0.853	0.866	
Fixed effects	firm, industry-year								
In Productivity _{ft}	N	Y	N	Y	N	Y	N	Y	
Firm size	N	Y	N	Y	N	Y	N	Y	

Build a detailed input-output table for France

French input-output table: 37 industries; US input-output table: 405 industries (BEA) \implies an input-output table with 604 NACE industries (88 agrifood)

(a) US input-output table

(b) Multiple industry correspondences

Figure: US input-output table structure and correspondences with NACE Rev.2

Build a detailed input-output table for France

			US IO ind 1		US IO	US IO ind 3	
		FR NACE ind 1	FR NACE ind 2	FR NACE ind 3	FR NACE ind 3	FR NACE ind 4	FR NACE ind 5
	FR NACE ind 1	$\frac{1}{9} a_{11}$	$\frac{1}{9} \alpha_{11}$	$\frac{1}{9} \alpha_{11}$	$\frac{1}{6} \alpha_{12}$	$\frac{1}{6} \alpha_{12}$	$\frac{1}{3} a_{13}$
US IO ind 1	FR NACE ind 2	$\frac{1}{9} \alpha_{11}$	$\frac{1}{9} \alpha_{11}$	$\frac{1}{9} \alpha_{11}$	$\frac{1}{6} \alpha_{12}$	$\frac{1}{6} \alpha_{12}$	$\frac{1}{3} a_{13}$
	FR NACE ind 3	$\frac{1}{9} \alpha_{11}$	$\frac{1}{9} \alpha_{11}$	$\frac{1}{9} \alpha_{11}$	$\frac{1}{6} \alpha_{12}$	$\frac{1}{6} \alpha_{12}$	$\frac{1}{3} a_{13}$
US IO	FR NACE ind 3	$\frac{1}{6} a_{21}$	$\frac{1}{6} \alpha_{21}$	$\frac{1}{6} \alpha_{21}$	$\frac{1}{4} \alpha_{22}$	$\frac{1}{4} \alpha_{22}$	$\frac{1}{2} a_{13}$
ind 2	FR NACE ind 4	$\frac{1}{6} \alpha_{21}$	$\frac{1}{6} a_{21}$	$\frac{1}{6} \alpha_{21}$	$\frac{1}{4} a_{22}$	$\frac{1}{4} a_{22}$	$\frac{1}{2} a_{13}$
US IO ind 3	FR NACE ind 5	$\frac{1}{3} \alpha_{31}$	$\frac{1}{3} a_{31}$	$\frac{1}{3} \alpha_{31}$	$\frac{1}{2} \alpha_{21}$	$\frac{1}{2} a_{21}$	a ₃₃

Figure: Equal weights for all correspondences within each pair of industry codes

Build a detailed input-output table for France

	FR NACE ind 1	FR NACE ind 2	FR NACE ind 3	FR NACE ind 4	FR NACE ind 5
FR NACE ind 1	$b_{11} = \frac{1}{9} a_{11}$	$b_{12} = \frac{1}{9} a_{11}$	$b_{13} = \frac{1}{9} \alpha_{11} + \frac{1}{6} \alpha_{12}$	$b_{14} = \frac{1}{6} a_{12}$	$b_{15} = \frac{1}{3} a_{13}$
FR NACE ind 2	$b_{21} = \frac{1}{9} a_{11}$	$b_{22} = \frac{1}{9} a_{11}$	$b_{23} = \frac{1}{9} \alpha_{11} + \frac{1}{6} \alpha_{12}$	$b_{24} = \frac{1}{6} a_{12}$	$b_{25} = \frac{1}{3} a_{13}$
FR NACE ind 3	$b_{31} = \frac{1}{9} a_{11} + \frac{1}{6} a_{21}$	$b_{32} = \frac{1}{9} a_{11} + \frac{1}{6} a_{12}$	$b_{33} = \frac{1}{9} \alpha_{11} + \frac{1}{6} \alpha_{12} + \frac{1}{6} \alpha_{21} + \frac{1}{4} \alpha_{22}$	$b_{34} = \frac{1}{6} a_{12} + \frac{1}{4} a_{22}$	$b_{35} = \frac{1}{3} \alpha_{13} + \frac{1}{2} \alpha_{13}$
FR NACE ind 4	$b_{41} = \frac{1}{6} a_{21}$	$b_{42} = \frac{1}{6} a_{21}$	$b_{43} = \frac{1}{6} \ a_{21} + \frac{1}{4} \ a_{22}$	$b_{44} = \frac{1}{4} a_{22}$	$b_{45} = \frac{1}{2} a_{13}$
FR NACE ind 5	$b_{51} = \frac{1}{3} a_{31}$	$b_{52} = \frac{1}{3} a_{31}$	$b_{53} = \frac{1}{3} \ a_{31} + \frac{1}{2} \ a_{21}$	$b_{54} = \frac{1}{2} a_{21}$	$b_{55} = a_{33}$

