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Abstract

Whole Genome Sequencing (WGS) remains a costly or unsuitable method for routine geno-

typing of laying hens. Until now, breeding companies have been using or developing SNP

chips. Nevertheless, alternatives methods based on sequencing have been developed.

Among these, reduced representation sequencing approaches can offer sequencing quality

and cost-effectiveness by reducing the genomic regions covered by sequencing. The aim of

this study was to evaluate the ability of double digested Restriction site Associated DNA

sequencing (ddRAD-seq) to identify and genotype SNPs in laying hens, by comparison with

a presumed reliable WGS approach. Firstly, the sensitivity and precision of variant calling

and the genotyping reliability of ddRADseq were determined. Next, the SNP Call Rate

(CRSNP) and mean depth of sequencing per SNP (DPSNP) were compared between both

methods. Finally, the effect of multiple combinations of thresholds for these parameters on

genotyping reliability and amount of remaining SNPs in ddRAD-seq was studied. In raw

form, the ddRAD-seq identified 349,497 SNPs evenly distributed on the genome with a

CRSNP of 0.55, a DPSNP of 11X and a mean genotyping reliability rate per SNP of 80%. Con-

sidering genomic regions covered by expected enzymatic fragments (EFs), the sensitivity of

the ddRAD-seq was estimated at 32.4% and its precision at 96.4%. The low CRSNP and

DPSNP values were explained by the detection of SNPs outside the EFs theoretically gener-

ated by the ddRAD-seq protocol. Indeed, SNPs outside the EFs had significantly lower

CRSNP (0.25) and DPSNP (1X) values than SNPs within the EFs (0.7 and 17X, resp.). The

study demonstrated the relationship between CRSNP, DPSNP, genotyping reliability and the

number of SNPs retained, to provide a decision-support tool for defining filtration thresholds.

Severe quality control over ddRAD-seq data allowed to retain a minimum of 40% of the

SNPs with a CcR of 98%. Then, ddRAD-seq was defined as a suitable method for variant

calling and genotyping in layers.
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Introduction

The development of Next-Generation Sequencing (NGS) approaches has revolutionized

genetic marker discovery and genotyping. Depending on the chosen approach, the balance

between the marker density, genotype accuracy, the degree of multiplexing of individuals and

the experimental costs may vary. Among these approaches, whole genome sequencing (WGS)

allows the simultaneous detection and genotyping of the majority of individual polymor-

phisms at a chosen sequencing depth [1–3]. However, it is still challenging mostly because of

the sequencing costs per sample. Then, cheaper alternative methods such as low depth WGS

have been studied [4, 5]. Compared to deeper WGS, low depth WGS offers a large panel of sin-

gle nucleotide polymorphisms (SNPs) per sample while increasing inter-individual variability

and lowering genotyping accuracy [2, 6]. Moreover, sequencing the whole genome of every

individual in a population is often unnecessary, as many biological questions requirering geno-

mic markers (population genetics, genomic selection, genetic diversity studies. . .) can be

answered using only a subset of genomic regions [6]. Alternative approaches as SNP chips can

be used to genotype only a subset of SNP [7]. But, compared to WGS, the selection of a subset

of SNPs distributed equidistantly on the genome with maximal MAF values leads to ascertain-

ment bias, causing issues in the interpretation of genetic diversity in the population [8–10].

Restriction site associated DNA sequencing (RAD-seq) is a great alternative to WGS. RAD-

seq are de novo approaches targeting a subset of the genome, thus reducing its complexity and

providing a reliable set of markers. Practically, these sequencing methods begin by an enzy-

matic digestion followed by a filtration step based on the size of the enzymatic fragments

(EFs). Then, remaining EFs are amplified by PCR to create a library. The fragments of this

library are then sequenced from each end. Depending on sequencing capabilities and fragment

size, the central part may not be sequenced (The size filtration step helps to limit this gap). The

diversity of restriction enzymes (REs) available and ways to combine them make RAD-seq

methods versatile assay tools [6]. With a good reference genome, the reads can be mapped,

which improves the proportion of markers shared between individuals [6, 11, 12].

The low proportion of shared markers between individuals is a common drawback of

RAD-seq approaches. During DNA digestion, REs recognize a specific motif called a restric-

tion site (RS) to cut the DNA. With ddRAD-seq, two different REs will recognize two different

restriction sites. When a restriction site is methylated, an RE sensitive to methylation will not

be able to access it, and the fragment will not be created. When a mutation occurs in a restric-

tion site, this may be modified and the fragment will not be created either. A mutation can also

be responsible for the creation of a restriction site and therefore the creation of a new frag-

ment. These phenomena usually occur on only one of the 2 chromosomes. So, when the enzy-

matic fragment is sequenced, only one chromosome will be sequenced. The result will be

incomplete genotyping, leading to an interpretation of a homozygous genotype.

Thus, mutations in a RS tends to misestimate genetic diversity within the population [13].

PCR bias are also a common bias of RAD-seq approaches leading to a miss estimation of

genetic diversity [14]. Numerous studies have demonstrated methods to mitigate variant call-

ing and genotyping errors from library preparation to bioinformatics processing of sequencing

data [15].

