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Abstract
Disentangling the effects of ecological disruptions operating at different spatial and 
temporal scales in shaping past species' demography is particularly important in the 
current context of rapid environmental changes driven by both local and regional 
factors. We argue that volcanic oceanic islands provide useful settings to study the 
influence of past ecological disruptions operating at local and regional scales on popu-
lation demographic histories. We investigate potential drivers of past population dy-
namics for three closely related species of passerine birds from two volcanic oceanic 
islands, Reunion and Mauritius (Mascarene archipelago), with distinct volcanic his-
tory.	Using	ABC	and	PSMC	inferences	from	complete	genomes,	we	reconstructed	the	
demographic	history	of	the	Reunion	Grey	White-	eye	(Zosterops borbonicus (Pennant, 
1781)),	the	Reunion	Olive	White-	eye	(Z. olivaceus (Linnaeus, 1766)) and the Mauritius 
Grey	White-	eye	(Z. mauritianus (Gmelin, 1789)) and searched for possible causes un-
derlying similarities or differences between species living on the same or different 
islands.	Both	demographic	inferences	strongly	support	ancient	and	long-	term	expan-
sions	in	all	species.	They	also	reveal	different	trajectories	between	species	inhabiting	
different islands, but consistent demographic trajectories in species or populations 
from the same island. Species from Reunion appear to have experienced synchronous 
reductions in population size during the Last Glacial Maximum, a trend not seen in 
the Mauritian species. Overall, this study suggests that local events may have played 
a role in shaping population trajectories of these island species. It also highlights the 
potential of our conceptual framework to disentangle the effects of local and regional 
drivers	on	past	species'	demography	and	long-	term	population	processes.

K E Y W O R D S
demographic inferences, effective population size, global change, Mascarene archipelago, 
population genomics, Zosterops
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1  |  INTRODUC TION

Ecological disruptions due to variations in environmental conditions 
can have profound effects on local population size by directly affect-
ing individual physiology or indirectly modifying population niche 
limits.	These	disruptions	 can	be	 triggered	by	major	environmental	
events, such as global climatic changes, that can lead to drastic re-
ductions in population size. Such bottlenecks have important conse-
quences for gene pools owing to their effect on effective population 
sizes (Ne) (Maruyama & Fuerst, 1985;	Nei	et	al.,	1975;	Tajima,	1989; 
Watterson, 1984). Such effects have been documented across dif-
ferent taxa in the case of past global climatic events, implying some 
synchrony in population fluctuations at a very large spatial scale in 
response to climatic changes (Chattopadhyay et al., 2019; Germain 
et al., 2023). In turn, severe ecological disruptions at the local level 
can have more temporary and localized effects on populations. 
These	include	volcanic	eruptions,	forest	fires	and	direct	or	indirect	
human impacts on the environment through predation or habitat 
modification, all of which have the capacity to radically transform 
local landscapes (Dornelas, 2010). Distinguishing the effects of 
local-	scale	 drivers	 relative	 to	 large-	scale	 processes	 in	 shaping	 the	
demography of populations and species over time, especially when 
both occurred in the past before human impact, might be essential if 
we	want	to	predict	accurately	how	human-	driven	climate	change	will	
challenge the global persistence of many species and their conserva-
tion	(Nogués-	Bravo	et	al.,	2018; Urban et al., 2016). Yet, evaluating 
the	relative	importance	of	 local-	based	and	global-	based	influences	
remains challenging since past local effects are generally poorly un-
derstood at the scale of a species' range and can be confounded by 
global effects.

Volcanic	oceanic	islands	possess	a	number	of	features	that	could	
help to solve problems associated with the difficulty of distinguish-
ing the effects of past ecological disruptions operating at local ver-
sus regional scales on population demographic histories (Warren 
et al., 2015). First, they have usually undergone a series of localized 
processes, such as major geodynamic events (Whittaker et al., 2008) 
or human impact, but have also experienced the effects of past 
changes in the global climate (Weigelt & Kreft, 2013). Second, most 
volcanic oceanic islands are configured into groups of islands that 
are closely spaced and have similar origins, geophysical settings and 
climates. Yet, each island within such volcanic archipelagos has its 
own geological life cycle (Whittaker et al., 2008), and different is-
lands have experienced independent bouts of ecological disruptions, 
mainly owing to volcanic episodes and related geodynamic processes 
that	are	often	asynchronous	across	islands.	Therefore,	studying	vol-
canic archipelagos with islands at different stages of their life cycle 
could	allow	for	assessing	the	relative	importance	of	local	(i.e.	island-	
specific) and regional (i.e. at the archipelago scale) disruption events 
on	population	size	trajectories	by	comparing	long-	term	demographic	
responses of species living on the same or different islands within 
an archipelago (Figure 1). In addition, the isolated nature of these 
islands is an asset for inferring demographic histories of insular lin-
eages as most species are island endemics and interference from 

external source populations that can generate complex demographic 
scenarios, as is often found in continental settings, is expected to 
be minimal (Losos & Ricklefs, 2009). Furthermore, because differ-
ent islands often host allopatric sister species, archipelagos allow for 
the comparison of demographic histories from immediately related 
species, minimizing possible higher level confounding effects (Weir 
& Lawson, 2015).

