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Abstract: Morocco is a significant botanical reservoir that boasts a wealth of raw materials with
promising applications across various industrial sectors, notably in pharmaceuticals and food. The
objective of this study was to assess the effectiveness of essential oils (EOs) derived from Laurus nobilis
L. leaves originating from the Tanger (EOT) and Meknes (EOM) regions in combating Callosobruchus
maculatus infection. The chemical compositions of these oils were examined using Fourier transform
infrared (FTIR) spectroscopy and gas chromatography–mass spectrometry (GC-MS). The biological
activity of the EOs was evaluated via repulsion and fumigation tests against C. maculatus at varying
concentrations. FTIR analysis revealed distinct vibrational bands indicative of various chemical
compounds. GC-MS analysis was used to delineate the major chemical constituents of the EOs.
The three predominant compounds in the EOT were 1,8-cineole (37.64%), linalool (16.40%), and
adamantane (12.00%), whereas 1,8-cineole (47.84%), toluene (17.60%), and α-phellandrene (8.44%)
were the most abundant in the EOM. Notably, the EOs exhibited significant repellent activity against
C. maculatus, with repulsion percentages ranging from 51.11 to 90.00% in Tanger and 67.78 to 93.33%
in Meknes. Mortality rates varied from 0 to 100% depending on the treatment. However, the mean
concentrations showed mortality rates ranging from 29.44 to 65.56% for the EOT and from 21.11
to 67.78% for the EOM, with LD50 values of 11.96 µL/L and 5.22 µL/L. Docking studies revealed
that 1,8-cineole had the highest binding affinity for the active site of acetylcholinesterase, thus
confirming its toxic activity against C. maculatus. The findings of this study highlight the ability
of EOs extracted from L. nobilis in the Moroccan regions of Tanger and Meknes to act as effective
insecticides and repellents against C. maculatus, thereby highlighting avenues for further exploration
of pest management and agricultural practices.

Keywords: Callosobruchus maculatus; fumigation; Laurus nobilis L.; repulsion; biocontrol

1. Introduction

In Morocco, chickpea (Cicer arietinum L.) is the second largest cropped area among
food legume crops, followed by faba bean (Vicia faba L.). It is grown in various regions and
climates, including irrigated and not-irrigated areas [1]. In 2022, chickpeas were cultivated
in over 60,985 ha, yielding 30,954 tons [2]. It is an important legume in the human diet
because of its high protein, fiber, and micronutrient contents. Chickpeas are crucial for the
sustainability of agricultural systems, especially in crop rotation, owing to their capacity
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to fix atmospheric nitrogen in the soil [3,4]. Unfortunately, in Africa, insect infestations in
stored grains lead to substantial quantitative and qualitative damage [5].

Callosobruchus maculatus (Fab.), belonging to the Chrysomelidae family, is an important
pest of chickpeas and other pulses in South America and Africa in the field and in stored
grains [6]. Larvae feeding inside the grain lead to significant weight loss, reduced germina-
tion potential, and lower nutritional value [7,8]. Currently, the control of C. maculatus relies
on synthetic insecticides, which have many side-effects, including the development of resis-
tance and the risk of intoxication for consumers and non-target organisms [9]. Therefore, it
is essential to develop alternative control methods that are more environmentally friendly,
cost-effective, and easier to apply. Botanical extracts, and especially essential oils, are
considered an effective means of protecting stored grains against insect infestation [10,11].
Essential oils are particularly notable for their multifaceted insecticidal properties, includ-
ing ovicidal, antifeedant, repellent, sterilizing, and toxic effects on various insects, but they
have fewer non-targeted effects on natural enemies than synthetic chemicals [12–14].

Laurus nobilis L. (Lauraceae) is commonly known as laurel. Originally from the
southern Mediterranean, this angiosperm is also grown in the United States and Europe,
mainly for its decorative purposes [15], and is used as a valuable flavoring agent in the
culinary and food industries. In Morocco, it grows spontaneously in the forests of the
Eastern and Western Rif and Middle Atlas, and is one of the plants commonly used for
the production of essential oils and aromatic extracts [16]. On average, Morocco exports
20 tons of laurel leaves annually [17].

The biopesticidal effectiveness of L. nobilis essential oils has been confirmed by various
researchers. Notable among these are the repellent activities against pests such as Acan-
thoscelides obtectus, Tribolium castaneum, Sitophilus zeamais, Cryptolestes ferrugineus, Tenebrio
molitor, Sitophilus oryzae, and Rhyzopertha dominica [18–20]. Additionally, Jemâa et al. [21]
assessed the deterrent and lethal effects of laurel essential oils from Tunisia, Algeria, and
Morocco on R. dominica and T. castaneum, with promising results. In an evaluation of the
insecticidal activity of plant powders by contact effect, L. nobilis powder had a weak effect
on egg-laying by females and the mortality of C. maculatus adults [22]. Investigating the
insecticidal effects of essential oils from Labiatae and Lauraceae families against C. macula-
tus, it was observed that the essential oil laurel caused significant mortality in adults [23].
However, to the best of our knowledge, no research has been conducted on the effects of
L. nobilis essential oil on C. maculatus.