To ensure the lowest possible error rate, all studies systematically apply quality control to

variant calling and genotyping data [16]. The most common quality control filters are the call

rate SNP (CRSNP) [17, 18] and average sequencing depth per SNP (DPSNP) [13, 19, 20]. These

filters increase the chances for a SNP to be detected and that allelic frequencies will be well rep-

resented in the population. They also ensure to limit the impact of mutations in the RS and

methylations on the final data set [13, 21]. Other filters, such as the probability that the allele
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frequency distribution respects the Hardy-Weinberg equilibrium (HWE) or the minor allele

frequency (MAF) [11] are commonly used to identify and remove SNPs with a high genotyp-

ing error rate. The thresholds chosen for each of these filters are rarely justified in the bibliog-

raphy [22] and depend greatly on the application of the study [6]. Some quality control filter

thresholds are almost standardized, while others vary from study to study. However, in the

case of sequencing methods based on genome reduction, losing genetic information, or

wrongly assuming that all SNPs are correct after quality control, can have significant conse-

quences for the conclusions of a study, depending on the application [15, 22–26]. But, because

of the infinite number of events that cause genotyping errors, it is impossible to hope to get rid

of them entirely [27]. If not, the studies recommend at least to quantify them in order to give a

confidence interval to their results [26–28].

Variant calling and genotyping errors can be quantified through the introduction of repli-

cate sample, by comparing the results of the two sequencings with each other. Variants that are

not common to both replicates will be considered erroneous [12, 26, 28]. However, this

method cannot identify genotyping errors due to mutations in RS [29] which is a major biases

for RAD-seq approaches. Then, the best way to quantify the variant calling and genotyping

quality of a sequencing method is to compare it to another more reliable reference method

[27, 29]. The availability of sequencing data reliable enough to be considered as a reference

representing the "truth", on the same genomic regions as the RAD-seq method, offers the pos-

sibility of calculating the sensitivity and accuracy of the RAD-seq method. Sensitivity corre-

sponds to the ability of the RAD-seq method to detect all the SNPs detected by the reference

method, in the genomic regions it covers. Precision, on the other hand, reflects the rate of loci

wrongly considered as SNPs by RAD-seq. Sensitivity and accuracy are two indicators of the

amount of variant calling and genotyping errors that are rarely found in the literature, and

even less so for RAD-seq approaches [3, 20] although they have been reported in other studies

[30, 31]. The reliability of sensitivity and precision measurements depends on the quality of

the sequencing data used as a reference. In literature, genotypes obtained by a RAD-seq

approaches have already been compared to considered “more reliable approaches” such as

Sanger sequencing [32], SNP chips [19], or even WGS [29] but never for layers.

Among RAD-seq approaches, double digest Restriction site Associated DNA sequencing

(ddRAD-seq) is a method which, thanks to the use of two different RE to digest DNA and a

size filtration step for EFs, reduces the inter-individual variability of EFs generated and SNPs

detected compared with other RAD-seq methods. It drastically reduces the rate of variant call-

ing and genotyping errors compared with other RAD-seq approaches. The use of two REs also

facilitates adapter design and reduces sequencing costs per individual and per base, thus offer-

ing the best multiplexing capability compared with other RAD-seq approaches [14, 24]. More-

over, ddRAD-seq is a sequencing method that can be customized (RE choice, filtering

method) to suit the needs of each study [6, 24, 33]. This makes ddRAD-seq a reliable method

for variant discovery and genotyping of plants [33–38] and animals [39–43]. But, as with other

RAD-seq methods, there is no consensus in the literature on the quality control and its filters,

according to application, species or protocol features. Furthermore, the thresholds chosen for

quality control filters are often not justified or based on other studies. Their real impact on the

quality of genotyping data is rarely studied.

But, despite its bias, ddRAD-seq represents a major opportunity for the poultry industry as

a small number of markers is sufficient to perform for various applications such as genome-

wide association studies [44], linkage disequilibrium calculation [45], CNV detection [46],

genomic selection [47, 48] or new variant discovery. ddRAD-seq is cheaper than deep WGS or

HD chips and most of the time more accurate than low depth WGS in animal species. Com-

pared with LD chips, RAD-seq sequencing enables the integration of the whole genome
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including micro-chromosomes and new markers unavailable on the HD chip. These micro-

chromosomes are not well represented on commercial chips. The markers present on the LD

chips come from the Affimetrix HD commercial chip [45], which was designed at the time of

the galGal4 version of the reference genome (Nov, 2011). At that time, many chromosomes

were not fully sequenced. As a result, several micro-chromosomes do not show any SNPs on

the HD chip.

Then, the aim of this study is to assess ddRAD-seq quality of sequencing in terms of variant

calling and genotyping, for bi-allelic markers, according to a set of population scale filtering

options by comparison with 20X WGS. The 20X WGS was taken as a reference, as an effective

coverage of 15X is considered as sufficient to achieve high-quality genotyping for WGS [2],

The three parts of this work are (i) to describe and compare the SNP calling and genotyping

data between WGS and ddRAD-seq, more precisely, (ii) to estimate sensitivity and precision

of ddRADseq SNP calling and finally, (iii) to study the genotype concordance of the common

SNP between deep WGS and ddRAD-seq.