Some studies have inferred the demographic histories of species 
from volcanic archipelagos (e.g. Lamichhaney et al., 2015; Martin 
et al., 2021), but did not attempt to compare the population histories 
of	 species	 living	on	 the	 same	and	different	 islands.	Here,	we	pro-
pose to do so using, as a study system, the Mascarene archipelago, 
a remote island group in the southwestern Indian Ocean composed 
of	 two	 main	 islands,	 Mauritius	 and	 Reunion.	 The	 two	 islands	 are	
separated	by	140 km	of	deep	water	and	were	never	 connected	 to	
each	other	(Thébaud	et	al.,	2009).	They	are	comparable	in	size	while	
being	at	different	stages	of	island	ontogeny	(see	Fernández-	Palacios	
et al., 2011), and therefore exhibit very different topographies: 
Reunion, a younger island (2 my) is in the erosion and landslide phase 
and	has	a	very	rugged	landscape,	reaching	an	elevation	of	3071 m,	
while Mauritius, an older island (8 my) in the late basal plain phase, 
has	experienced	the	long-	term	effects	of	erosion	and	culminates	at	
just	 828 m	 (Duncan,	 2009). Global climatic events, including Late 
Quaternary events, appear to have affected species' demographic 
histories on both islands (de Boer et al., 2015; Garot et al., 2019; 
Heller	et	al.,	2008; Salmona et al., 2012;	Salmona,	Heller,	Quéméré,	
et al., 2017).	However,	the	intensity	of	ecological	disruption	as	ex-
perienced by animal and plant populations may have been very dif-
ferent on the two islands since the persistence of possible refugia 
during extreme cooling events is positively related to mountain-
ous	 topography	 (Harter	et	 al.,	2015;	Mastretta-	Yanes	et	 al.,	2015; 
but	 see	 Salces-	Castellano	 et	 al.,	 2021). Localized and temporary, 
island-	specific	 events	 likely	 to	 have	 affected	many	 species'	 popu-
lation	 trajectories	have	also	occurred	on	both	 islands	 (A.	Cheke	&	
Hume,	2010). In particular, a series of large explosive volcanic erup-
tions	that	took	place	around	200,000	ya	(198,800	ya ± 2500 years)	
on Reunion (Castellanos Melendez et al., 2023), and a series of 
basaltic lava flows that have occurred regularly (on average every 
21,000 years)	in	the	last	500,000 years	on	Mauritius,	which	currently	
cover nearly 75% of the island (Moore et al., 2011).

To	 illustrate	 potential	 effects	 of	 local	 and	 regional	 disruption	
events on population demographic trajectories, we focused on three 
species	 of	white-	eyes	 (Zosteropidae),	 all	 single-	island	 endemics	 in	
the	Mascarene	Archipelago	(Milá	et	al.,	2010; Warren et al., 2006; 
Figure 2).	 These	 small	 passerine	 birds	 show	 limited	 dispersal	 ca-
pacity (Bertrand et al., 2014; Chris Smith, pers. comm.), a feature 
that could make them sensitive to major climatic and environmental 
changes (Germain et al., 2023).	We	hypothesized	that	 (1)	 if	 island-	
specific events had major effects on species' demography, we should 
recover	island-	specific	demographic	signals	shared	by	species	living	
on a particular island, and similarly, (2) if regional climatic events had 
severe impacts on species at the scale of the entire archipelago, we 
should find similar signals of demographic events between species 
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living on different islands (Figure 1).	Taking	advantage	of	the	recent	
public	 release	of	a	high-	quality	 reference	genome	for	 the	Reunion	
Grey	 White-	eye	 (Zosterops borbonicus (Pennant, 1781)) (Leroy, 
Anselmetti,	et	al.,	2021), we used shotgun sequencing to generate 
whole-	genome	 sequence	 data	 from	 the	 Reunion	Grey	White-	eye,	
the	Reunion	Olive	White-	eye	(Zosterops olivaceus (Linnaeus, 1766)) 
and	 the	Mauritius	Grey	White-	eye	 (Zosterops mauritianus (Gmelin, 
1789)).	The	first	 two	species	are	endemic	to	Reunion	whereas	the	
third	 species	 is	 endemic	 to	Mauritius.	All	 three	 species	 are	 imme-
diate relatives (Milá et al., 2010; Warren et al., 2006; Figure 2) and 
are common and widely distributed in their respective islands. 
Therefore,	it	seems	reasonable	to	assume	that	their	long-	term	pop-
ulation dynamics have been little affected by anthropogenic activi-
ties	since	humans	colonized	these	islands	(A.	Cheke	&	Hume,	2010). 
In	addition,	the	Reunion	Grey	White-	eye	is	represented	by	multiple	
geographic forms that originated and diversified within Reunion 
(Gabrielli et al., 2020; Gill, 1973).	Three	forms	are	restricted	to	the	
lowlands, whereas a fourth form is only found in the highlands, pri-
marily	between	1400	and	3000 m	(Bertrand	et	al.,	2016; Cornuault 
et al., 2015).	These	forms	can	therefore	be	considered	as	replicates	of	
lineages	from	the	same	island	but	also	as	indicators	of	within-	island	