Building on this foundation, our current study focused on analyzing the chemical
components and evaluating the biopesticidal effectiveness of L. nobilis essential oils derived
from Tanger and Meknes with their distinct differences in pedoclimatic conditions. We
aimed to provide a detailed comparison of the composition and biopesticidal activities
of these oils against C. maculatus, thus providing valuable insights into their potential
application in pest control.

2. Materials and Methods
2.1. Insect Rearings

Adults of C. maculatus came from the dry seeds of infested chickpea (Cicer arietinum).
These seeds originated from the Meknes Grain Market. C. maculatus used for testing
the insecticidal activity of essential oil were raised under laboratory conditions with a
photoperiod of 14 h of light and 10 h of dark, and a temperature of 25 ± 1 ◦C [7]. All
experiments were conducted under the same controlled conditions.

2.2. Plant Materials

Laurus nobilis L. (Lauraceae) samples utilized in this research were gathered from
Tanger (35◦47′37.4′′ N 5◦51′57.3′′ W) and Meknes (33◦50′28.0′′ N 5◦28′37.8′′ W), Morocco,
during May and June 2023 (Figure 1). The Tanger region is characterized by a sub-humid
Mediterranean climate (mild, wet winters and hot, dry summers), with an average rainfall
of approximately 700 mm [24], and mild temperatures with an annual average of 17 ◦C,
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varying from 0 ◦C to 37 ◦C depending on the season [25]. The soil in the study area belongs
to the Arenosol class [26]. However, the Meknes region is characterized by a Mediterranean
to continental climate (cold winters and hot summers) [27,28], with average annual rainfall
in Meknes of between 500 and 600 mm [29]. The temperature is characterized by high
interannual variability, with mean annual temperatures ranging from 11 ◦C to 24 ◦C [30].
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2.3. Essential Oil Extraction

Noble laurel leaves were air-dried in the laboratory under controlled conditions and
protected from light and moisture. The essential oil (EO) extraction process involved
subjecting 100 g of dried leaves to hydrodistillation (4 h) using a Clevenger-type apparatus.
The resulting EO was dehydrated using anhydrous sodium sulfate and stored in the dark
at 4 ◦C [31].

2.4. FTIR Analyses

Fourier transform infrared (FTIR) analyses were conducted using a Perkin Elmer
Spectrum Two FTIR spectrometer (PerkinElmer, Waltham, MA, USA), performed on 20 µL
of the samples. The FTIR spectroscopy of the essential oils was performed in the spectral
interval of 400–4000 cm−1. The samples were directly applied to the surface of a diamond
ATR crystal. The measurements were performed thrice for each sample. Subsequently,
baseline correction and smoothing were performed using Spectrum 10 software (Perkin
Elmer, Waltham, MA, USA) and Origin Pro 9.1 (OriginLab Corporation, Northampton, MA,
USA) [32].
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2.5. GC–MS Analysis

The GC-MS chemical analysis of the EO was carried out using a gas chromatograph
(Trace GC ULTRA) coupled to a mass spectrometer (MS) (Polaris Q) equipped with a
VB5 apolar column (30 m × 0.25 mm; film thickness 0.25 µm) and ion trap mass detector.
The initial temperature of the column was adjusted to 40 ◦C for 2 min and then raised
to 180 ◦C at 5 ◦C/min. The temperature was subsequently raised to 300 ◦C at a rate of
20 ◦C/min and held at this final temperature for 2 min. Helium served as the carrier gas
at 1.5 mL/min. The injector temperature was maintained at 200 ◦C, and the transfer-line
temperature was set to 250 ◦C. The ionization source temperature was set to 230 ◦C. One
microliter of essential oils, diluted to 1:10 in hexane, was injected manually in the split
mode. The components present in the essential oils were determined through analysis with
the NIST MS Search database, and their identification was cross-referenced with the work
of Adams [33].

2.6. Bioassay Tests
2.6.1. Repellency Test

The repellent activity of the essential oils against adult C. maculatus insects was as-
sessed using the preferential area method on filter paper following the procedure outlined
by McDonald et al. [34]. In brief, filter paper discs measuring 9 cm in diameter were each
divided into two halves, each with an area equal to 31.80 cm2, for the intended purpose.
Experimental solutions were formulated by dissolving varying volumes of L. nobilis es-
sential oils (1, 2, 4, 5, and 6 µL) in 1 mL of acetone. The solutions were evenly distributed
over half of a filter paper disc using a micropipette, ensuring consistent coverage, resulting
in dosages of 0.031, 0.063, 0.126, 0.157, and 0.189 µL/cm2 per disc. The other half of the
filter paper was treated with acetone as the control. The treated and control half discs were
air-dried until the solvent had completely evaporated. Treated and untreated halves were
taped on opposite sides and positioned in Petri dishes. Ten adult beetles, aged between 7
and 14 days and of both sexes, were introduced at the center of each filter paper disc. The
Petri dishes were then securely sealed using Parafilm. The bruchid numbers on the parts of
the discs that had been treated with essential oil were recorded against the numbers on the
untreated section after 1, 2, 4, 6, 24, and 48 h. Three replicate experiments were performed.
The percentage of repulsion (PR) was calculated using the following formula below [7]:

PR =
No − Nt
No + Nt

× 100

PR: percentage of repulsion (%);
No: number of bruchids in the control zone;
Nt: number of bruchids in the treated zone.
The mean repellency percentage was determined for each EO classified into one of the

different repellency classes, ranging from 0% to 100% [35]. The following classes were used
to group the percentage repellency obtained: class 0 (0 to 0.1%), class I (0.2 to 10%), class II
(20.1 to 40%), class III (40.1 to 60%), class IV (60.1 to 80%), and class V (80.1 to 100%) [35].

2.6.2. Fumigant Activity Test

To assess the toxicity of the L. nobilis essential oil, small cotton balls were attached
from strings to the lids of 380 mL glass jars containing 10 asexual adults each (7 to 14 days).
Using a micropipette, doses of 2, 4, 5, and 6 µL of EO were deposited in the aforementioned
cotton balls corresponding to fumigant concentrations of 5.3, 10.5, 13.2, and 15.8 µL/L of air,
respectively. The caps were screwed firmly onto the vials. Three replicates were performed
for each dose. When no movement of the legs or antennae was detected, the insect was
considered dead. The observed mortality was corrected using Abbott’s formula, as follows:

Pc =
Po − Pt
100 − Pt

× 100
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Pc: corrected mortality percentage (%);
Po: observed mortality in the test;
Pt: observed mortality in the control group.

2.7. Molecular Docking

To determine the interactions between the major components of the essential oils from
Tangiers and Meknes, 1,8-cineole, linalool, toluene, and AChE were used. Initially, the crys-
tal structure of AChE was retrieved from the Protein Data Bank (https://www.rcsb.org/;
accessed on 25 June 2024) (PDB ID: 4EY7). The structure was carefully inspected and pre-
pared using AutoDock MGL tools to ensure its suitability for docking studies. The ligands
1,8-cineole, linalool, and toluene were downloaded from PubChem and prepared using
the Open Babel tool. Molecular docking simulations were performed using AutoDock
Vina v1.1.2 software [36]. The best-docked poses of each ligand were analyzed to under-
stand the molecular interactions using Discovery Studio Analyzer (Dassault Systèmes, San
Diego, CA, USA) and PyMOL (Schrödinger, New York, NY, USA). In the Discovery Studio
Analyzer [37], 2D interaction diagrams were generated to visualize the key interactions
between the ligands and active site residues of the protein. This analysis included the
identification of hydrogen bonds, hydrophobic interactions, π–π stacking, and van der
Waals interactions, all of which are critical for ligand binding. Furthermore, 3D interaction
maps were generated using PyMOL to provide a spatial representation of how each ligand
fit within the active site. The grid box was centered at coordinates (7.279, −63.643, −15.945)
with dimensions of 54, 56, and 62 Å along the x-, y-, and z-axes, respectively. Additionally,
Solvent Accessibility Surface (SAS) analysis was conducted to evaluate the exposure of
the ligands to the solvent, indicating how well the ligands were embedded within the
binding pocket.

2.8. Statistical Analysis

A completely randomized design was employed to assess the main effects of the dose
and time, as well as their interactions, with three replications. Descriptive statistics were
initially conducted to summarize the data on repellency and mortality across different
treatments. The mean values and standard deviations were calculated for each treatment.
Normality checks were performed on the collected data before conducting an analysis
of variance (two-way ANOVA) to evaluate the effects of these factors on the measured
parameters. Post hoc tests (Duncan’s test) were subsequently applied to identify significant
differences between individual means, where appropriate [21]. All statistical analyses were
performed using the SPSS Statistics 21. A heatmap analysis of the insect repellency was
performed using a plot correlation matrix in Pandas Python [38].

3. Results
3.1. Chemical Characterization of L. nobilis Essential Oils
3.1.1. FTIR Analysis

Typical FTIR spectra of L. nobilis essential oil are depicted in Figure 2. In the FTIR
spectra of L. nobilis essential oil obtained from Tanger, significant vibrational bands were
observed at 3607, 2900, 1998, and 1269 cm−1. Conversely, the essential oil collected from
Meknes exhibited notable spectral bands at 3607, 2900, 1998, 1732, 1465, 1374, 1269, 1213,
1169, 1132, 1080, 1053, 986, 920, and 842 cm−1, as detailed in Table 1. Both essential oils
shared common spectral bands at 3607, 2900, 1998, and 1269 cm−1.

https://www.rcsb.org/
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Laurus nobilis from Tanger and Meknes, Morocco.