Results

Genome scale parameters

With the 20X WGS, 9,219,123 bi-allelic SNPs were detected on chromosomes 1 to 39 and Z

and 51,050 on contigs. With ddRAD-seq, 349,497 bi-allelic SNPs were detected on chromo-

somes 1 to 39 and Z and 712 on contigs. There were 327,364 SNP common to both methods.

In both cases, at least half of the SNPs (60.9% in 20X WGS and 50.8% in ddRAD-seq) were

located on the macro-chromosomes (1-5). Both methods obtained similar results regarding

the percentage of SNPs detected on the intermediate chromosomes (6-10) with 15.4% and

16.3% for the 20X and ddRAD-seq respectively. On the contrary, 29.7% of the SNPs identified

in ddRAD-seq were located on the micro chromosomes (11-39) against only 19.5% of those

found in 20X WGS. Finally, 4.2% of the SNPs from 20X WGS and 3.2% of the SNPs from

ddRAD-seq were found on the Z sexual chromosome (Table 1, Fig 1).

As shown in the Fig 1, the number of SNPs were similarly distributed on chromosomes in

20X WGS or in ddRAD-seq. The number of SNP identified on each chromosome was signifi-

cantly correlated with the length of each chromosome in 20X WGS (ρ = 0.99) and in ddRAD-

seq (ρ = 0.98). The mean distance between two adjacent SNPs called was 3,221 bp and 130 bp

for ddRAD-seq and 20X WGS respectively.

Sensitivity and precision

In silico estimation of the genomic regions that should be covered by enzymatic fragments

(EFs) theoretically generated by the ddRAD-seq protocol was performed as described in the

Materials and Methods. So, 860,138 Pst1 restriction sites (RS) and 447,997 Taq1 RS were iden-

tified on the reference genome GRCg7b. Moreover, 33,600 Pst1 and 63,564 Taq1 RS were

Table 1. Number of SNPs called in 20X WGS and in ddRAD-seq and their percentage on the total number of SNPs by chromosome type.

WGS 20X ddRAD-seq
#SNPs %SNPs #SNPs %SNPs

Macro (1–5) 5 611 994 60.9 177 658 50.8

Intermediate (6–10) 1 420 343 15.4 56 989 16.3

Micro (11–39) 1 803 092 19.5 103 639 29.7

Z 383 694 4.2 11 211 3.2

https://doi.org/10.1371/journal.pone.0298565.t001
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created by mutations in our population when considering every individual. A total of 285,004

EFs between 200 and 500 base pair (bp) should have been theoretically generated and pair-end

sequenced on an average of 150 bp according to in silico prediction.

In 20X WGS, considered here as the reference sequencing approach, 638,135 of the

9,219,123 SNPs were identified inside the expected EFs. Therefore, we expected a sensitivity of

6.9% for ddRAD-seq at a genome-wide scale and a precision surrounding 100%. But, the real

sensitivity of ddRAD-seq at a genomic scale was 3.6% and its precision was 93.7%. It represents

a loss of sensitivity of 57.9% compared to what was expected.

Then, inside the expected EFs, 214,495 SNPs were identified by ddRAD-seq and 206,872

SNPs were commonly identified by ddRAD-seq and 20X WGS. Using 20X WGS as the refer-

ence approach, the effective sensitivity of ddRAD-seq inside the expected EFs was 32.4% and

its precision was 96.2%. It represents an even greater loss of sensitivity (67,6%) compared to

what was expected then at a genomic scale. This suggested that, in ddRAD-seq, some SNPs

were detected outside the expected EFs. Considering the total number of 349,497 SNPs

detected in ddRAD-seq, only 61.5% of them were found inside the expected EFs.

Locations of SNPs outside the EFs

The location of SNPs outside of the expected EFs (i.e., 200 to 500 bp framed by the two enzy-

matic restriction sites) was investigated as described in Materials and methods. Out of the

134,552 SNPs identified outside the EFs, 18,816 SNPs were found in the 10 bases on each end

of these EFs. A total of 47,407 SNPs were located in regions covered by EFs less than 200 bp

long but generated by the combination of Taq1 and Pst1. Also, 12 342 SNPs were located in

genomic regions covered by EFs cut by Taq1 on both ends and 59 125 by Pst1 on both ends.

Additionally, 119,116 SNPs were located in regions corresponding to EFs resulting from the

failure of both sizing and selection on RE steps in the ddRAD-seq protocol. Genomic regions

concerned by each scenario can overlap with one another. All the effectives of SNPs that could

be identified by multiple scenarios overlapping was described in the Fig 2. Finally, considering

each scenario and their overlaps, 4,265 SNPs called out of the EFs were not explained by any of

these hypotheses.

For ddRAD-seq, the ratio between SNPs inside and outside the theoretical EFs was not dif-

ferent between the chromosomes except for the sexual chromosome Z, where there was as

many SNPs inside and SNPs outside the theoretical EFs (Fig 3). There was no difference of

location in specific chromosomic regions between the two sets of SNPs (S1 Fig).