environmental	 differences.	 To	 reconstruct	 the	 long-	term	 trajec-
tory of effective population sizes (Emerson et al., 2001), we first 
used a series of Markovian coalescent analyses at the individual 
level.	Although	these	approaches	have	been	intensively	used	in	the	
past decade (Li & Durbin, 2011; Schiffels & Durbin, 2014;	Terhorst	
et al., 2017), a potentially serious limitation to using Markovian co-
alescent methods is that they assume that the focal species behaves 
as a panmictic unit (Mazet et al., 2016).	Therefore,	we	also	used	de-
mographic	inferences	based	on	Approximate	Bayesian	Computation	
(ABC;	 Beaumont	 et	 al.,	 2002), since they allow the evaluation of 
various scenarios of population size changes accounting for periods 
of gene exchange and estimate the timing of demographic events. 
Our results strongly support ancient expansions in the three spe-
cies, likely associated with evolutionary processes that took place on 
the islands themselves since they diverged from an ancestral stock. 
Furthermore, our results indicate that the two species of Reunion 
white-	eyes	 have	 similar	 demographic	 histories,	 distinct	 from	 the	
demographic	history	of	the	Mauritius	Grey	White-	eye.	These	find-
ings suggest that local events have played a rather significant role in 
shaping	population	trajectories	in	Mascarene	white-	eyes.	Our	con-
ceptual framework and its working hypotheses appear to provide 

F I G U R E  1 Proposed	strategy	to	compare	the	effects	of	local	events	and	regional	events	on	genetic	diversity	by	comparing	the	
demographic histories of closely related populations or species inhabiting different islands from the same volcanic oceanic archipelago. 
Plots represent effective population size (Ne) through time for a population or species, and numbers indicate different events of ecological 
disruption	associated	with	bottlenecks:	event	1	is	a	volcanic	eruption	on	island	A	while	event	2	corresponds	to	a	regional	drop	in	
temperatures,	as	observed	during	a	glacial	maximum,	that	affects	demographic	histories	on	islands	A	and	B	synchronously,	all	else	being	
equal.	Contemporary	bottlenecks	suggest	the	importance	of	events	at	a	large	geographic	scale	while	bottlenecks	associated	with	island-	
specific events suggest the importance of local events as drivers of population histories.

ISLAND A

ISLAND B

Scenario 1:
LOCAL EVENTS

Scenario 2:
REGIONAL EVENTS

Ne

Time before
present

Different demographic
histories between islands

Shared demographic
histories between islands

1

2

2

ARCHIPELAGO
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an improved basis for disentangling the effects of local and regional 
drivers on the past demography of species and a better understand-
ing of population processes that are of paramount conservation 
importance in the current context of rapid environmental change 
driven by both local and regional factors of ecological disruption.

2  |  MATERIAL S AND METHODS

2.1  |  Population sampling and DNA sequence data

Blood samples from a total of 42 individuals, captured in mistnets and 
then released, were collected between 2007 and 2017 throughout 
the	entire	distribution	of	the	Reunion	Grey	White-	eye	(22	individu-
als	from	18	localities),	the	Reunion	Olive	White-	eye	(11	individuals	
from	11	localities)	and	the	Mauritius	Grey	White-	eye	(nine	individu-
als from nine localities) (Figure 2; Table S1).	Approximately	1 μg of 
high-	quality	DNA	was	extracted	using	a	QIAGEN	DNeasy	Blood	&	
Tissue	kit	 following	 the	manufacturer's	 instructions,	with	an	extra	
pre-	digestion	grinding	step.	Genomic	DNA	extractions	were	sent	to	

Novogene	Bioinformatics	Technology	(Beijing,	China;	25	individuals)	
and	GeT-	PlaGe	 core	 facility	 (INRA,	 Toulouse;	 nine	 individuals)	 for	
shotgun	whole-	genome	 resequencing	with	 an	 Illumina	HiSeq2500	
sequencer. Our dataset includes data from eight individuals se-
quenced using similar procedures in previous studies (Bourgeois 
et al., 2017;	Leroy,	Anselmetti,	et	al.,	2021).

2.2  |  Reference- based whole- genome processing

To	 genotype	 individuals,	 sequencing	 reads	 of	 all	 three	 species	
were	first	mapped	against	the	high-	quality	genome	assembly	(scaf-
fold	N50	 exceeding	 one	megabase)	 of	 a	 Reunion	Grey	White-	eye	
(Leroy,	 Anselmetti,	 et	 al.,	 2021)	 using	 the	 bwa-	mem	 algorithm	 (Li	
& Durbin, 2009) with default parameters. Single nucleotide poly-
morphisms	(SNPs)	were	then	called	for	each	species	independently	
using	GATK	v.	3.7	 (McKenna	et	al.,	2010) using base quality score 
recalibration and indel realignment. Both variant and invariant sites 
were	 called	 (option	 “-	-	includeNonVariantSites”).	 Variant	 filtration	
was performed using a custom script to speed up computations, but 

