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ABSTRACT 10 

1. Lycorma delicatula, the spotted lanternfly, is a highly successful invasive phloem-feeding 11 
planthopper native to southern China. It has invaded South Korea, Japan, and the USA, 12 
where it is still geographically expanding but is absent from Europe. We examined two 13 
important ecological factors affecting the risk of establishment: climate suitability and the 14 
availability of compatible host plants. 15 

2. We developed an ensemble species distribution model based on three algorithms to assess 16 
the potential geographical range of L. delicatula according to current and future climate 17 
conditions. We reviewed the literature to assess the host repertoire of L. delicatula and list 18 
host species present in Europe. 19 

3. Current climate conditions appeared to be highly suitable for L. delicatula in much of Europe. 20 
Climate change will marginally alter climate suitability by 2060. Numerous known host plants 21 
are widely distributed in Europe. 22 

4. We conclude that neither climate conditions nor the presence of compatible host plants 23 
constitutes an obstacle to the establishment of L. delicatula in Europe. Both current and 24 
future climate suitability and the list of potential hosts could be helpful to guide surveillance 25 
and improve the preparedness of phytosanitary authorities. 26 

 27 
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INTRODUCTION 29 

Once established, eradicating invasive species is very difficult; thus, it is always best to avoid their 30 
establishment (Leung et al. 2002). Moreover, in the event of an incursion, the time between the 31 
arrival of the invasive organism and the start of the eradication campaign is crucial in determining 32 
the success of management measures (Hulme 2006). Monitoring is paramount here because it allows 33 
for the early detection of invasive species and reduces the time needed to implement management 34 
measures (Pluess et al. 2012). In this context, risk analysis is a vital element of pre-border actions as 35 
it helps direct surveillance, particularly by identifying a priori the most threatened geographical areas 36 
or entry routes for exotic species (Probert et al. 2020; Reaser et al. 2020). The first step in risk 37 
assessment involves distinguishing invasive from non-invasive alien species (Roy et al. 2019). Once a 38 
target species is identified, it becomes feasible to evaluate environmentally suitable areas where the 39 
potential economic or ecological impacts of invasion are significant. These regions could be the focus 40 
of regional monitoring efforts, where targeted public information campaigns can greatly enhance 41 
biological invasion management (Faulkner et al. 2020). 42 

Climate plays a crucial role in shaping the distribution, survival, and reproduction of invasive species 43 
(Battisti et al. 2015). Environmental suitability also depends on biotic factors such as competition, 44 
predation, parasitism, and the availability of trophic resources, which are pivotal in the dynamics of 45 
biological invasions (Daly et al. 2023). For plant-feeding species, successful establishment often 46 
hinges on the presence of their preferred host plants or closely related species (Bacon et al. 2014; 47 
Bonnamour et al. 2023). While certain species may evolve rapidly to adapt to new environmental 48 
conditions or hosts (Pearman et al. 2008), the vulnerability of an ecosystem to a specific plant-49 
feeding species largely depends on its fundamental host repertoire i.e. all compatible hosts of the 50 
species (Braga and Janz 2021). Therefore, assessing climate suitability, understanding the impact of 51 
global changes, and determining host range are central to pest risk analysis (Devorshak 2012). 52 

Lycorma delicatula (White, 1845), the spotted lanternfly, is a phloem-feeding planthopper native to 53 
China. This species is highly polyphagous (Barringer and Ciafré 2020) and its dispersion is often 54 
passive, closely linked to human activities through human-mediated transport (Ladin et al. 2023; 55 
Montgomery et al. 2023). L. delicatula invaded South Korea in 2004, Japan in 2006, and finally 56 
Pennsylvania in the United States in 2014 (Barringer et al. 2015), from where it has significantly 57 
spread to adjacent states (Urban and Leach 2023). Local outbreaks of L. delicatula cause severe 58 
damage to a wide range of host plants, from herbaceous species (primarily as nymphs) to 59 
ornamental, woody, and fruit trees (Lee et al. 2019; Urban et al. 2021; Urban and Leach 2023). As of 60 
today, L. delicatula is not present in Europe. Host selection is highly dependent on available plants, 61 
but L. delicatula exhibits higher fitness when developing on the tree of heaven, Ailanthus altissima 62 
(Mill.) Swingle, 1916 (Uyi et al. 2021). A. altissima is present in Europe along with economically 63 
important host plant species such as grapes, fruit trees, woody trees, and ornamental trees, making 64 
L. delicatula a serious threat to European agriculture (Huron et al. 2022). 65 