Fig 1. Percentage of total SNP detected by 20X WGS (in orange) and ddRAD-seq (in blue) on chromosomes 1 to

39 and Z.

https://doi.org/10.1371/journal.pone.0298565.g001
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Fig 2. Possible reason for SNPs to be called outside of the theoretical enzymatic fragments theoretically generated

by the ddRAD-seq protocol. 10 bases: SNPs called in the 10 bases on each side out of an enzymatic fragment (EF)

between 200 and 500 bp and generated by the combination of Taq1 and Pst1. TP< 200 bp: SNPs located inside the

EFs generated by the combination of Taq1 and Pst1 under 200 bp. 200< TT or PP< 500 bp: SNPs located inside the

EFs between 200 and 500 bp, generated by the same restriction enzyme at both ends. TT or PP< 200 bp: SNPs located

inside the EFs under 200 bp and generated by the same RS on both sides. Out all: SNPs that don’t fit in any of our

scenarios.

https://doi.org/10.1371/journal.pone.0298565.g002

Fig 3. Localization of SNPs in (in blue) and out (in light blue) genomic regions theoretically sequenced in ddRAD-

seq.

https://doi.org/10.1371/journal.pone.0298565.g003
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Distribution of CRSNP, DPSNP and MAF values

The CRSNP, on average, was significantly higher in 20X WGS (0.99) than in ddRAD-seq (0.55)

(t-test p-value < 0,05, Fig 4A). 95.2% of the SNPs obtained with the 20X WGS were genotyped

for all individuals (CRSNP = 1) while only 29.3% were in ddRAD-seq (Fig 4B). 56.8% of the

ddRAD-seq SNPs had a CRSNP below 0.8 against only 0.9% of the 20X WGS SNPs. Further-

more, the parabolic distribution of CRSNP values in ddRAD-seq showed two higher points,

with a large proportion of SNPs having low CRSNP values (0–0.1) and an equivalent proportion

having higher CRSNP values (Fig 4B).

Similarly to CRSNP, the average DPSNP in ddRAD-seq was lower (11X) than the average

DPSNP observed in 20X WGS (16X) and even lower than the average DPSNP expected (~45X,

Fig 4C). Theoretically in ddRAD-seq, 285,004 EFs between 200 and 500 bp should be gener-

ated and pair-end sequenced on an average of 150 bp. Therefore, we estimated that 85.5 Mb

should be covered by ddRAD-seq. In laying hens, the genome size is 1.26 Gb [49] which

means that we expect a mean DPSNP close to 45X in ddRAD-seq (450 Gb per Novaseq 6000

flowcell with 120 individuals per flowcell).

The distribution of SNPs in DPSNP categories of ddRAD-seq showed two peaks of density:

one at low DPSNP values (0-5X) and one at higher values (25-30, Fig 4D). It was observed that

Fig 4. Comparison of variant calling results between 20X WGS (in orange) and ddRAD-seq (in blue). (A)

Distribution of CRSNP values for 20X WGS and ddRAD-seq. (B) Percentage of SNPs per Call Rate SNPs (CRSNP)

categories. (C) Distribution of DPSNP values for 20X WGS and ddRAD-seq. (D) Percentage of SNPs per SNPs mean

depth of sequencing (DPSNP) categories.

https://doi.org/10.1371/journal.pone.0298565.g004
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25% of the deepest ddRAD-seq DPSNP values were superior to 24X compare with 17X in 20X

WGS (Fig 4D). 56.0% of the ddRAD-seq SNPs were genotyped with less than 5X on average,

against 0.5% in 20X WGS (Fig 4D).

The mean MAF was similar between 20X WGS (0.18) and ddRAD-seq (0.19). The distribu-

tion of MAF values was not different between ddRAD-seq and 20X WGS (S2 Fig). Individuals

mean depth of sequencing (DPind) were 16X for 20X WGS and 11X for ddRAD-seq. Individual

call rate (CRind) were respectively 99.4% for 20X WGS and 55.4% for ddRAD-seq.

Variant calling parameters at EFs scale

For the SNPs inside and outside of the expected EFs, the CRSNP and the DPSNP were calculated.

These two parameters were lower for the set of SNPs outside the theoretical EFs then for the

SNPs inside the expected EFs (Fig 5). Mean CRSNP was 0.74 for SNPs inside the expected EFs

and 0.25 for SNPs outside. The standard deviation of CRSNP was 0.35 for ddRAD-seq SNPs

inside and 0.27 for SNPs outside the expected EFs. These values appeared consistent with the

peaks observed at a genomic scale (Fig 4B).

Mean DPSNP values were respectively 17X and 1X for SNPs inside and SNPs outside the

expected EFs (Fig 5). The standard deviation of DPSNP for ddRAD-seq SNPs inside the

expected EFs was 15X while it was 3X for SNPs outside. These DPSNP values also corresponded

to those observed for each peak at a genomic scale (Fig 4D).