F I G U R E  2 Distribution	range	and	sampling	localities.	Localities	are	labelled	with	numbers	(see	Table S1 for names and coordinates) and 
circles	with	different	colours	represent	samples	from	Reunion	Grey	White-	eye	(purple),	Reunion	Olive	White-	eye	(green)	and	Mauritius	Grey	
White-	eye	(orange).	Grey	colours	represent	elevation	classes;	for	Reunion:	light	grey = elevation	below	1000 m,	medium	grey = elevation	
between	1000	and	2000 m,	dark	grey = elevation	above	2000 m;	for	Mauritius:	light	grey = elevation	below	400 m,	medium	grey = elevation	
between	400	and	600 m,	dark	grey = elevation	above	600 m.	Dotted	lines	separate	the	distribution	ranges	of	the	four	Reunion	Grey	White-	
eye	geographic	forms.	Phylogenetic	relationships	among	the	four	endemic	Mascarene	white-	eyes	are	adapted	from	Warren	et	al.	(2006), with 
the asterisk denoting the divergence time between the two sister lineages, estimated at 1.2 Mya. Illustrations by Douglas Pratt from Birds of 
the World, reproduced with permission from Cornell university for the digital version and Lynx edicions for the print version. Photo credits: 
Stanislas	Harvančík	(Reunion	Grey	White-	eye),	Simon	Colenutt	(Reunion	Olive	White-	eye)	and	Hilary	Jones	(Mauritius	Grey	White-	eye).
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following	the	same	procedures	than	under	GATK,	using	the	follow-
ing	thresholds:	QD >2.0,	FS < 60.0,	MQ > 40.0,	MQRANKSUM>-	2.0,	
READPOSRANKSUM>-	2.0	 and	 RAW_MQ > 45,000.	 The	 three	
species	were	also	genotyped	 together	 for	multi-	population	demo-
graphic	inferences	using	the	same	variant	filtration	procedure.	After	
filtering, the mean individual coverage was 15x (see Table S2 for de-
tails	about	the	samples	used).	To	check	for	the	general	consistency	
of the obtained genomic dataset, we performed a principal compo-
nent	analysis	with	PLINK	v.	1.90b5.3	(Purcell	et	al.,	2007) and plot-
ted	the	results	in	R	version	3.5	(R	Core	Team,	2020) with adegenet v. 
2.1.1 (Jombart, 2008; Figure S1).

2.3  |  Mutation rate and generation time estimates

Mutation rate and generation time are two key parameters in popu-
lation genetic inference. In this study, we used the same set of pa-
rameter values for the three focal species, considering that they 
diverged from a common ancestor 1.2 million years ago at most 
(Martins et al., 2020; Warren et al., 2006), and genomic features tend 
to be conserved in birds (Kawakami et al., 2014; Singhal et al., 2015). 
We used a mutation rate of 4.6e−9 mutations per site per generation 
(95% confidence interval: 3.4e−9–5.9e−9) based on a direct estimate 
for the Collared Flycatcher (Ficedula albicollis	 (Temminck,	 1815))	
(Smeds et al., 2016).	A	few	estimates	of	generation	times	are	availa-
ble for Zosterops species, suggesting short generation times, possibly 
less than a year (Cornetti et al., 2015; Moyle et al., 2009), but gen-
eration	time	is	between	2	and	3 years	in	the	Heron	Island	population	
of Silvereye (Zosterops lateralis chlorocephalus Gould, 1841) (Clegg 
et al., 2002; Estoup & Clegg, 2003).	Thus,	we	used	a	generation	time	
of 1 year but also ran our analyses using values ranging between 0.5 
and	2 years	to	account	for	uncertainty.

2.4  |  Demographic inferences

We used two independent approaches to reconstruct the demo-
graphic	histories	of	the	three	Mascarene	white-	eyes.

2.4.1  | Markovian	coalescent	analyses

In order to estimate the historical population size trajectory in each 
species, we first performed inferences of Ne using the Pairwise 
Sequentially Markovian Coalescent (PSMC, Li & Durbin, 2011) since 
this	method	can	be	readily	applied	to	unphased	whole-	genome	se-
quence data. Briefly, the PSMC model infers the local time to the 
most	 recent	 common	 ancestor	 (TMRCA)	 on	 the	 basis	 of	 the	 local	
density of heterozygotes and estimates the inverse instantane-
ous rate (IICR) of a sample which is equivalent to population size in 
panmictic models (Mazet et al., 2016). We considered two differ-
ent thresholds for the minimum sequence length, either 1000 or 
100,000 bp.	For	each	individual,	a	custom	script	was	used	to	convert	

genotypes	 into	PSMC	input	format,	 i.e.,	converting	each	100-	base	
pair window into K if the window contains at least one heterozy-
gote	site	and	T	otherwise,	using	the	following	filters:	QUAL	>100, 
10 < depth < 150,	N_ratio	(ratio	of	missing	data	in	the	window) < 0.9.	
Sites	 outside	 these	 thresholds	were	 considered	 to	 be	missing	 (N).	
We	set	the	upper	limit	of	the	TMRCA	to	5	and	the	initial	θ/ρ value to 
1	and	we	used	the	atomic	interval	scheme	“4 + 30 × 2 + 4 + 6 + 10”	as	
in	Nadachowska-	Brzyska	et	al.	(2016).