Several studies have assessed the potential distribution of L. delicatula, but they rely on different 66 
algorithms and offer contrasting results. Jung et al. (2017) reported low climate suitability in Europe 67 
using the “CLIMEX” model (“Compare Locations” option). In contrast, Wakie et al. (2020) and Huron 68 
et al. (2022) found high climate suitability in Europe using the Maxent algorithm. Namgung et al. 69 
(2020) also used the Maxent algorithm but focused their survey on South Korea. Given the conflicting 70 
results regarding Europe's climate suitability and the availability of more occurrence data since these 71 
studies were conducted, we aimed to develop a new model to assess the establishment potential of 72 
L. delicatula under current and future climate conditions. To achieve this, we used three different 73 
algorithms to minimize the uncertainty associated with the choice of modeling method. We also 74 
projected these models using a set of climate change scenarios, which, to our knowledge, has never 75 
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been done for L. delicatula. Although we focus here on the climate suitability of the European 76 
continent, we provide worldwide assessments in the supplementary material. Our second objective 77 
was to list the known host plant species of L. delicatula to evaluate how many host species are 78 
present in Europe and in which countries. Combining climate suitability with host plant presence 79 
allowed us to assess the establishment potential of L. delicatula in Europe. 80 

METHODS 81 

All statistical analyses and data management were performed using the R environment for statistical 82 
computing and visualization (R Core Team 2023). 83 

Species Distribution Model 84 

Data collection and compilation 85 

We collected occurrences of L. delicatula from the international database GBIF (Global Biodiversity 86 
Information Facility; dataset doi: https://doi.org/10.15468/dl.tfatn5; extracted the 08/02/2023), and 87 
from a literature review using the valid name Lycorma delicatula and its synonym Aphaena 88 
delicatula. Additionally, we included records from established populations in the United States, 89 
retrieved from the R package “LydemapR” (De Bona et al. 2023). “LydemapR” contains 90 
spatiotemporal data and mapping functions to visualize the current spread of L. delicatula. We 91 
compiled old publications to collect occurrences in the native range (published between 1906 and 92 
2000) and recent publications tracking the progression of the invasion in the United States, Japan, 93 
and South Korea (see reference list in Appendix 1 and Appendix 2). When longitude-latitude 94 
coordinates were not available but the name of the observation site was provided, we assigned the 95 
coordinates of the locality's centroid using Google Maps. Occurrences retrieved from the literature 96 
without precise location information (only state or country mentioned) were discarded. The GBIF 97 
data were examined to exclude occurrences due to questionable identification (unknown basis of 98 
record) and missing geographic coordinates, as we considered these occurrences invalid. 99 

Pre-processing and data preparation 100 

At the time of the analyses (February 2023), a total of 15,211 occurrences of L. delicatula were 101 
retrieved from GBIF, 406 from the literature, and 1,970 from the R package “LydemapR”. Among the 102 
GBIF occurrences, 210 were discarded due to missing coordinates. From the literature occurrences 103 
(Appendix 2), 44 were excluded due to imprecise location data. Most of these imprecise occurrences 104 
pertained to the historical distribution of L. delicatula in its native range, where locations were often 105 
described only at the regional or provincial level. Finally, 17,333 occurrences were deemed valid and 106 
retained for further analyses. These 17,333 records included 121 occurrences with missing dates, 107 
which were excluded because it was impossible to associate them with the climate data 108 
corresponding to the period of observation. 109 

One record predating 2001 was removed to ensure that all remaining data could be analyzed using 110 
the most recent climate data from the WorldClim database (see below). The spatial distribution of 111 
the remaining 17,211 records was compared with the resolution of the climate raster data used in 112 
the study (2.5 minutes, see below) to retain only one point per raster grid cell, thereby preventing 113 
over-representation of certain climate conditions (Elith et al. 2006). This process resulted in a total of 114 
3,416 valid occurrence records. One record from India was discarded because the presence of viable 115 
populations in this country remains uncertain (Dara et al. 2015). The remaining 3,415 records are 116 
distributed across four countries as follows: China 295; South Korea 407; Japan 28; and USA 2,685. 117 
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We applied a geographical filtering procedure to the dataset to control for sampling bias (Aiello-118 
Lammens et al. 2015). The distance threshold was arbitrarily set to 20 km, and computations were 119 
conducted using the R package “spThin” (Aiello-Lammens et al. 2015). The remaining records were 120 
distributed as follows: China 163; South Korea 114; Japan 8; and USA 275. Additionally, we 121 
performed environmental thinning following Varela et al. (2014), utilizing the original variables rather 122 
than outputs from a Principal Components Analysis (Velazco et al. 2022), as in Varela et al. (2014). 123 
We employed the function “occfilt_env” from the R package “flexsdm” (Velazco et al. 2022) and a set 124 
of eight bioclimatic variables available from the WorldClim database, representing average 125 
temperature and precipitation across the study area from 2001 to 2018 (see below): bio8 (mean 126 
temperature of the wettest quarter), bio9 (mean temperature of the driest quarter), bio10 (mean 127 
temperature of the warmest quarter), bio11 (mean temperature of the coldest quarter), bio16 128 
(precipitation of the wettest quarter), bio17 (precipitation of the driest quarter), bio18 (precipitation 129 
of the warmest quarter), and bio19 (precipitation of the coldest quarter). This resulted in 362 130 
remaining occurrence records distributed as follows: China 136; South Korea 80; Japan 8; and USA 131 
138. 132 