Table 1. Assignment of the major FTIR assignments in the essential oils (EOs) of Laurus nobilis from
Tanger (EOT) and Meknes (EOM), Morocco.

Wavenumber (cm−1) EOT EOM Assignment Relevant Constituent(s)

3607 * * υs(OH) linalool, terpinene-4-ol, α-terpineol

2900 * * υs(CH2) sabinene, linalool, β-pinene,
1,8-cineole

1998 * * –CHO unidentified

1732 - * υ(C=O) α-terpinyl, bornyl, linalyl acetates

1465 - * υ(C=C–C) (ring) or δ(CH2) methyleugenol, eugenol p-cymene

1374 - * υs(CH3–C=O) δs(CH3) gem 1,8-cineole, α-terpinyl acetate

1269 * *
υas(C–O–C) aromatic
υs(C–O–C) aromatic

υ (O=C–O)

methyleugenol, eugenol
acetate esters

1213 - *
υas(C–O–C) aromatic
υs(C–O–C) aromatic

υ (O=C–O)

methyleugenol, eugenol
acetate esters

1169 - *
υas(C–O–C) aromatic
υs(C–O–C) aromatic

υ (O=C–O)

methyleugenol, eugenol
acetate esters

1132 - *
υas(C–O–C) aromatic
υs(C–O–C) aromatic

υ(O=C–O)

methyleugenol, eugenol
acetate esters

1080 - * υ(C–O–C) 1,8-cineole
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Table 1. Cont.

Wavenumber (cm−1) EOT EOM Assignment Relevant Constituent(s)

1053 - * υas(CH2–O–C=O) acetates of primary alcohols

986 - * δ(C–H) 1,8-cineole

920 - * (CH3)3–C–O or 5-membered
cyclic ethers

*, present; -, absent; υ, stretching vibration; δ, in-plane deformation vibration.

According to previous research, the spectral bands at 3607 cm−1 were identified as
indicative of the stretching vibrations of the OH functional group of alcohols, potentially
corresponding to compounds such as linalool, terpinene-4-ol, and α-terpineol. The spectral
band observed at 2900 cm−1 was likely linked to the CH2 ring vibrations of volatile com-
pounds, including sabinene, linalool, β-pinene, and 1,8-cineole. The presence of spectral
bands at 1269 cm−1 indicated C–O–C stretching vibrations, potentially corresponding to
methyl eugenol and eugenol acetate esters.

The essential oil from Meknes was distinguished by additional spectral bands at 1732,
1465, 1374, 1213, 1169, 1132, 1080, 1053, 986, 920, and 842 cm−1, which may correspond to
compounds such as α-terpinyl, bornyl, linalyl acetates, methyleugenol, p-cymene, eugenol,
and 1,8-cineole, with the latter being the most abundant.

3.1.2. GC-MS Analysis

The chemical compositions of the essential oils, along with their retention times and
percentage peak areas analyzed by GC-MS, are summarized in Tables 2 and 3. Both essential
oils were found to contain several compounds, including α-pinene, β-pinene, 1,8-cineole,
α-phellandrene, cyclofenchene, α-terpineol, eugenol, methyleugenol, adamantane, and
terpinolene, albeit in varying quantities.

Table 2. Components detected in the essential oils (EOs) of Laurus nobilis from Tanger (EOT) using
GC-MS analysis.

N Compounds Chemical Formula RT Peak Area (%) MW

1 α-Pinene C10H16 8.68 2.62 136

2 β-Pinene C10H16 10.16 7.57 136

3 1,8-cineole C10H18O 12.26 37.64 154

4 α-phellandrene C10H16 13.26 1.06 136

5 Linalool C10H18O 14.94 16.40 154

6 Cyclofenchene C10H16 16.90 0.83 136

7 Isobornyl acetate C12H20O2 17.60 1.23 196

8 α-terpineol C10H18O 18.12 2.01 154

9 Phenol, p-tert-butyl- C10H14O 21.90 0.51 150

10 Eugenol C10H12O2 23.78 1.02 164

11 Methyleugenol C11H14O2 25.30 8.03 178

12 Nopol C11H18O 25.71 0.98 166

13 Benzene C13H20 25.79 5.21 176

14 Adamantane C12H20 28.06 12.00 136

15 Terpinolene C10H16 30.67 1.46 136

16 Butylated
Hydroxytoluene C15H24O 32.73 0.49 220
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Table 2. Cont.

N Compounds Chemical Formula RT Peak Area (%) MW

17 Unknown 0.52

18 Octanal,
2-(phenylmethylene)- C15H20O 33.44 0.42 216

Total (%) 100

Yield (%) 0.84
RT—retention time (min); MW—molecular weight (g/mol).

Table 3. Components detected in the essential oils (EOs) of Laurus nobilis from Meknes (EOM) using
GC-MS analysis.