The MAF was similar between 20X WGS (0.18) and ddRAD-seq (0.19). The distribution of

MAF values was not different between ddRAD-seq and 20X WGS (S2 Fig). Individuals mean

depth of sequencing (DPind) were 16X for 20X WGS and 11X for ddRAD-seq. Individual call

rate (CRind) were respectively 99.4% for 20X WGS and 55.4% for ddRAD-seq.

ddRAD-seq genotyping reliability

The concordance of ddRAD-seq genotypes with 20X WGS was assessed by comparing, when

it was possible, ddRAD-seq genotypes to 20X WGS ones. Genotypes were said comparable

Fig 5. Distribution of CRSNP, DPSNP between SNPs in (in blue) and out (light blue) of enzymatic fragments for

ddRAD-seq compared to 20X WGS (in orange).

https://doi.org/10.1371/journal.pone.0298565.g005
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when, for an individual, the SNP was genotyped by both ddRAD-seq and 20X WGS. Then,

9,398,316 genotypes were identified as comparable.

When comparable genotypes were identical between ddRAD-seq and 20X WGS, ddRAD-

seq genotypes were said concordant with 20X WGS ones. Globally, 90.0% of the comparable

genotypes from ddRAD-seq and 20X WGS were concordant. Most of these concordant geno-

types (76.7%) were those of SNPs located inside the expected EFs. The other 13.3% of the con-

cordant genotypes were those of SNPs located outside the expected EFs.

Discordant genotypes between ddRAD-seq and 20X WGS represented 10.0% of the total

number of comparable genotypes. Among these discordant genotypes, 6.1% were genotypes

from SNPs located inside the expected EFs. The other 3.8% of the discordant genotypes were

from SNPs located outside the expected EFs.

The majority (7,784,818) of all comparable genotypes were those of SNPs located inside the

EFs expected to be sequenced by the ddRAD-seq protocol (Table 2). Genotypes were more

concordant between ddRAD-seq and 20X WGS for SNPs inside the expected EFs (92.6%) then

for SNPs outside the expected EFs (77.7%).

We also observed that the concordance between genotypes in ddRAD-seq and in 20X

WGS, and the DPGT of those genotypes were linked. Whether inside or outside expected EFs,

concordant genotypes between ddRAD-seq and 20X WGS had greater DPGT (15X) than dis-

cordant genotypes (7X, Fig 6A).

Then, for a SNP, the number of individuals with identical genotypes between ddRAD-seq

and 20X WGS were quantified to calculate a concordance rates per SNP (CcR). The mean CcR

for all the SNPs was 80.0%. The mean CcR was 87.3% for SNPs inside the expected EFs and

72.7% for SNPs outside the expected EFs. The correlation of CcR with the CRSNP and the

DPSNP was investigated. High CcR values were associated with SNPs with high CRSNP and

DPSNP values (Fig 6B). Most of the SNPs with high CcR, CRSNP and DPSNP values were located

inside the expected EFs. Inside the expected EFs, 27.8% of the SNPs were correctly genotyped

for all individuals (CR = 1 and CcR = 1) with a mean DPSNP of 29X. Outside the expected EFs,

only 0.1% of the SNPs were genotyped with a DPSNP of 26X (Fig 6B).

Finally, ddRAD-seq SNPs were filtered according to multiple combinations of DPSNP and

CRSNP threshold. Afterwards, the mean CcR for remaining SNPs and the percentage of

ddRAD-seq SNPs kept after applying these filters were calculated (Fig 6C). This multi-criteria

filtering approach (DPSNP, CRSNP) makes it possible to assess the number of SNPs retained

depending on the objectives of genotyping reliability. For example, by filtering ddRAD-seq

SNPs according to a threshold of 5X for the DPSNP and a CRSNP of 0.8 in ddRAD-seq, approxi-

mately 40–50% of ddRAD-seq SNPs will be retained, and 95.1% of these retained SNP will

have a concordant genotype with 20X WGS. With the application of QC filters on ddRAD-seq

data (CRSNP and DPSNP) with the highest thresholds possible, poor-quality SNPs can be elimi-

nated by retaining a minimum of 27% genotyped SNPs for all individuals with 98% of reliable

genotypes.

Table 2. Effectives of comparable genotypes (GTs) according to the location of the associated SNPs, inside or outside the expected enzymatic fragments (EFs) theo-

retically generated by the ddRAD-seq protocol. The effectives of ddRAD-seq GTs matching (concordant) or not matching (discordant) with 20X WGS genotypes, when

compared one by one for an individual, for a SNP.

Inside the expected EFs Outside the expected EFs
Concordant Discordant Concordant Discordant

Number of comparable GTs 7,209,100 575,718 1,253,604 359,894

TOTAL 7,784,818 1,613,498

9,398,316

https://doi.org/10.1371/journal.pone.0298565.t002
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Discussion

The aim of the study was to assess the variant calling and genotyping quality of ddRAD-seq in

laying hens, as an alternative to low-density sequencing methods (LD chip or low-depth

WGS). Due to the diverse nature of ddRAD-seq protocols (enzyme pairs, size filtration

method, and bioinformatics processing), estimating the quality of our variant calling and gen-

otyping data by comparing them to the literature was challenging. Therefore, the results from

ddRAD-seq were compared to results from 20X WGS obtained for the same individuals. Prior

research has demonstrated that comparing a test sequencing method to a reference method

allows for estimating the quality of variant calling and genotyping [29]. Additionally, for WGS,

an effective coverage of 15X is considered as sufficient to achieve high-quality genotyping [2].