Climate datasets  133 

The occurrence dataset used in this study is from 2001 onwards, and we utilized historical monthly 134 
weather data spanning from 2001 to 2018 (https://www.WorldClim.org, Fick and Hijmans 2017) to 135 
calibrate the models. Average climate descriptors for the period 2001–2018 (referred to as 136 
bioclimatic variables) were computed using the function “biovars” from the R package “dismo” 137 
(Hijmans et al. 2023). The resolution of the raster climate data is 2.5 minutes (≈22 km² at the 138 
equator). We projected the species distribution models for the period 2041–2060 using future 139 
climate data also available from WorldClim. For this purpose, we considered six Global Circulation 140 
Models (GCMs): BCC-CSM2-MR (Wu et al. 2019), CNRM-CM6-1 (Voldoire et al. 2019), CNRM-ESM2-1 141 
(Séférian et al. 2019), CanESM5 (Swart et al. 2019), MIROC-ES2L (Hajima et al. 2020), and MIROC6 142 
(Tatebe et al. 2019). Shared Socioeconomic Pathways (SSPs) describe plausible greenhouse gas 143 
emissions scenarios based on different climate policies (Riahi et al. 2017; Meinshausen et al. 2020). 144 
For each period and GCM, climate suitability was modeled using simulated climate data across four 145 
Shared Socioeconomic Pathways (SSPs): SSP5-8.5, SSP3-7.0, SSP2-4.5, and SSP1-2.6, representing 146 
high-end, medium-to-high-end, medium, and low-end greenhouse gas forcing pathways, respectively 147 
(Abram et al. 2019). 148 

Our models were built using a set of 14 bioclimatic descriptors available from the WorldClim 149 
database (2001-2018), which encompass both temperature and precipitation-related environmental 150 
constraints: bio1 (annual mean temperature), bio5 (maximum temperature of the warmest month), 151 
bio6 (minimum temperature of the coldest month), bio8 (mean temperature of the wettest quarter), 152 
bio9 (mean temperature of the driest quarter), bio10 (mean temperature of the warmest quarter), 153 
bio11 (mean temperature of the coldest quarter), bio12 (annual precipitation), bio13 (precipitation 154 
of the wettest month), bio14 (precipitation of the driest month), bio16 (precipitation of the wettest 155 
quarter), bio17 (precipitation of the driest quarter), bio18 (precipitation of the warmest quarter), 156 
bio19 (precipitation of the coldest quarter) (Fick and Hijmans 2017). 157 

Pre-processing and data preparation 158 

One crucial aspect of species distribution modeling is the selection of predictors used in the model, 159 
which not only affects model performance but also its transferability (Petitpierre et al. 2017), 160 
particularly important when projecting processing, FOP analysis enabled us to discard variables 161 
displaying noisy or bimodal curves, retaining only predictor variables that yield ecologically realistic 162 
and meaningful response curves (Guevara et al. 2018; Vollering et al. 2019). FOPs were computed 163 
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using the R package “MIAmaxent” (Vollering et al. 2019). This process led to the exclusion of the 164 
variables bio8, bio14, bio15, bio17, bio18, and bio19, while retaining bio1, bio5, bio6, bio9, bio10, 165 
bio11, bio12, bio13, and bio16 for model calibration. These variables describe different aspects of 166 
climate and their biological significance may vary for the species under study. Although no variables 167 
were objectively ruled out a priori, stepwise selection procedures implemented during model 168 
calibration ensured retention of those significantly contributing to the model (see below). 169 

Model algorithms 170 

We employed three distinct algorithms for species distribution modeling: 1) Random Forests (RF), 2) 171 
Boosted Regression Trees (BRT), and 3) Bayesian Additive Regression Trees (BART). RF and BRT are 172 
widely utilized in species distribution modeling (Guisan et al., 2017), whereas BART was introduced 173 
more recently in ecology (Carlson, 2020). RF is a machine learning algorithm that combines outputs 174 
from multiple decision trees through bagging (Breiman, 2001; Guisan et al., 2017). We calibrated the 175 
model using the R package "randomForest" (Liaw and Wiener, 2002). Climate descriptors were 176 
selected via stepwise selection based on averaged variable importance (Li et al., 2016), implemented 177 
using the R package "steprf" (Li, 2022). Tuning of node size and the number of explanatory variables 178 
sampled at each split was achieved using the R package "randomForestSRC" (Ishwaran and Kogalur, 179 
2007). We used a large (1000) but computationally feasible number of trees (Probst and Boulesteix, 180 
2018). 181 

BRT follows the same principle as RF by combining different decision trees, but it diverges in its 182 
sequential approach using a forward stagewise procedure. Elith et al. (2008) provided a practical 183 
guide to BRT for modeling species distribution. We calibrated our BRT model using the R package 184 
"dismo" (Hijmans et al., 2023). The model hyperparameters were set as follows: the tree complexity 185 
parameter was fixed at 5 to allow interactions between variables, the learning rate was set to 0.005, 186 
and the bag fraction (proportion of data selected at each step) was fixed at 0.5. We used the 187 
"gbm.simplify" function from the R package "dismo" to identify explanatory variables that could be 188 
removed for simplification. Additionally, we employed the "gbm.step" function to determine the 189 
optimal number of trees. 190 