2.4.2  |  Approximate	Bayesian	
computation inferences

We	performed	ABC	inferences	from	whole-	genome	sequence	data	
using DILS (Demographic Inferences with Linked Selection; Fraïsse 
et al., 2021).	This	pipeline	gathers	ABC	demographic	 inferences	of	
population size changes and timing of gene flow during divergence 
using	either	single-	population	models	(Figure S2a)	or	two-	population	
models (Figure S2b).	 As	 DILS	 needs	 sequences	 as	 input,	 we	 per-
formed	a	whole-	genome	sequence	reconstruction	at	the	individual	
level (two sequences per chromosome considering diploidy) for all 
individuals as published in Leroy, Rousselle, et al. (2021), and then 
generated	DNA	segments	of	10 kb	for	all	the	scaffolds	with	a	scaf-
fold	size	exceeding	10 kb	and	kept	scaffolds	between	1	and	10 kb	as	
one	DNA	segment.	In	addition,	reconstructed	sequences	with	an	N	
content exceeding 50% (missing information) were discarded. Eight 
summary	 statistics	were	 used	 for	 single-	population	models:	 num-
ber of biallelic sites, pairwise nucleotide diversity (π)	(Tajima,	1983), 
Watterson's θ (Watterson, 1975)	and	Tajima's	D	(Tajima,	1989), con-
sidering	the	average	and	standard	deviation	of	each	measure.	Thirty-	
seven	 summary	 statistics	 were	 used	 for	 two-	population	 models,	
including the same estimates of genetic diversity for each popula-
tion, and measures of differentiation and divergence between popu-
lations (FST: Weir & Cockerham, 1984; Wright, 1943; net divergence: 
Nei	&	Li,	1979) (see Table S3 for a list of all summary statistics). For all 
inferences, model comparison was performed using a random forest 
algorithm.	Two	million	simulations	were	run	under	the	best	model	to	
perform	parameter	estimations,	and	four	rounds	of	goodness-	of-	fit	
were run to refine parameter estimation (Fraïsse et al., 2021).

We	 first	 used	 single-	population	 models	 for	 each	 of	 the	 three	
species to compare three scenarios involving either a constant pop-
ulation size (i) or a change of population size over time, with either 
an expansion (ii) or a contraction (iii) (Figure S2a). Models includ-
ing homogeneous or heterogeneous Ne across the genome were 
compared.	Three	parameters	were	estimated	for	single-	population	
models, namely, population size prior to the population size change 
event	(NANC),	population	size	after	this	event	(NPOP) and time since 
this	event	in	number	of	generations	(Tdem).	The	priors	used	for	each	
parameter are detailed in Table S4.

Since	single-	population	models	assume	closed	systems,	we	also	
used	models	of	two-	population	divergence	with	different	timing	of	
gene flow, with two models assuming current isolation, i.e., absence 
of	ongoing	gene	flow,	(SI:	strict	isolation;	AM:	ancestral	migration),	
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6 of 14  |     GABRIELLI et al.

and two models assuming ongoing gene flow (IM: isolation with 
migration; SC: secondary contact) (Figure S2b).	These	four	models	
assume the instantaneous split of an ancestral population into two 
daughter populations that diverge either without any migration (SI), 
with continuous introgression since the time of split (IM), with a pe-
riod	of	migration	in	the	early	times	of	lineage	divergence	only	(AM),	
or with a period of migration occurring upon secondary contact after 
an	initial	period	of	strict	 isolation	(SC).	The	models	also	 included	a	
possible change in population size in the daughter populations after 
the	 ancestral	 split.	 Eight	 parameters	 were	 estimated	 for	 all	 two-	
population models, namely, the population size of the ancestral 
population	 (NANC), the time of the split between the two popula-
tions	 (Tsplit), the population sizes of the daughter populations after 
the	split	 (NANC1	and	NANC2), the time of the potential demographic 
change	 (Tdem1	 and	Tdem2) and the population sizes of the daughter 
populations	after	 the	demographic	change	 (NPOP1	 and	NPOP2).	The	
time	of	the	secondary	contact	(TSC) was estimated in the SC model, 
and	the	 time	of	ancestral	migration	cessation	 (TAM) was estimated 
in	 the	AM	model.	Daughter	 population	migration	 rates	were	 esti-
mated	 for	 the	 three	models	 involving	migration	 (IM,	AM	 and	 SC).	
The	priors	used	for	each	parameter	are	detailed	in	Table S4. We run 
these models for the three possible pairs of species (Reunion Grey 
White-	eye–Mauritius	 Grey	 White-	eye;	 Reunion	 Grey	 White-	eye–
Reunion	Olive	White-	eye	 and	Mauritius	Grey	White-	eye–Reunion	
Olive	White-	eye).

3  |  RESULTS

Population size history reconstructions through PSMC analyses 
support contrasting population size trajectories between species 
living on different islands (Figure 3). While cycles of expansions and 
contractions	 are	 observed	 in	 the	 Reunion	Grey	 and	Olive	White-	
eyes,	Mauritius	Grey	White-	eyes	present	a	clear	signal	of	long-	term	
expansion.	 Specifically,	 in	 the	Reunion	Grey	White-	eye,	 a	 popula-
tion decline was detected that could coincide with the Last Glacial 
Maximum (LGM; 21,000 ya), while, over the same period of time, 
only a slight reduction or population size stasis was detected in the 
Reunion	Olive	White-	eye.	In	contrast,	PSMC	analyses	indicate	that	
the	Mauritius	Grey	White-	eye	underwent	an	expansion	in	the	cor-
responding time window, suggesting that the LGM might have had a 
lower impact on this species than on the Reunion species. Similar de-
mographic histories were reconstructed for the different geographic 
forms	of	 the	Reunion	Grey	White-	eye	 (Figure S3), with a possibly 
stronger reduction in population size around the time of the LGM in 
the highland form. Even after considering substantial variation in the 
mutation rate and generation time (Figure S4), our main conclusions 
still hold. Similarly, restricting the analysis to the longest sequences 
with	a	minimal	length	of	100,000 bp	instead	of	1000 bp	led	to	similar	
results (Figure S5), suggesting that our results are robust to a certain 
extent to methodological limits and parameter uncertainties.