Fig 6. Genotyping quality of ddRAD-seq is correlated with the CRSNP and the DPSNP. (A) Distribution of

genotypes sequencing depth (DPGT) for 20X WGS, the reference, (in orange) and concordant (✓) or discordant (✘)

genotypes in ddRAD-seq for SNPs in the enzymatic fragments theoretically generated by the ddRAD-seq protocol (in

blue) or out the EFs theoretically generated by the ddRAD-seq protocol (in light blue). Percentages of each category of

ddRAD-seq genotype on the whole amount of genotype was displayed (grey shades). (B) Distribution of SNPs

sequencing depths (DPSNP) according to their category of genotype concordance rate (CcR) and SNP call rate (CRSNP).

(C) Mean CcR of ddRAD-seq according to the CRSNP and the mean sequencing depth threshold. The blue gradient

represents the proportion of ddRAD-seq SNPs kept according to each filter combination.

https://doi.org/10.1371/journal.pone.0298565.g006
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With an observed average DPSNP of 16X for the 20X WGS, it was deemed a reliable basis for

comparison with ddRAD-seq and representative of reality.

Initially, the study revealed that ddRAD-seq exhibited high precision (93.7%). Literature

reports precision rates for RAD-seq studies ranging around 90 to 94% [29]. The SNPs were

well-distributed across all chromosomes, including micro-chromosomes. This represented an

advantage for ddRAD-seq compared to commercial chips that do not provide information on

all micro-chromosomes. Also, the MAF distribution showed that unlike the SNP chips,

ddRAD-seq isn’t affected by an ascertainment bias. The genome-scale sensitivity of ddRAD-

seq at 3.6% was comparable to similar methods found in the literature (0.5 to 5.5% depending

on enzyme pairs) [20].

However, at the scale of the theoretically expected enzymatic EFs by the protocol in our

population, a significantly lower sensitivity of ddRAD-seq than expected was observed

(32.4%). Half of the SNPs detected by ddRAD-seq were located outside the expected EFs, indi-

cating that the sequenced EFs did not correspond to reality. This discrepancy is due to in silico

estimations based on the known reference genome in the literature [6, 50]. To approach the

actual digestion results and leveraging data from the 20X WGS, restriction sites created and

destroyed by mutations were integrated from the outset. These mutations, documented as sig-

nificant sources of variability in generated EFs among individuals, were described in the litera-

ture. It is also acknowledged that the quality of the reference genome significantly impacts in

silico simulation of EFs [37]. To mitigate this known bias, the latest version of the reference

genome was used [51]. Despite these precautions, a substantial difference between the

expected REFs, based on protocol descriptions, and reality was observed.

Some SNPs were found in genomic regions covered by EFs smaller than 200 bp, despite the

protocol’s filtration step. Literature describes that for ddRAD-seq, depending on the enzyme

pair and size filtration method chosen, a significant difference in size distribution between the

expected and sequenced EFs. This holds particularly true when using a 4-base cutter and a

6-base cutter as the enzyme pair, as in our case [50]. Therefore, it is not surprising to find

some SNPs in genomic regions covered by EFs smaller than 200 bp with ddRAD-seq.

We also noted a small proportion of SNPs (14.0%) located outside the anticipated EFs,

within a 10-base proximity of the expected EFs. Drawing from existing literature, we hypothe-

sized that these might have originated from degraded DNA fragments. Specifically, ddRAD-

seq is highly sensitive to DNA quality among RAD-seq methods [12], known to significantly

influence enzymatic digestion efficiency and susceptibility to UV light exposure [15]. Some

EFs may have been cleaved by a restriction site on one end and, despite the use of sticky end

sites during adaptor ligation, improperly bound to these adaptors on the other end. Usually,

after adaptor linking, EFs proceed through the rest of the protocol for amplification and

sequencing. Based on previous observations in the literature, it’s plausible that despite the pro-

tocol’s trimming step, certain EFs smaller than twice the size of a read (~300 bp) might have

been sequenced in pair-end, potentially causing partial adaptor contamination [50].

Among the remaining SNPs that didn’t align with expected EFs or the previously described

scenarios, some were genotyped by ddRAD-seq in genomic regions corresponding to EFs gen-

erated by the same restriction enzyme on both ends. This suggests that some EFs weren’t

appropriately filtered to have two distinct adaptors at each end. According to the protocol, for

an EF to be sequenced, it must be produced by the combination of Taq1 and Pst1. The major-

ity of SNPs outside the EFs were situated in regions that corresponded to EFs cut by the same

restriction site at both ends and were less than 200 bp long. We thus inferred that, within our

ddRAD-seq protocol, the adaptor filtering step might not have been completely efficient. Sev-

eral studies have also observed this phenomenon [52, 53]. These studies describe the presence

of EFs generated exclusively by the first introduced RE in the protocol but not by the second
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one. In our case, we observed SNPs located in both Taq1-Taq1 and Pst1-Pst1 EFs with more

Pst1-Pst1. Regarding the frequency of Taq1 and Pst1 RS on the reference genome, we hypothe-

sized that the difference between the number of SNPs located in Taq1-Taq1 EFs or Pst1-Pst1

EFs was more due to the larger number of Pst1 RS. It is possible to assess the efficacy of the

adaptor filtration step for EFs using methods like qPCR, yet very few studies do so [37, 53],

and they didn’t report the results. Similar to most studies employing ddRAD-seq, no quality

control for this step was performed in our study. Therefore, it’s conceivable that the retention

of a portion of EFs generated by a single restriction enzyme despite the filtration step is a gen-

erally acknowledged characteristic of ddRAD-seq.