N Compounds Chemical Formula RT Peak Area (%) MW

1 α-Pinene C10H16 8.69 3.71 136

2 Camphene C10H16 9.19 0.40 136

3 α-Phellandrene C10H16 9.95 8.44 136

4 β-Pinene C10H16 10.21 2.47 136

5 α -Myrcene C10H16 10.80 0.48 136

6 Tricyclene C10H16 11.44 0.59 136

7 α-Terpinene C10H16 11.69 0.47 136

8 o-Cymene C10H14 12.08 0.41 134

9 1,8-Cineole C10H18O 12.30 47.84 154

10 Cyclofenchene C10H16 13.80 0.99 136

11 Terpinolene C10H16 14.90 6.53 136

12 Isopulegol C10H18O 17.60 1.60 154

13 α -Terpineol C10H18O 18.13 1.71 154

14 Adamantane C12H20 22.37 0.59 136

15 Toluene C7H7NO2 23.52 17.60 137

16 Eugenol C10H12O2 23.79 2.28 164

17 Methyleugenol C11H14O2 25.28 1.55 178

18 Benzene, 1,3,5-
trimethyl-2-nitro- C9H11NO2 25.71 0.44 165

19 Benzoic acid,
3,4-dimethyl- C9H10O2 29.89 0.64 150

20 Benzene, hexamethyl- C12H18 30.55 0.39 162

21 Terpinolene C10H16 30.66 0.60 136

22 Thymoquinone C10H12O2 32.73 0.29 164

Total 100

Yield (%) 0.55
RT—retention time (min); MW—molecular Weight (g/mol).

In the essential oil from Tanger (EOT), the most prominent components are 1,8-cineole
(37.64%), linalool (16.40%), adamantane (12.00%), methyleugenol (8.03%), β-pinene (7.57%),
and benzene (5.21%). Conversely, the essential oil from Meknes (EOM) is characterized by
the presence of 1,8-cineole (47.84%), toluene (17.60%), α-phellandrene (8.44%), terpinolene
(6.53%), α-pinene (3.71%), β-pinene (2.47%), and eugenol (2.28%).
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3.2. Repellent Activity

The repellent test conducted using the L. nobilis EOT demonstrated significant repellent
activity toward C. maculatus adults (Figure 3). The heatmap results for insect repellence by
essential oils varied considerably with dose and time. In the EOT, higher doses generally
produce a stronger and more consistent repellency. For example, at a dose of 0.189 µL/cm2,
the repellency remained high at 93.33% after 1 h, 100% after 2 h, and 93.33% after 4 and 6 h.
Even after 24 h, the repulsion remained significant at 73.33%, increasing to 86.67% after
48 h. In contrast, at the lowest dose of 0.031 µL/cm2, the initial repulsion was moderate
at 60%, decreased sharply to 0% after 24 h, and then increased to 53.33% after 48 h. These
results indicate that higher doses of essential oils are more effective in maintaining high
repellency over an extended period, although fluctuations may occur. For the EOM, insect
repellency also showed strong dose and time dependency. At a dose of 0.189 µL/cm2, the
repellency remained high (93.33%) after 1 h, reached 100% after 2 h, and was maintained
at 86.67% after 24 and 48 h. At the lowest dose of 0.031 µL/cm2, repulsion was initially
elevated to 93.33%, maintained at 80% after 6 h, and remained elevated to 100% after 24 h
and 86.67% after 48 h. These results suggest that, even at lower doses, the repellency of
C. maculatus could be maintained at high levels over time by the EOM.

The average repulsion increased with the dose, with C. maculatus adults showing
an average repulsion of over 50% for all doses. For the EOT, the dose averages showed
repellency ranging from 51.11% to 90%, with classifications ranging from class III to V.
The time averages showed more varied values, with an initial repulsion of 77.33% at 1 h,
decreasing to 66.67% after 2 h, rising to 74.67% after 4 h, reaching a minimum of 49.33%
after 24 h, before rising to 65.33% after 48 h. Dose averages for the EOM showed higher
repellencies, ranging from 67.78% to 93.33%, with most doses classified as class V, indicating
a high efficacy. The time averages initially showed high repellency, decreasing slightly with
time, with p-values indicating the statistically significant effects of the dose (p < 0.0001) and
time (p = 0.03) (Table 4).

Table 4. Repellency (%) of C. maculatus with L. nobilis essential oil from Tangier (EOT) and Meknes
(EOM) as a function of mean dose and time.