In	 general	 agreement	 with	 the	 PSMC	 analyses,	 ABC	 demo-
graphic reconstruction highlighted a strong signal of expansion for 

all	species,	in	single-	population	models	as	well	as	in	two-	population	
models.	 For	 single-	population	 inferences,	models	 including	 an	 ex-
pansion	 phase	 had	 a	 very	 high	 posterior	 probability	 (≥0.95)	 com-
pared to models including a bottleneck or constant population size 
(Table S5). More specifically, ancestral Ne values were estimated to 
be around 35,000, 65,000 and 130,000 individuals for the Reunion 
Grey	 White-	eye,	 Mauritius	 Grey	 White-	eye	 and	 Reunion	 Olive	
White-	eye,	respectively,	and	current	Ne values were estimated to be 
around 100,000, 490,000 and 700,000, respectively, representing 
2.8-	,	7.5-		and	5.4-	fold	increases	(Table S6). Based on these models, 
the onsets of expansion were very different between Reunion and 
Mauritius	 Grey	 White-	eyes	 (around	 20,000	 generations	 ago	 and	
45,000	generations	ago	respectively)	and	the	Reunion	Olive	White-	
eye (around 250,000 generations ago).

Two-	population	models	of	divergence	inferred	an	ancestral	mi-
gration scenario as the most likely (posterior probability higher than 
0.81 for current isolation models and higher than 0.67 for ancestral 
migration versus strict isolation; Figure S6), with a brief period of 
ancestral gene flow in all species comparisons (median values for 
the	TAM/TSPLIT	 ratio:	0.72,	0.94	and	0.73	 for	Reunion	Grey	White-	
eye–Mauritius	Grey	White-	eye;	Reunion	Grey	White-	eye–Reunion	
Olive	 White-	eye	 and	 Mauritius	 Grey	 White-	eye–Reunion	 Olive	
White-	eye,	 respectively).	 Evidence	 for	 current	 isolation	 between	
species was expected, especially for species living on different is-
lands and estimates of divergence times that were obtained in our 
models are consistent with previous estimates (Cai et al., 2019; 
Warren et al., 2006), suggesting that the temporal framework of our 
demographic	inferences	using	ABC	may	be	quite	robust.	Parameter	
estimations	obtained	using	these	models	suggested	10-	fold	expan-
sions from ancestral Ne of between 35,000 and 75,000 individuals to 
current Ne of between 400,000 and 800,000 individuals across the 
three species (Table 1).	These	expansions	seemed	to	be	rather	an-
cient	for	the	Reunion	Grey	and	Olive	White-	eyes,	with	an	expansion	
estimated around 70%–90% of the time of divergence, while the 
expansion	inferred	for	the	Mauritius	Grey	White-	eye	seemed	more	
recent (30%–50% of the time of divergence), highlighting again the 
importance	of	island-	specific	events	on	population	size	trajectories.

Results	 from	ABC	demographic	 inferences	 for	one	of	 the	 four	
geographic	forms	of	the	Reunion	Grey	White-	eye,	the	Grey-	Headed	
Brown	form	(GHB),	are	consistent	with	those	considering	all	Reunion	
Grey	 White-	eye	 geographic	 forms	 together	 (Tables S5 and S6; 
Table 1), suggesting that the different geographic forms may have 
experienced similar population trajectories.

4  |  DISCUSSION

Reconstructing	 long-	term	 population	 dynamics	 using	 whole-	
genome data has been key in revealing how past regional climatic 
events influenced changes in population size through time in many 
different taxa (e.g. Chattopadhyay et al., 2019; Germain et al., 2023; 
Nadachowska-	Brzyska	 et	 al.,	 2015). Yet, populations and spe-
cies face ecological disruptions over time that can vary from being 
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temporary and localized to regional or even global with no necessary 
synchrony	between	the	two	types	of	events.	Therefore,	estimates	
of the changes in effective population sizes as visualized in PSMC 
profiles may reflect demographic responses to a number of distinct 
events acting at different temporal and spatial scales and individ-
ual effects that may be difficult to distinguish from one another. In 
addition, the combined effects of these different sources of varia-
tion on population demographic histories may also be accompanied 
by variation in population structure, to which current approaches 

have been shown to be very sensitive (Chikhi et al., 2018; Mazet 
et al., 2016; Wakeley, 1999). In an attempt to alleviate this difficulty 
and distinguish the effects of local and regional disruption events 
on population demographic trajectories, our study used volcanic 
oceanic	islands	as	a	spatial	and	temporal	framework,	whole-	genome	
data	obtained	from	closely	related	species,	and	ABC	demographic	in-
ference in addition to PSMC to uncover population size changes that 
could be attributable to the different types of events. We obtained 
two key findings. First, we found that species from the same island 

F I G U R E  3 PSMC	inferences	of	population	size	histories	over	time.	Colours	correspond	to	the	three	white-	eye	species,	and	each	line	
represents	a	different	individual.	Vertical	dotted	lines	and	grey	vertical	bars	indicate	(from	left	to	right):	the	Last	Glacial	Maximum	21,000	ya	
and a catastrophic period of large explosive eruptions in Reunion around 200,000 ya. In Mauritius, volcanic activity has been quite intense 
throughout	the	last	500,000 years	but	was	never	explosive	during	that	period.	Please	note	that	the	plots	are	in	log-	scales.	Illustrations	by	
Douglas Pratt from Birds of the World, reproduced with permission from Cornell university for the digital version and Lynx edicions for the 
print version.
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(Reunion) showed similarities in their population size trajectories 
that differed from the one reconstructed for the species from the 
other island (Mauritius); and second, that this pattern also applied 
to	within-	island	geographic	 forms	of	 the	Reunion	Grey	White-	eye	
that exhibited similar demographic histories, distinct from the de-
mographic	history	of	the	sister	taxon,	the	Mauritius	Grey	White-	eye.