Figure: Group weights across NACE industries

back

Industry upstreamness

NACE industry	Upstreamness
Seed processing for propagation	3.61
Growing of cereals (except rice), leguminous crops and oil seeds	3.45
Raising of dairy cattle	2.98
Manufacture of oils and fats	2.72
Manufacture of starches and starch products	2.16
Raising of swine/pigs	2.10
Marine fishing	1.66
Processing and preserving of fish, crustaceans and molluscs	1.60
Manufacture of fruit and vegetable juice	1.47
Processing of tea and coffee	1.47
Growing of pome fruits and stone fruits	1.46
Processing and preserving of meat	1.44
Manufacture of cocoa, chocolate and sugar confectionery	1.39
Growing of vegetables and melons, roots and tubers	1.28
Manufacture of wine from grape	1.23
Manufacture of prepared meals and dishes	1.20
Manufacture of bread; manufacture of fresh pastry goods and cakes	1.10
Manufacture of rusks and biscuits; manufacture of preserved pastry goods and cakes	1.08
Retail sale of bread, cakes, flour confectionery and sugar confectionery in specialised	1.01
Retail sale of meat and meat products in specialised stores	1.01
Retail sale of fruit and vegetables in specialised stores	1.01

Decomposition of sector-level upstreamness

$$\Delta U_t^M = \sum_{f \in \Xi_t^M} \frac{M_{ft}}{M_t} \cdot U_{ft}^M - \sum_{f \in \Psi_t^M} \frac{M_{f,t-1}}{M_{t-1}} \cdot U_{f,t-1}^M + \sum_{f \in \Gamma_t^M} \frac{M_{f,t-1}}{M_{t-1}} \cdot \Delta U_{ft}^M + \sum_{f \in \Gamma_t^M} \Delta \frac{M_{ft}}{M_t} \cdot U_{ft}^M \\ \Delta U_t^X = \sum_{\substack{f \in \Xi_t^X \\ \text{starting firms}}} \frac{X_{ft}}{X_t} \cdot U_{ft}^X - \sum_{\substack{f \in \Psi_t^X \\ \text{starting firms}}} \frac{X_{f,t-1}}{X_{t-1}} \cdot U_{f,t-1}^X + \sum_{\substack{f \in \Gamma_t^X \\ \text{starting firms}}} \frac{X_{f,t}}{X_{t-1}} \cdot U_{ft}^X \\ \frac{K_{f,t-1}}{M_{t-1}} \cdot \Delta U_{ft}^X + \sum_{\substack{f \in \Gamma_t^X \\ \text{starting firms}}} \Delta \frac{X_{ft}}{X_t} \cdot U_{ft}^X \\ \frac{K_{f,t-1}}{M_{t-1}} \cdot \Delta U_{ft}^X + \sum_{\substack{f \in \Gamma_t^X \\ \text{starting firms}}} \Delta \frac{X_{ft}}{X_t} \cdot U_{ft}^X \\ \frac{K_{f,t-1}}{M_{t-1}} \cdot \Delta U_{ft}^X + \sum_{\substack{f \in \Gamma_t^X \\ \text{starting firms}}} \Delta \frac{X_{ft}}{X_t} \cdot U_{ft}^X \\ \frac{K_{f,t-1}}{M_{t-1}} \cdot \Delta U_{ft}^X \\ \frac{K_{f,t-1}}{M_{t-1}} \cdot \Delta U_{ft}^X + \sum_{\substack{f \in \Gamma_t^X \\ \text{starting firms}}} \Delta \frac{K_{f,t}}{M_t} \cdot U_{ft}^X \\ \frac{K_{f,t-1}}{M_{t-1}} \cdot \Delta U_{ft}^X \\ \frac{K_{f,t}}{M_t} \cdot U_{ft}^X \\ \frac{K_{f,t}}{M_t} \cdot U_{ft}^X \\ \frac{K_{f,t}}{M_t} \cdot U_{ft}^X \\ \frac{K_{f,t-1}}{M_{t-1}} \cdot \Delta U_{ft}^X \\ \frac{K_{f,t-1$$

- ⇒ Annual changes in sector-level upstreamness explained mainly by the extensive margin (firms that start/stop exporting/importing) and changes in firms' market shares.
- \Rightarrow Small changes in firms' upstreamness.