Repellency (%)

Essential Oil from Tangier Essential Oil from Meknes

Mean of Dose (µL/cm2) Mean Repellency (%) Class Mean Repellency (%) Class

0.031 51.11 ± 7.95 c Class III 87.78 ± 12.15 a Class V

0.063 52.22 ± 5.15 c Class III 67.78 ± 19.57 b Class IV

0.126 78.89 ± 4.98 ab Class IV 90.00 ± 17.15 a Class V

0.157 71.11 ± 4.35 b Class IV 93.33 ± 9.70 a Class V

0.189 90 ± 2.91 a Class V 92.22 ± 10.03 a Class V

Mean of Time (h) EOT EOM

1 77.33 ± 5.47 a 93.33 ± 9.76 a

2 66.67 ± 6.67 ab 92.00 ± 10.14 ab

4 74.67 ± 7.16 a 86.67 ± 17.99 ab

6 78.67 ± 5.33 a 82.67 ± 18.31 ab

24 49.33 ± 8.92 b 84.00 ± 17.24 ab

48 65.33 ± 5.33 ab 78.67 ± 22.00 b

p-value dose <0.0001 <0.0001

p-value time 0.024 0.03

According to Duncan’s test, values with different letters in the same column indicate significant differences
(p < 0.05).
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3.3. Fumigant Toxicity

The insecticidal activity of the EOs extracted from L. nobilis against cowpea bruchids
was evaluated (Figure 4). The results from the EOT showed that insect mortality varied with
time and treatment with increasing doses of essential oil. The data showed a progressive
increase in mortality over time for all of the treatments. For example, for treatment T0
(without essential oil), the mortality remained at zero for up to 3 h, began to increase at
24 h (16.7%), and reached 70% after 96 h. At higher doses, such as T4 (15.8 µL/L air),
mortality reached 100% as early as 96 h. The results for the EOM also showed an increase
in insect mortality with time and the essential oil dose. However, mortality in this region
was generally higher for the same treatments than in the Tangier region. For example, for
treatment T1 (5.3 µL/L air), mortality was 100% after 96 h, whereas, in the Tangier region,
mortality was 70% for the same treatment and duration.
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Figure 4. Mortality (%) of L. nobilis essential oil from Meknes (A) and Tanger (B) on C. maculatus.
According to Duncan’s test, the means of mortality in a curve followed by a similar letter with the
same color were not significantly different (p < 0.05).

Table 5 shows the increase in the mortality rates as a function of the dose and duration
of exposure. For essential oil from the Tangier region (EOT), mean concentrations showed
a progressive increase in mortality, rising from 29.44% for the control to 65.56% for the
highest dose. Similarly, for essential oil from the Meknes region (EOM), the concentration
averages also showed an increase in mortality, ranging from 21.11% for the control to
67.78% for the highest dose. This trend of increasing mortality was also observed over time
for both essential oils, with rates ranging from 4.67% to 84.00% for the EOT and from 1.33%
to 88.00% for the EOM.

Comparing the two regions, it was clear that the Meknes region showed higher insect
mortality at the same doses and durations. For example, at 48 h for treatment T3 (13.2 µL/L
air), the mortality in the Tangier region was 53.3%, whereas it was 100% in the Meknes
region. Furthermore, mortality exceeded 50% when exposed to a dose of 5.3 µL/L of air,
whereas the EOT only induced mortality above 50% at a higher dose of 15.8 µL/L of air.
This suggests that the EOM is more effective in killing insects. The LD50 values (dose lethal
to 50% of insects) confirm this difference, with an LD50 of 11.96 µL/L of air (y = 1.0692x
+ 4.2323, R2 = 0.9805) for the Tangier region and 5.22 µL/L of air (y = 1.0692x + 4.2323,
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R2 = 0.9805) for the Meknes region, indicating that larger doses are needed in the EOT to
achieve the same mortality of the EOM.

Table 5. Mortality (%) of C. maculatus with L. nobilis essential oil from Tangier (EOT) and Meknes
(EOM) as a function of mean dose and time.

Mortality (%)

EOT EOM

Mean of concentration

Control 29.44 ± 7.12 b 21.11 ± 4.11 b

5.3 µL/L air 33.33 ± 6.00 b 53.89 ± 9.87 a

10.5 µL/L air 46.11 ± 6.87 ab 65.00 ± 10.01 a

13.2 µL/L air 45.56 ± 8.37 ab 63.89 ± 10.45 a

15.8 µL/L air 65.56 ± 8.72 a 67.78 ± 10.56 a

Mean of time

1 h 4.67 ± 1.65 d 1.33 ± 0.91 c

3 h 15.33 ± 2.91 d 7.33 ± 2.06 c

24 h 36.00 ± 6.39 d 64.00 ± 6.53 b

48 h 50.00 ± 6.47 b 79.33 ± 7.59 ab

72 h 74.00 ± 3.63 a 86.00 ± 7.22 b

96 h 84.00 ± 3.75 a 88.00 ± 6.49 a

LD50 11.96 5.22

p-value dose 0.01 0.003

p-value time <0.0001 <0.0001
The data are presented as the mean ± standard deviation of three replicates. According to Duncan’s test, values
with different letters in the same column indicate significant differences (p < 0.05). LD50 was defined as the lowest
concentration that caused 50.0% mortality.