Nevertheless, the random nature of previously cited bias leading events, among the pool of

samples, should lead to average CRSNP and DPSNP values lower than those of the SNPs geno-

typed in the regions covered by the expected EFs. Globally, this would result in a loss of CRSNP

and DPSNP at a genome-wide scale [15].

SNPs outside the expected EFs exhibited lower CRSNP and DPSNP compared to SNPs within

the EFs, impacting the overall average values of CRSNP and DPSNP more negatively than antici-

pated. The sequencing depth intended for ddRAD-seq, originally allocated to specific regions,

was spread across a larger area than expected. The theoretical calculation of wrongly assumed

that only the theoretical EFs had been sequenced by the protocol. As a result, the average

DPSNP value decreased from the expected 45X to an observed 11X. Given that a minimum of

30X is recommended for ddRAD-seq, based on a reference genome, to ensure comprehensive

genotyping in all individuals, the decrease in CRSNP for SNPs called by ddRAD-seq was

expected [22]. As DPSNP and sensitivity are correlated [1, 54], this decline in DPSNP is responsi-

ble for the low sensitivity observed at the expected EFs. Considering that low CRSNP and

DPSNP values can impact genotyping reliability [55], it was hypothesized that genotyping SNPs

outside the expected EFs might be less reliable than those within.

Upon comparison, the genotype concordance between ddRAD-seq and 20X WGS at 90%

was highly satisfying. SNPs with high rates of erroneous genotypes (CcR) were indeed associ-

ated with lower CRSNP and DPSNP values than reliable genotypes.

Having genotype data for both ddRAD-seq and 20X WGS was a significant asset for our

study, allowing for a detailed individual-level analysis of ddRAD-seq genotyping by pairwise

genotype comparison. Quantifying genotyping errors enabled a thorough examination of the

most common quality control filters’ impact on genotyping reliability. Many studies apply

consensus threshold filters from the literature without quantifying their impact on genotyping

reliability, which, depending on the applications, can significantly affect study conclusions [15,

26].

Our study described the relationship between genotyping reliability and commonly used

quality control filters for ddRAD-seq data (CRSNP and DPSNP), while measuring their impact

on the retained SNP quantity. Fig 6C allows for comparison among different quality control

scenarios’ impact on genotyping reliability in terms of genotype reliability and SNP quantity.

It offers the opportunity to establish decision rules on quality control thresholds tailored to

each study’s needs.

Applying the most stringent quality control filters on CRSNP and DPSNP still allow for the

detection a reasonable number of markers. According to the literature, this marker count is

largely sufficient for various applications in laying hens [39] such as genome-wide association

studies [44], linkage disequilibrium calculation [45], CNV detection [46] or genomic selection

[47]. Hence, ddRAD-seq proves to be a reliable tool for laying hen genotyping, offering a supe-

rior number of SNPs with reliable genotypes, evenly distributed across the entire genome,

making it a compelling alternative to LD chips and LD WGS.
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Materials and methods

Ethics approval

All blood samples were carried out as part of the commercial and selection activities of Novo-

gen. These animals studied and the scientific investigations described herein are therefore not

to be considered as experimental animals per se, as defined in EU directive 2010/63 and subse-

quent national application texts. Consequently, we did not seek ethical review and approval of

this study as regarding the use of experimental animals. All animals were reared in compliance

with national regulations pertaining to livestock production and according to procedures

approved by the French Veterinary Services.

Animals

All animals consisted in a commercial pure line of laying hen of Rhode Island. This line was

created and selected by Novogen (Plédran, France). The population studied was constituted of

50 roosters from the same generation, bred in individual cages.

Whole genome sequencing

All 50 individuals were sequenced by the Genomics and Transcriptomics platform GeT-PlaGe

(Toulouse, France) with the Illumina HiSeq2000 technology expecting a global coverage of

20X Firstly, 38 individuals were sequenced as part of UtOpIGe project. Secondly, 12 individu-

als from the project OptiSeq were sequenced. These individuals were chosen because they have

been selected as breeders for further generation. Data were aligned to the GRCg7b chicken ref-

erence genome [51] with BurrowsWheeler Aligner V0.7.15 [56] with default parameters for

paired-end alignment. SNP calling was performed with GATK V3.7 [57]. Bi-allelic SNP have

been extracted with the SelectVariant function and the “—restrictAllelesTo BIALLELIC”

option. Remaining SNP have been filtered using the “VariantFiltration” option and hard filters

for DNA-sequencing “FS > 60.0”, “QD < 2.0”, “MQ < 40.0”, “MQRankSum < -12.5”, “Read-