Similar to the previous methods, BART estimates the probability of presence or absence using a 191 
series of decision trees. It is characterized as a nonparametric Bayesian regression approach that 192 
incorporates priors on tree structure, resulting in a posterior distribution of estimated classification 193 
probabilities (Chipman et al., 2010). BART has recently been introduced in species distribution 194 
modeling (Carlson, 2020) and has shown considerable promise (Baquero et al., 2021; Strubbe et al., 195 
2023; Rossi et al., 2024). For our analysis, we utilized the R package "embarcadero" (Carlson, 2020) 196 
and employed the variable selection procedure implemented in the function "bart.step" to identify 197 
the variables that significantly contributed to the model (details provided in Carlson, 2020). The 198 
model was run using 1000 trees. 199 

Across all algorithms, we employed a number of pseudo-absences equal to our occurrence records 200 
(362) (Barbet-Massin et al., 2012), sampled from the initial 1000 points generated during the earlier 201 
stages of analysis (as described above). 202 

We used the 14 climate descriptors previously mentioned (bio1, bio5, bio6, bio8, bio9, bio10, bio11, 203 
bio12, bio13, bio14, bio16, bio17, bio18, bio19) in our analysis. For each modeling approach—204 
random forest (RF), boosted regression trees (BRT), and Bayesian additive regression trees (BART)—205 
we utilized specific variable selection procedures to identify optimal subsets of these descriptors. 206 
Specifically, we used the "steprf" function for random forest, "gbm.step" for boosted regression 207 
trees, and "bart.step" for Bayesian additive regression trees. Each procedure determined a subset of 208 
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variables that maximized model performance, which was then used to calibrate the respective 209 
model. 210 

Pseudo-absences 211 

True absence data i.e. localities where a species is absent because of unsuitable environmental 212 
conditions are often lacking particularly in the case of invasive organisms such as L. delicatula. 213 
Therefore, we employed pseudo-absences for model calibration (Lobo et al., 2010). Defining the 214 
geographical area for generating pseudo-absences is a critical step in species distribution modeling 215 
(Barbet-Massin et al., 2012). The native range of L. delicatula is well-known and we assumed absence 216 
in the northern and southern regions beyond its current range in China. Pseudo-absences were not 217 
generated to the east of its native range, as the species is currently expanding into this area, 218 
including Japan and Korea. To the west, the Tibetan Plateau acts as a natural barrier, limiting the 219 
species' dispersal and thereby complicating the sampling of pseudo-absences (the species may be 220 
absent from areas west of the Tibetan Plateau because this geographic feature is a dispersal barrier). 221 
The geographical area where pseudo-absences were sampled was thus defined as a surface 222 
extending 25 decimal degrees north and south of all documented species observations within its 223 
native range (see Appendix 3 for details). In North America, no pseudo-absences were generated for 224 
L. delicatula due to its ongoing expansion on the continent.  225 

We generated a total of 1000 pseudo-absences using the function "sample_pseudoabs" from the R 226 
package "flexsdm" (Velazco et al., 2022). The allocation of these pseudo-absences was constrained 227 
by environmental suitability as determined by the bioclim model (Booth et al., 2014), focusing on 228 
four specific bioclimatic variables (bio5, bio6, bio13, and bio14) identified as climate limiting factors 229 
(Velazco et al., 2022). The probability of allocating a pseudo-absence point was higher in regions 230 
exhibiting lower climate suitability according to the results of the bioclim model. 231 

Model performance 232 

We evaluated the performance of our models using two metrics: the Area Under the Curve (AUC) of 233 
the receiver operating characteristic (ROC) plot (Fielding and Bell 1997), and the true skill statistic 234 
(TSS) (Allouche et al. 2006). These evaluations were conducted using a set of 3053 valid occurrences 235 
that were withheld from the raw dataset during thinning (geographical and environmental). An equal 236 
number of pseudo-absence points were generated, as described earlier, for model evaluation 237 
purposes. This approach allowed us to assess the models using independent data that were not used 238 
in their calibration process. The calculations of AUC and TSS were implemented using the R package 239 
"dismo" (Hijmans et al., 2023. 240 

Estimation of climate suitability  241 

We assessed the climate suitability under current and future climate scenarios using the R function 242 
"predict". Future climate projections were computed for the period 2041-2060 based on various 243 
General Circulation Models (GCMs) and Shared Socioeconomic Pathways (SSPs), as described 244 
previously. 245 

To synthesize the outputs from our three models (RF, BRT, and BART), we employed a consensus 246 
approach known as committee averaging (Guisan et al., 2017, Araújo and New, 2007). This method 247 
involves two main steps: 1) transforming model outputs into binary (presence/absence) values using 248 
a threshold and 2) averaging the binary projections from RF, BRT, and BART to compute the 249 
committee averaging score. This score ranges from 0 (indicating all models predict absence) to 100 250 
(indicating all models predict presence), providing an intuitive assessment of the likelihood of species 251 
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presence We used the threshold that optimized the TSS statistics computed with the function 252 
“threshold” from the R package “dismo”. 253 

For future climate projections (2041-2060) under each SSP, the committee averaging process 254 
described above was repeated using projections of all considered GCMs (6 in total). This resulted in 255 
18 projections (3 models x 6 GCMs) per SSP. 256 