3.4. Molecular Docking

Molecular docking showed that 1,8-cineole was the most active compound against acetyl-
cholinesterase, followed by toluene and linalool, with a binding energy of −6.7 Kcal/mol,
−5.7 kcal/mol, and −4.8 kcal/mol, respectively. Figures 5 and 6 show the 2D and 3D struc-
tures of the 1,8-cineole, toluene, and linalool interactions with the active site of AChE (PDB:
4EY7). The 1,8-cineole formed Pi-Alkyl interactions with TRP residue 86 and hydrophobic
interactions between the amino acids’ aromatic rings and the ligand’s alkyl groups. The
same ligand formed a Pi-Sigma-type interaction with TYR 337 and PHE 338, and van der
Waals-type interactions with THR 83, TYR 341, TYR 124, ASP 74, GLY 121, and HIS 447, which
are weak, non-covalent interactions between molecules or parts of molecules close to each
other (Figure 5A). Toluene, in turn, formed Pi-Pi stacked interactions with the residues TYR
341 and TRP 286, and its residues formed π-π stacked interactions with the aromatic ring of
toluene. The same ligand exhibited a Pi-alkyl interaction with VAL 294 and van der Waals
interactions with PHE 297, PHE 338, PHE 295, and SER 293 (Figure 5B). Linalool formed two
bonds, the first of the van der Waals type with the residues GLN 413, CYS 409, ASN 533,
PRO 410, GLY 234, ASN 233, and PRO 235, while the second was of the Pi-alkyl type with
the residues HIS 405, TRP 532, LEU 536, PRO 537, and LEU 540 (Figure 5C). Thus, all of the
compounds tested formed hydrophobic bonds, as well as charged and polar interactions with
the target protein. The SAS analysis showed that 1,8-cineole was deeply embedded within the
binding pocket, suggesting a strong and stable interaction, whereas toluene and linalool were
less embedded, correlating with their lower binding affinities.
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4. Discussion
4.1. Chemical Characterization and Yield

The yields of L. nobilis essential oil, calculated based on the dry matter weight, ranged
from 0.55% for the EOM to 0.84% for the EOT. Jemâa [21] reported a yield of 0.65% for
Moroccan L. nobilis essential oil. Haouel-Hamdi et al. [31] recorded a yield of 0.55%, which
is the same as the EOM yield. Our study demonstrated that the essential oils from both
origins were predominantly composed of 1,8-cineole, as confirmed by the FT-IR analysis,
which is consistent with previous studies that analyzed L. nobilis EO from plants freshly
harvested from the Moroccan territory [21,39]. A comparison of the chemical compositions
of the essential oils and essential oils from other regions showed significant similarities
and differences based on the existing literature. The 1,8-cineole content was 37.64% in the
EOT and 47.84% in the EOM, which closely aligned with the 1,8-cineole levels observed
in laurels from Morocco (52.43%) [39], France (30.08%) [40], and Turkey (59.94%) [41].
Furthermore, essential oils from some Mediterranean countries had lower 1,8-cineole
contents, such as Algeria (22.42%) [42], Tunisia (21.15%) [31], and Georgia (29.2%) [43].
Other constituents present after 1,8-cineole are linalool (16.40%), adamantane (12.00%),
methyleugenol (8.03%), β-pinene (7.57%), and benzene (5.21%) for the EOT. On the other
hand, they are toluene (17.60%), α-phellandrene (8.44%), terpinolene (6.53%), α-pinene
(3.71%), β-pinene (2.47%), and eugenol (2.28%) for the EOM. Some elements have been
reported in previous studies in Morocco [21,39]. Several factors may be responsible for
the quantitative and qualitative differences in the chemical profiles of the oil, including
the plant growth stage and harvesting time, environmental conditions, soil type, genetics,
cultivar, plant parts, climate, season, and geographical location [44–48]. The difference in
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the efficacy of the EOs in controlling stored food pests is largely attributed to variations in
their chemical constituents, which greatly influence their biological activities [49].

4.2. Repellency Test

Our findings indicate that the repellent activity of the two L. nobilis essential oils varied.
Oil from the Meknes region (class V dominance) was more active against C. maculatus than
oil from the Tanger region. Some studies have confirmed the repellent properties of bay
laurel essential oils against other insects that affect stored food. Jemâa et al. [20] highlighted
the repellent activity of L. nobilis essential oil collected from Morocco (Marrakesh). The
essential oil of L. nobilis demonstrated its highest effectiveness with half-dose values
(RD50) of 0.045 mL/cm2 against T. castaneum and 0.013 mL/cm2 against R. dominica.
Studies carried out with six types of essential oils, including bay laurel, have shown
that the essential oil derived from L. nobilis possesses strong repellent properties against
S. granarius and T. castaneum [50]. Another study showed the remarkable repellent activity
of L. nobilis essential oil against Acanthoscelides obtectus [18]. The main reason for the strong
repellent activity of L. nobilis leaf oil against stored food insects may be the presence of
phytochemicals such as 1,8-cineole and linalool [21,42,51].

The fluctuations in the repellent efficacy of essential oils extracted from plants in the
Tangier and Meknes regions observed in this study can be attributed to several factors. The
variable chemical composition of oils, influenced by region-specific growing conditions
such as light, rainfall, soil, and the growing site, plays a major role [52]. Plant age can
also influence the composition of essential oils [52,53]. The volatility and degradation of
active compounds over time, insect adaptation to repellent doses, and insect behavior
also contribute to these variations [54,55]. Understanding these dynamics is essential for
optimizing the use of essential oils as natural repellents.