PosRankSum < -8.0” and “SOR> 3.0”.

ddRAD-sequencing

The same 50 individuals have been also sequenced with the ddRAD-seq technology as

described in [14] by the Montpellier GenomiX facility (MGX, France). Enzymatic digestion

was performed using enzymes Taq1-v2 and Pst1-HF (New Englands Biolabs, 1assachusetts,

USA), in agreement with the simulation results of Herry et al (2023). Only fragments ranging

from 200 to 500 bp were selected as it is the appropriate length for sequencing fragments with

Illumina’s sequencing systems and more precisely the Novasesq 6000 [58]. Mapping and var-

iant calling were carried out in the same way as for the WGS sequences with the exception of

the HaplotypeCaller module of GATK V3.7: -drf DuplicateRead argument, which was added

to keep duplicated reads, as it is one of the principles of ddRAD-seq method.

Identification of genomic regions theoretically covered by ddRAD-seq

Genomic regions defined by the ddRAD-seq protocol were estimated on the reference genome

GRCg7b [51]. First, all Taq1 and Pst1 RS were identified on the reference genome thanks to R

package Biostrings [59]. Then, RS created by mutations were identified using SNPs detected in

20X WGS as the list of possible mutations within our population. Then, EFs between 200 and

500 bp were generated and only the first and last 150 bp were kept. SNPs called in these regions

by ddRAD-seq or 20X WGS were identified using bedtools v2.30.0.
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SNPs called by ddRAD-seq outside of these regions were identified and their locations were

studied. The location of theses SNPs regarding the position of RS on the genome was empiri-

cally observed using IGV 2.7.2. Hypothesis about the possible reasons of the identification of

SNPs outside expected EFs were made based on these observations and comparisons with the

literature. SNPs were then classified according to these hypotheses and counted using bedtools

v2.30.0.

SNP calling summary

For both ddRAD-seq and 20X WGS, the number and the distribution of genotyped SNPs

along the chromosomes were estimated and compared using R V4.0.4. The correlation

between the length of the chromosomes and the number of SNPs found on them was per-

formed with the method of spearman for both methods using R V4.0.4. The average distance

between two adjacent SNPs in bp was calculated on the whole genome and for each

chromosome.

Then, for both ddRAD-seq and 20X WGS, three filtering parameters at the population scale

were computed: (i) the ratio between the number of individuals with a non-missing genotype

for a SNP and the total number of individuals, called the SNP call rate (CRSNP), (ii) the mini-

mum allele frequency (MAF) in the population and (iii) the SNP sequencing depth (DPSNP) at

the population scale. The genotype sequencing depth (DPGT) corresponds to the number of

reads supporting a genotype. DPSNP is the sum of each DPGT divided by the total number of

genotyped individuals for this SNP. CRSNP and MAF calculations were performed using Plink

V1.9 [60] and DPSNP using VCFtools V0.1.16 [61] and R V4.0.4 [62].

ddRAD-seq variant calling sensitivity and precision

The variant calling sensitivity of ddRAD-seq was calculated as the number of SNP commonly

called by ddRAD-seq and 20X WGS divided by the total number of SNPs called by 20X WGS.

The variant calling precision of ddRAD-seq was calculated as the number of SNP commonly

called by 20X WGS and ddRAD-seq divided by the total number of SNPs called by ddRAD-

seq. Sensitivity and precision were also calculated considering only regions covered by

expected EFs.

20X WGS and ddRAD-seq genotype concordance

First, the SNPs that were called with both 20X WGS and ddRAD-seq approaches were kept.

The number and the repartition of these common SNPs on the chromosomes were analyzed.

Then, individually, each genotype was compared between 20X WGS and ddRAD-seq. If one

or both methods didn’t allow to genotype the individual for a SNP, the genotypes were consid-

ered incomparable, and the SNP was excluded for this individual. Concerning the compara-

ble genotypes, they were considered concordant when both alleles were the same between

ddRAD-seq and 20X WGS. On the contrary, if one or two alleles were different for a genotype

between ddRAD-seq and 20X WGS sequencing methods, they were considered discordant.

For the concordant and discordant genotypes, DPGT were compared between ddRAD-seq and

20X WGS. They were obtained using VCFtools V0.1.16. Moreover, the Concordance rate

(CcR) was computed as the ratio between the number of concordant genotypes and the num-

ber of comparable genotypes for each SNP. The mean CcR was calculated on all the common

SNPs. Finally, ddRAD-seq data were filtered according to multiple combinations of Mean

DPSNP and SNP CRSNP threshold. The evolution of the mean CcR and the number of retained

SNPs were studied under these conditions.
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Supporting information

S1 Fig. SNP distribution across the chicken chromosome. For each type of chromosome cat-

egory of the chicken genome (macro-chromosome, intermediate chromosome, and micro-

chromosome), the SNP distribution of the ddRAD-Seq data (in blue) and 20X experiment (in

orange) is displayed. The black bar represents the theorical restriction fragment location.

(PDF)

S2 Fig. MAF distribution between 20X (in orange) and ddRAD-Seq (in blue).

(TIF)
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