Model extrapolation 257 

To address potential issues of model extrapolation when projecting under non-analogous 258 
environmental conditions, we employed the multivariate environmental similarity surface (MESS) 259 
index, as introduced by Elith et al. (2010). This index quantifies how similar a point is to the training 260 
dataset based on a specified set of reference explanatory variables. A negative MESS value indicates 261 
that at least one of these explanatory variables falls outside the range of the reference dataset, 262 
suggesting potential extrapolation. We computed the MESS index for the climate descriptors used to 263 
calibrate the models (current climate conditions, 2001-2018) and for the different climate change 264 
scenarios. For each SSP, the minimum value of the MESS index computed for the 6 GCM was 265 
retained. Computations were done using the function “mess” from the package “dismo”. 266 

Lycorma delicatula host plant dataset 267 

In our assessment of the risk of L. delicatula establishment in Europe, the presence of compatible 268 
host plants plays a crucial role. We compiled a comprehensive list of host plants based on various 269 
sources including reviews, research articles, theses, and pest risk analysis reports (refer to 270 
Appendices 4 and 5). To differentiate host plants, we categorized them based on whether feeding 271 
events were observed or if L. delicatula was merely observed resting or egg-laying. Our analysis 272 
focused on reports where explicit feeding or damage by L. delicatula was documented. For 273 
taxonomic classification, we updated the plant names according to the Plant of the World Online 274 
(POWO) classification system (https://powo.science.kew.org). We examined the origin of each 275 
feeding host plant and its distribution in native and invaded areas, as well as its status (introduced, 276 
native, or cultivated) in Europe. 277 

The geographical distribution (presence or absence) and status of each feeding host plant in 278 
European countries were compiled from several authoritative databases: 1) Plant of the World 279 
Online (POWO) and GRIN (Germplasm Resources Information Network) for native and invaded areas 280 
worldwide (https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch) 2) Euro+Med PlantBase 281 
for European countries (https://www.emplantbase.org/home.html). 282 

We defined Europe according to administrative boundaries and included the following countries: 283 
Albania, Andorra, Austria, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Czech 284 
Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, 285 
Kosovo, Latvia, Liechtenstein, Lithuania, Luxembourg, Macedonia, Malta, Moldova, Monaco, 286 
Montenegro, Netherlands, Norway, Poland, Portugal, Romania, San Marino, Serbia, Slovakia, 287 
Slovenia, Spain, Sweden, Switzerland, Ukraine, and United Kingdom. 288 

RESULTS 289 

Calibration and evaluation of the models  290 

The variables retained by the selection procedures in BART and BRT were similar: bio1, bio5, bio6, 291 
bio9, bio11, bio12, and bio16. The selection procedure in RF yielded a slightly different set: bio1, 292 

https://powo.science.kew.org/
https://www.emplantbase.org/home.html
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bio6, bio9, bio10, bio11, bio12, and bio16, where bio5 was replaced by bio10. The AUC was 293 
respectively 0.999, 0.998 and 0.999 for RF, BRT and BART. The TSS was respectively 0.994, 0.996 and 294 
0.994 for RF, BRT and BART. These results indicated a very good performance of the 3 models. The 295 
suitability thresholds that maximized the TSS were 0.623, 0.362 and 0.540 respectively for RF, BRT 296 
and BART. 297 

Current climate suitability (2001-2018) 298 

Figures 1A-C depict climate suitability for the period 2001-2018 according to each model (RF, BRT, 299 
BART), showing very high suitability in western Europe with a northern boundary through England 300 
and Scandinavia (Sweden, Finland) and Russia. Southern Europe also exhibited suitability extending 301 
into northern Morocco, Algeria, and northeastern Tunisia. Figure 1D illustrates committee averaging 302 
of RF, BRT, and BART model outputs, highlighting areas of consensus and divergence, particularly 303 
around the Mediterranean basin and northern Europe. The MESS index map (Figure 1E) indicates 304 
minimal model extrapolation in western Europe (positive values), contrasting with increased 305 
extrapolation in North Africa, the Middle East, and northern Europe's Novaya Zemlya region 306 
(negative values). 307 

Climate suitability in 2041-2060 308 

The committee averaging of projections across the four SSPs is depicted in Figures 2A, 2C, 2E, and 309 
2G. In the period 2041-2060, suitable areas expanded slightly northward, particularly under scenarios 310 
with high greenhouse gas emissions, notably affecting northern Scandinavia and the north-western 311 
Ural Plain in Russia (Figure 2G). Conversely, there was a decrease in suitability observed in the 312 
southern Iberian Peninsula (southern Spain and Portugal) and North Africa (Morocco). Figures 2B, 313 
2D, 2F, and 2H display maps of the MESS index, which showed a similar spatial pattern compared to 314 
the period 2001-2018. However, the MESS index increased across all considered SSPs in central 315 
Spain, the Middle East, southern Kazakhstan, Uzbekistan, and Turkmenistan. These findings 316 
underscore the need for caution when interpreting projections in these regions, due to potential 317 
extrapolation beyond the range of environmental conditions corresponding to the dataset used for 318 
models’ calibration. 319 