These	 findings	 suggest	 that	 local	 events	 have	played	 a	 signifi-
cant role in shaping population trajectories in these island bird spe-
cies.	They	also	highlight	the	potential	of	our	conceptual	framework	
and its working hypotheses in disentangling the effects of local and 
regional	 drivers	 on	 past	 demography	 of	 species.	 This	 is	 crucial	 to	
obtain	 a	 better	 understanding	 of	 long-	term	 population	 processes	
that are of paramount conservation importance in the current con-
text of rapid environmental change driven by both local and global 
factors of ecological disruption (Leung et al., 2020;	Nogués-	Bravo	
et al., 2018; Urban et al., 2016).

What could be the factors explaining shared response to local 
(island-	specific)	 ecological	 disruptions	 in	 our	 study	 system?	 In	 the	
two	 Reunion	 species	 of	 white-	eyes,	 the	 period	 of	 lowest	Ne cor-
responds approximately to the LGM, while in the Mauritius Grey 
White-	eye,	this	episode	seems	to	have	had	no	effect	on	the	demo-
graphic	history.	Thus,	global	drivers	like	LGM	seem	to	have	some	ef-
fects but the response to these effects may vary depending on local 
conditions and the ecology of the species, although this last factor 
is probably unimportant here given how closely related and ecolog-
ically	 similar	 white-	eye	 species	 are	 in	 both	 islands	 (Cheke,	 1987). 
Similar evidence of a bottleneck associated with the LGM timing has 
been observed in the Reunion coffee tree (Coffea mauritiana Lam., 
1783) (Garot et al., 2019) and was interpreted as being the result of 
a range contraction due to major drops in both precipitation (Yan 
et al., 2016) and temperature (Barrows & Juggins, 2005), especially 
on the leeward side of the island. Since the Reunion coffee tree is 
a widespread forest species, this may imply that forest extent may 
have been greatly reduced during the LGM, which might have im-
pacted bird populations, especially at lower elevations, accord-
ing	 to	 a	well-	known	 scenario	 of	 distribution	 shifts	 in	 response	 to	
Quaternary	climatic	fluctuations	(Hewitt,	2000). Reduction of forest 
area at the LGM and restriction in refugia have been reconstructed 
in many instances (e.g. Carnaval & Moritz, 2008) with possible de-
mographic consequences on the fauna the forest remnants shel-
tered	 (e.g.	Maldonado-	Coelho,	2012). Elevational downward shifts 
of ecosystems towards the coast can be expected during glacial 
events	(Fernández-	Palacios	et	al.,	2016),	especially	in	high-	elevation	
islands	 like	Reunion	 (see	Salces-	Castellano	et	 al.,	2021).	The	high-
land habitat might have become less suitable and the species' range 
may have contracted towards the coast. In line with this, our PSMC 
results	indicate	that	the	highland	form	of	the	Reunion	Grey	White-	
eye may have experienced a stronger bottleneck associated with 
the LGM than the other forms restricted to the lowlands. By con-
trast,	our	Mauritius	Grey	White-	eye	PSMC	analyses	suggest	that	the	
population	kept	expanding	during	the	LGM.	As	Mauritius	 is	a	 low-	
elevation island, it is possible that during the LGM Mauritius offered 
more suitable lowland habitats compared to Reunion. Furthermore, 

the globally low sea level associated with the LGM translated into 
an increase in land area that was more substantial for Mauritius 
(50%)	 than	 for	 Reunion	 (10%)	 (Norder	 et	 al.,	2018).	 The	 4200	BP	
megadrought	 that	 has	 been	documented	 in	East	Africa	 (Marchant	
&	Hooghiemstra,	2004;	 Thompson,	2002),	 North	 America	 (Booth	
et al., 2005), India (Staubwasser et al., 2003), Madagascar (Gasse 
&	Van	Campo,	2001) and Mauritius (de Boer et al., 2015; Rijsdijk 
et al., 2011) and has been associated with massive mortality and 
population	bottlenecks	of	Western	 Indian	Ocean	and	African	spe-
cies	 (Heller	et	al.,	2008; Rijsdijk et al., 2011; Salmona et al., 2012; 
Salmona,	Heller,	 Lascoux,	 et	 al.,	2017) must have impacted popu-
lations of our study species, but it left no detectable signature in 
the	 population	 trajectories	 that	 we	 recovered.	 However,	 PSMC	
analysis lacks resolution at such recent dates, as shown in Figure 3, 
and spurious signals of bottlenecks are often observed in the lower 
time limit of PSMC efficiency (1000–10,000 ya) limiting the use of 
that approach for recent periods (Li & Durbin, 2011). While some 
new methods have become available to reconstruct demographic 
histories	close	to	the	present	(Terhorst	et	al.,	2017), understanding 
the impact on population size of very recent events still remains a 
challenge and requires larger datasets with multiple resequenced in-
dividuals per species (Patton et al., 2019; Wilder et al., 2023). Lastly, 
we did not detect bottlenecks associated with major dated volca-
nic eruptions that occurred in either Reunion or Mauritius, as it has 
been observed in other island bird systems (Bemmels et al., 2022). 
This	 could	 indicate	 that	 the	 volcanic	 eruptions	 in	 the	Mascarenes	
did not affect the totality of the islands in spite of the magnitude of 
some events, in particular a series that occurred around 200 kya on 
Reunion and are thought to have wreaked havoc on a large area of 
the island (Castellanos Melendez et al., 2023; Fretzdorff et al., 2000) 
and/or	that	the	white-	eyes	were	able	to	find	habitat	refugia	in	which	
they maintained relatively high population sizes in spite of the pos-
sible	devastation	of	most	of	 the	 island.	This	 view	 is	 supported	by	
our	results	from	both	PSMC	and	ABC	demographic	inferences	that	
strongly	 support	 ancient	 and	 long-	term	 expansions	 in	 the	 three	
study species, likely associated with evolutionary processes which 
took place on the islands themselves since the species diverged from 
an ancestral stock and reflecting the radiation of the Mascarene 
white-	eyes	(Warren	et	al.,	2006).