4.3. Fumigant Toxicity

The essential oil derived from noble laurel exhibited significant fumigant activity
against C. maculatus adults, with notably higher efficacy observed in the oil harvested
from Meknes than that from Tanger. This disparity in effectiveness may be attributed to
variations in the quantities of the active components present in oils sourced from different
regions. Our findings align with several prior studies that have assessed the fumigant
properties of bay laurel essential oil against other stored-product pests. For instance,
Jemâa et al. [20] showed the fumigant properties of Moroccan noble laurel essential oil
against T. castaneum and R. dominica, with LC50 values varying from 68 to 172 µL/L,
respectively. Koutsaviti et al. [56] reported the significant fumigant toxicity of L. nobilis
essential oil against adults of the rice weevil S. oryzae, with an LC50 value of 8 µL/L of air.
Similarly, Papachristos and Stamopoulos [18] noted the toxic effects of rosemary essential
oil against A. obtectus adults (LD50 of 2.1 to 3.3 µL/L of air) compared to laurel essential oil
(LD50 of 5.7 to 10.3 µL/L of air).

In contrast, Teke and Mutlu [50] found no fumigant activity for laurel essential oil
against S. granarius L. and T. castaneum (Herbst). The lethal effects of other essential oils on
C. maculatus reported in the literature were lower than those observed in the present study.
An LC50 of 109–148 µL/L was observed in adults treated with EO from Citrus aurantium
peel [57]. We observed that the EO containing the highest percentage of 1,8-cineole and
potentially linalool was the most effective, with a lower LC50. Selecting L. nobilis essential
oils (EOs) with a specific composition could improve their potential to control C. maculatus.
A dose of 13.2 µL of EO per liter of air resulted in a 100% insect mortality within 48 h.
Considering the extraction yield, the EO obtained from one kilogram of dried leaves could
be used to treat a volume of 420 L in storage facilities.

4.4. Docking Analysis

Molecular docking simulations revealed that, among the three active ingredients,
1,8-cineole had the highest binding affinity with the active site of recombinant AChE, as
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shown by the docking scores and detailed interaction analyses. Other studies have shown
that compounds such as 1,8-cineole and linalool identified in Laurus nobilis EO have been
reported to contribute significantly to fumigant properties [58–61]. The fumigant action of
essential oils is often associated with their high monoterpenoid composition, which acts as
an inhibitor of acetylcholinesterase (AChE), the enzyme responsible for the degradation of
acetylcholine, a key neurotransmitter in nerve impulses [62–64]. Studies on the inhibition of
AChE by oils from sage species, such as Salvia officinalis and Salvia lavandulaefolia, revealed
that 1,8-cineole and α-pinene are particularly active compounds against AChE in bovine
erythrocytes [62]. A study has arisen regarding the potential contribution of minor compo-
nents, such as α-terpineol and isobornyl acetate, to the overall toxicity profile of essential
oils [21], where α-terpineol caused a 100% mortality in adult Sitophilus zeamais after 96 h
of exposure to a dose of 30 µL/µg under laboratory conditions [65]. However, based on
docking scores, it seems unlikely that the main components of EOs are solely responsible
for these biological activities. They may contribute actively or insignificantly, but the
bioactivity of different essential oils may result from synergistic, additive, or antagonistic
interactions between their major and minor components [66,67].

The significance of this study lies in its contribution to the advancement of environ-
mentally sustainable pest management strategies. By demonstrating the effectiveness of
bay laurel essential oils against C. maculatus adults, this study highlights the potential
of natural substances as effective substitutes for synthetic insecticides, thus reducing the
reliance on chemicals harmful to both human health and the environment.

5. Conclusions

The analysis of essential oils using FTIR and GC-MS revealed a diversity of active phy-
tochemical compounds. Remarkably, both oils showed significant repellent and fumigant
effects on adult C. maculatus. According to molecular docking tests, this effectiveness can
be attributed to their chemical profile, in particular to the predominance of 1,8-cineole and
linalool in the Tangier essential oils, and of 1,8-cineole and toluene in the Meknes essential
oils, while recognizing the potential synergistic role of minor compounds. Based on our
findings, we strongly advocate for the inclusion of bay laurel essential oil in integrated pest
management programs that target bruchids and other stored-product pests.

The prospects for this research include an in-depth exploration of the synergies be-
tween the major and minor compounds of Laurus nobilis essential oils and their mechanisms
of action to maximize their insecticidal efficacy. It would also be relevant to conduct studies
on the impact of different environmental and growth conditions on the chemical composi-
tion of essential oils and insect behavior. Finally, the reformulation, large-scale application,
and evaluation of these oils under actual storage conditions would validate their potential
as alternatives to synthetic insecticides.
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