Host plants  320 

A total of 104 taxa were identified as feeding host plants of L. delicatula, comprising 103 species and 321 
1 subspecies (Betula pendula subsp. mandshurica), distributed across 65 genera and 39 botanical 322 
families (see Appendix 5). Additionally, L. delicatula was associated with 72 plant species and 11 323 
botanical families where feeding observations were absent. Among these, 12 species were noted 324 
with observations of both eggs and nymphs/adults, 33 species with only observations of 325 
nymphs/adults, and 17 species solely reported as egg supports. The number of host plants varied 326 
significantly by country (Appendix 7). 327 

During the invasion of Japan, South Korea, and the USA, L. delicatula acquired 68 new host species, 328 
with specific host plant numbers for these countries being 1, 28, and 33, respectively. Only 22 host 329 
species were exclusively reported from China, while one feeding host species (Ailanthus altissima) 330 
was common across China, Japan, South Korea, and the USA (see Appendix 8). 331 

Among the 103 feeding host taxa of L. delicatula, 57 species were identified in Europe (see Figure 3, 332 
Appendix 9). Some species had wide geographic distributions (Eurasiatic) and were native to both 333 
China or Europe (e.g., Arctium lappa, Betula pendula, Rosa pendulina, Vitis vinifera), or were invasive 334 
(e.g., A. altissima, Celastrus orbiculatus), cultivated (e.g., apricot: Prunus armeniaca, kaki persimmon: 335 
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Diospyros kaki), and/or ornamental (e.g., honeysuckle: Lonicera maackii, Melia azedarach, weeping 336 
willow: Salix babylonica). Certain American hosts introduced to Europe as ornamental or cultivated 337 
species include Quercus rubra, Juglans cinerea, and Acer rubrum, some of which have become 338 
invasive like Prunus serotina. Two American hosts, Acer platanoides and Acer pseudoplatanus, are 339 
native to Europe. Countries with the highest risk of L. delicatula establishment, based on the 340 
availability of host plants, include Ukraine, France, and Germany, each hosting more than 40 host 341 
species (see Figure 3). 342 

Worldwide distributions  343 

The worldwide projections for current climate conditions are detailed in Appendix 10, highlighting 344 
regions of high climate suitability in both the native range and invaded areas (South Korea, Japan, 345 
and extensive parts of the USA). The MESS index provided in Appendix 11 shows positive values in 346 
these regions, indicating minimal issues with extrapolation. Additionally, certain regions of South 347 
America (Chile, Argentina), South Africa, and Australia (specifically Victoria, New South Wales, and 348 
Queensland) exhibited high climate suitability according to all three models. Appendices 12 to 19 349 
present worldwide projections for the period 2041-2060 under different Shared Socioeconomic 350 
Pathways (SSPs), along with corresponding MESS maps. These projections indicated an increase in 351 
climate suitability towards the north and a decrease towards the south relative to the current 352 
potential range. 353 

DISCUSSION 354 

The three algorithms employed in this study demonstrated strong performance and provided 355 
consistent projections for Europe. While some discrepancies were noted in Southern Finland and 356 
Western Russia, the majority of Western Europe exhibited current climate conditions that are 357 
deemed suitable for L. delicatula. This finding aligns with the conclusions drawn by Wakie et al. 358 
(2020), although our models indicated higher and more uniform climate suitability across the 359 
European continent. Both Wakie et al. (2020) and our study suggest that L. delicatula would struggle 360 
to establish in tropical zones, contrasting with the findings of Jung et al. (2017). This disparity could 361 
stem from differences in the algorithm used or variations in available data during the respective 362 
analyses. Beyond Europe, regions with climatically favourable conditions extend to North America 363 
(Mexico, USA), South America (Argentina, Chile), Africa (South Africa), Asia (China, Korea, Japan), 364 
Southeast Australia, and the North Island of New Zealand (Appendix 10). 365 

Numerous known host plants are already established in Europe, with countries like Germany, France, 366 
and Ukraine hosting more than 40 identified host species. In addition, European host species that L. 367 
delicatula could potentially acquire upon establishment should also be considered. The insect's 368 
ability to adapt to new hosts is evident from its acquisition of numerous American species during the 369 
invasion of the USA (Barringer and Ciafré 2020). Our findings also reveal minimal overlap among host 370 
plant species across the three Asian countries where L. delicatula is present. While this could partly 371 
be due to gaps in literature information, it's important to note that China, Japan, and Korea naturally 372 
exhibit relatively low overlap in plant species (Guowen 1997; Wang et al. 2023). 373 

L. delicatula is a notable invasive species, particularly because its preferred host, Ailanthus altissima, 374 
is itself a highly successful invasive plant with a global distribution (Park et al. 2009). A. altissima is 375 
recognized as one of the most pervasive invasive plants (Sladonja et al. 2015), and despite regulatory 376 
efforts within the European Union (Regulation 1143/2014), its spread continues. This situation could 377 
potentially facilitate the establishment of L. delicatula if introduced, presenting a scenario akin to 378 
invasional meltdown (Simberloff and von Holle 1999). Although L. delicatula reduces the annual 379 
growth of A. altissima (Dechaine et al. 2023), its non-specific feeding behavior typically excludes it 380 
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from consideration as a suitable biocontrol agent (Ding et al. 2006), though Brooks et al. (2020) 381 
explored its potential role in vectoring plant pathogens. 382 