While our study recovered potentially important information 
about how the demographic history of island species may have 
been influenced by ecological disruption acting at different spatial 
and temporal scales, it also highlights a series of difficulties and 
limitations inherent to this kind of investigations. First, popula-
tion structure was not explicitly taken into account in our study; 
yet, it can severely bias demographic inferences. For instance, it 
has been shown that a PSMC signal consistent with population 
size changes can be obtained in a population without any change 
of population in its history but with just changes in connectivity 
between subpopulations (Grusea et al., 2019; Mazet et al., 2016; 
Rodríguez	et	al.,	2018). Our PSMC reconstructions were similar for 
all	 four	geographic	 forms	of	 the	Reunion	Grey	White-	eye,	and	all	
ABC	inferences	for	one	particular	geographic	form	(the	GHB	form)	
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produced similar results to those obtained using all geographic 
forms together, making us confident that our conclusions are fairly 
robust to deviations from panmixia due to population structure, at 
least for that species. Second, we assumed similar generation times 
for the three species, while these have different social structures 
and population densities, that may influence this parameter. For 
example, cooperative breeding has been reported in Reunion and 
Mauritius	 Grey	White-	eyes	 (Gill,	1973;	 Hansen	 et	 al.,	2002) that 
may delay first reproduction and overall increase generation time 
(Kreider et al., 2022).	However,	we	note	that	the	results	from	PSMC	
analyses did not change substantially after varying both mutation 
rate and generation time, suggesting that our results are also ro-
bust,	to	some	extent,	to	variations	in	these	parameters.	Third,	we	
only considered models with up to two populations since the frame-
work that we used (DILS; Fraïsse et al., 2021), while fast and mal-
leable, only works with two populations at most. We tried using 
the Fastsimcoal modelling approach (Excoffier et al., 2013) as an 
alternative but when compared to DILS, it yielded unrealistic re-
sults with very poor fits to the data (results not shown). In addition, 
Fastsimcoal does not allow for Ne	and	Nm heterogeneity along the 
genome, which can lead to inaccurate demographic inferences while 
DILS	parametrizes	this	heterogeneity.	Our	ABC	analyses	indeed	un-
conditionally support Ne heterogeneity along the genome (poste-
rior probabilities of 0.99 for all the species, Table S4) indicating that 
accounting for this factor may be critical in demographic inference 
based	 on	 whole-	genome	 sequence	 data.	While	 strong	 signals	 of	
expansion	were	detected	 in	our	ABC	demographic	 inferences,	we	
cannot really rule out the possibility that bottlenecks occurred over 
the	course	of	the	species'	population	histories.	More	complex	ABC	
models including several waves of demographic changes would be 
necessary	 to	 properly	 address	 this,	 but	 current	 ABC	 approaches	
may not be powerful enough to detect ancient and subtle popula-
tion	size	changes.	However,	PSMC	analyses,	which	account	for	the	
possibility of multiple population size changes across time, do not 
suggest many demographic changes, but are rather consistent with 
a general strong expansion.

To	conclude,	the	shared	population	histories	in	the	Reunion	Grey	
and	Olive	White-	eyes	 and	 their	 contrast	with	 the	Mauritius	Grey	
White-	eye	population	history	suggest	that,	 in	this	system	and	at	a	
relatively small spatial scale, local events may have been important 
drivers of population trajectories. Using more species from Reunion 
and Mauritius will be necessary to further validate whether the dif-
ferences in demographic trajectories that we recovered are general. 
As	 white-	eyes	 could	 be	 more	 resilient	 to	 environmental	 changes	
than other species groups, the use of other species, with different 
ecologies or being less behaviourally plastic, could yield different 
population trajectories in response to both local and regional events. 
More importantly, investigating the demographic history of multi-
ple species from a range of taxa in several archipelagos by compar-
ing species living on the same or different islands and controlling 
for their evolutionary relatedness, as recently advocated by Cerca 
et al. (2023) for another purpose, would greatly help understanding 

how species respond to local and regional events of ecological dis-
ruption and would provide a useful tool for assessing the impacts 
and	risks	of	plausible	future	human-	driven	changes	in	climate.
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