Climate change is anticipated to have diverse impacts on both crop species and pest organisms, such 383 
as range shifts (Bebber et al. 2013; Battisti and Larsson 2015) and potentially heightened crop losses 384 
(Deutsch et al. 2018). While the specific impact on crop losses due to L. delicatula in Europe remains 385 
uncertain, our findings suggest that its potential range by 2060 is not likely to undergo significant 386 
changes. There may be a slight contraction in southern Europe, particularly in regions of South 387 
Portugal and Spain, but this effect is expected to be limited. Conversely, there could be a modest 388 
northward expansion of suitable climate conditions, particularly in Scandinavia and Russia. It is 389 
important to note that model extrapolation increases in regions where climate suitability is projected 390 
to decrease, indicating that these results should be interpreted cautiously. On a global scale, there is 391 
an anticipated increase in climate suitability in the southwest of Australia and New Zealand. 392 

The risk associated with the spread of L. delicatula in Europe encompasses both environmental and 393 
economic dimensions, as framed by the hazard-exposure-vulnerability model widely used in risk 394 
analysis (Field et al. 2015). The hazard, characterized by the probability of introduction and 395 
establishment, is deemed high due to substantial trade connections between Europe and regions 396 
where the insect is native or has invaded (Huron et al. 2022). Should L. delicatula be introduced, 397 
favourable climatic conditions and abundant host plants would likely facilitate its widespread 398 
dispersal across Europe, aided either by human transport or natural means. The exposure 399 
component of the risk is significant given the diverse range of plant species that could potentially be 400 
impacted, many of which hold considerable agricultural (e.g., Vitis, Prunus, Malus, Juglans) or 401 
forestry (e.g., Populus, Acer, Fraxinus) value. Previous research indicates that L. delicatula can 402 
complete its lifecycle on multiple hosts beyond A. altissima, including Acer saccharinum, Salix 403 
babylonica, Humulus lupulus, Juglans species, Liriodendron tulipifera, Melia azedarach, and Quercus 404 
acutissima (Uyi et al. 2020, 2021; Murman et al. 2020). A recent study by Huron et al. (2022) 405 
underscored the potential for global disruption in the wine market if L. delicatula were to establish in 406 
viticultural regions. Finally, the vulnerability term of the risk encompasses the propensity to be 407 
adversely affected and the lack of capacity to cope and adapt. Preparedness measures are crucial, 408 
including rapid response capabilities, expert workforce readiness, and informed public awareness 409 
aligned with current and projected climate conditions (Ricciardi et al. 2021). Strengthening pest 410 
surveillance programs and enhancing international information exchange are also pivotal (Giovani et 411 
al. 2020) regarding vulnerability. 412 

While climate suitability maps and host analyses indicate widespread threat across Europe, they 413 
provide no clues toward the spatio-temporal dynamics of a potential invasion. For that, population 414 
dynamics models (Smyers et al. 2021; Lewkiewicz et al. 2022) or phenology models (Maino et al. 415 
2023, Barker et al. 2023) could be developed. Early warning systems could benefit from targeted 416 
monitoring of A. altissima and other potential sentinel plants, as recommended by the European 417 
Food Safety Authority (EFSA et al. 2023). Promoting preemptive biocontrol programs, i.e. biocontrol 418 
developed prior to the arrival of invasive pests, has proven effective and could mitigate European 419 
vulnerability to L. delicatula (Avila et al. 2023; Gómez Marco et al. 2023). Implementing such 420 
strategies is important to protect European biodiversity and agricultural sectors from the potential 421 
impacts of this invasive insect. 422 

CONCLUSION 423 

Neither the climate conditions nor the presence of compatible host plants constitutes an obstacle to 424 
the establishment of L. delicatula in Europe. Climate assessments under different scenarios suggest 425 
that conditions will remain favorable for L. delicatula in the coming decades across much of Europe. 426 
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FIGURES 698 

Fig. 1 Potential geographical distribution of Lycorma delicatula in Europe under current climate 699 
conditions (2001-2018). A. Climate suitability according to the random forest model (RF), B. Climate 700 
suitability according to the boosted regression trees model (BRT), C. Climate suitability according to 701 
the Bayesian additive regression trees model (BART), D. Committee averaging F. Multivariate 702 
environmental similarity surfaces (MESS) comparing current climate conditions in Europe to 703 
reference points used for model calibration. Analogous environments are shown in red (positive 704 
values) and novel environments are shown in blue (negative values). 705 

 706 

707 
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Fig. 2 Climate suitability and MESS index for the period 2041-2060. A. Climate suitability for SSP1-2.6, 708 
B. MESS index for SSP1-2.6, C. Climate suitability for SSP2-4.5, D. MESS index for SSP2-4.5, E. Climate 709 
suitability for SSP3-7.0, F. MESS index for SSP3-7.0, G. Climate suitability for SSP5-8.5, H. MESS index 710 
for SSP5-8.5. For a given SSP, the climate suitability map depicts the committee averaging of values 711 
obtained for 3 model algorithms and 6 global circulation models (see text for details).  712 
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Fig. 3 Number of host plants in European countries where climate conditions are suitable for 714 
Lycorma delicatula.  715 
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 718 

SUPPORTING INFORMATION 719 

Additional supporting information may be found in the online version of the article at the publisher’s 720 
website.  721 

Appendix 1: References for occurrences of Lycorma delicatula.  722 

Appendix 2: Occurrences of Lycorma delicatula collected from the literature. Status indicates if the 723 
occurrence is valid. References are given in Appendix 1. 724 

Appendix 3: Maps of the occurrence points and areas where pseudo-absence points were randomly 725 
generated for the species distribution modelling of the Lycorma delicatula. 726 

Appendix 4: References for host plants of Lycorma delicatula.  727 

Appendix 5: List of host plants of Lycorma delicatula. References are given in Appendix 4.  728 

Appendix 6: Reclassified maps of the climate suitability for Lycorma delicatula according to 3 729 
algorithms. A Random forests (RF) B. Boosted regression trees (BRT) C. Bayesian additive regression 730 
trees (BART). The climate conditions represent the period 2001-2018. 731 

Appendix 7. List of feeding host species and the country of observation. 732 

Appendix 8. Venn diagram showing the number of feeding host plants of Lycorma delicatula by 733 
country. Shape overlaps contain the number of species shared by countries. All countries: N=104 734 
feeding species.  735 

Appendix 9. Number of known feeding hosts and non-feeding plant species present in European 736 
countries. Feeding host species include all plant species on which L. delicatula feeding events have 737 
been explicitly reported in the literature. Non-feeding species include plant species on which L. 738 
delicatula has been observed but on which no explicit feeding event was reported (e.g. resting, egg 739 
laying).  740 

Appendix 10. Potential geographical distribution of Lycorma delicatula under current climate 741 
conditions (2001-2018). The map depicts the committee averaging of values obtained for three 742 
algorithms (see text for details). 743 

Appendix 11. Multivariate environmental similarity surfaces (MESS) comparing current climate 744 
conditions (2001-2018) for the world to reference points used for model calibration. Analogous 745 
environments are shown in red (positive values) and novel environments are shown in blue (negative 746 
values). 747 

Appendix 12. Potential geographical distribution of Lycorma delicatula under future climate 748 
conditions (2041-2060, SSP1-2.6). The map depicts the committee averaging of values obtained by 749 
projecting the data of 6 GCM using 3 species distribution models (see text for details). 750 

Appendix 13. Multivariate environmental similarity surfaces (MESS) comparing future climate 751 
conditions (2041-2060, SSP1-2.6) for the world to reference points used for model calibration. At 752 
each pixel, the map shows the lower value of the index computed for the projections of 3 models 753 
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according to the climate conditions associated with 6 GCM. Analogous environments are shown in 754 
red (positive values) and novel environments are shown in blue (negative values). 755 

Appendix 14. Potential geographical distribution of Lycorma delicatula under future climate 756 
conditions (2041-2060, SSP2-4.5). The map depicts the committee averaging of values obtained by 757 
projecting the data of 6 GCM using 3 species distribution models (see text for details). 758 

Appendix 15. Multivariate environmental similarity surfaces (MESS) comparing future climate 759 
conditions (2041-2060, SSP2-4.5) for the world to reference points used for model calibration. At 760 
each pixel, the map shows the lower value of the index computed for the projections of 3 models 761 
according to the climate conditions associated with 6 GCM. Analogous environments are shown in 762 
red (positive values) and novel environments are shown in blue (negative values). 763 

Appendix 16. Potential geographical distribution of Lycorma delicatula under future climate 764 
conditions (2041-2060, SSP3-7.0). The map depicts the committee averaging of values obtained by 765 
projecting the data of 6 GCM using 3 species distribution models (see text for details). 766 

Appendix 17. Multivariate environmental similarity surfaces (MESS) comparing future climate 767 
conditions (2041-2060, SSP3-7.0) for the world to reference points used for model calibration. At 768 
each pixel, the map shows the lower value of the index computed for the projections of 3 models 769 
according to the climate conditions associated with 6 GCM. Analogous environments are shown in 770 
red (positive values) and novel environments are shown in blue (negative values). 771 

Appendix 18. Potential geographical distribution of Lycorma delicatula under future climate 772 
conditions (2041-2060, SSP5-8.5). The map depicts the committee averaging of values obtained by 773 
projecting the data of 6 GCM using 3 species distribution models (see text for details). 774 

Appendix 19. Multivariate environmental similarity surfaces (MESS) comparing future climate 775 
conditions (2041-2060, SSP5-8.5) for the world to reference points used for model calibration. At 776 
each pixel, the map shows the lower value of the index computed for the projections of 3 models 777 
according to the climate conditions associated with 6 GCM. Analogous environments are shown in 778 
red (positive values) and novel environments are shown in blue (negative values). 779 
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