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Identifying the genetic factors impacting the adaptation of crops to environmental conditions is of key interest for conservation and 
selection purposes. It can be achieved using population genomics, and evolutionary or quantitative genetics. Here we present a 
sorghum multireference back-cross nested association mapping population composed of 3,901 lines produced by crossing 24 diverse 
parents to 3 elite parents from West and Central Africa-back-cross nested association mapping. The population was phenotyped in 
environments characterized by differences in photoperiod, rainfall pattern, temperature levels, and soil fertility. To integrate the multi-
parental and multi-environmental dimension of our data we proposed a new approach for quantitative trait loci (QTL) detection and par-
ental effect estimation. We extended our model to estimate QTL effect sensitivity to environmental covariates, which facilitated the 
integration of envirotyping data. Our models allowed spatial projections of the QTL effects in agro-ecologies of interest. We utilized 
this strategy to analyze the genetic architecture of flowering time and plant height, which represents key adaptation mechanisms in en-
vironments like West Africa. Our results allowed a better characterization of well-known genomic regions influencing flowering time con-
cerning their response to photoperiod with Ma6 and Ma1 being photoperiod-sensitive and the region of possible candidate gene Elf3 
being photoperiod-insensitive. We also accessed a better understanding of plant height genetic determinism with the combined effects 
of phenology-dependent (Ma6) and independent (qHT7.1 and Dw3) genomic regions. Therefore, we argue that the West and Central 
Africa-back-cross nested association mapping and the presented analytical approach constitute unique resources to better understand 
adaptation in sorghum with direct application to develop climate-smart varieties.
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adaptation
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Introduction
The genotype by environment (GxE) interaction, which manifests 
by differential genotypic expressions across environmental condi-
tions (Falconer and Mackay 1996), is an important phenomenon 
impacting plant development in natural and controlled environ-
ments (Campbell and Waser 2001; Annicchiarico 2002). GxE is a 
fundamental component of plant adaptation (Des Marais et al. 

2013), which strongly influences the expression of complex traits 
(van Eeuwijk et al. 2010). For example, the difference in develop-
ment response to the length of the day (photoperiod) is a remarkable 
example of GxE interaction (Nakamichi 2015). An important pro-
portion of genes shows environment-specific behavior, which 
considerably complicates their use for selection (Bernardo 2016; 
Cobb et al. 2019). Therefore, the determination of the proportion 
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of genes influenced by the environment as well as the nature of 
this influence is a central question. The availability of complex 
genetic resources, advanced technology to monitor plants in dif-
ferent environmental conditions (envirotyping; Xu 2016), and ac-
curate statistical methods should improve our understanding of 
the GxE interaction in plants.

Multiparental populations (MPPs) combining the genomes 
of several founders like the nested association mapping (NAM) de-
sign or the multiparent advanced generation inter-cross (MAGIC) 
design have progressively emerged as central genetic resources 
for research (Cavanagh et al. 2008; Scott et al. 2020; Bernardo 
2021). The NAM design composed of crosses between a recurrent 
parent and donor parents is a well-spread MPP design (Yu et al. 
2008; McMullen et al. 2009; Gage et al. 2020) with examples in maize 
(Bauer et al. 2013; Chen et al. 2019), rice (Fragoso et al. 2017), wheat 
(Kidane et al. 2019; Altendorf et al. 2021; Christopher et al. 2021), bar-
ley (Maurer et al. 2015; Hemshrot et al. 2019) and sorghum (Bouchet 
et al. 2017; Marla et al. 2019). Sorghum is also the species that was 
used to develop the back-cross NAM (BCNAM) design, which con-
sists of introgressing diverse alleles from donors in a recurrent 
(elite) line using 1 generation of back-cross followed by several gen-
erations of selfing (Jordan et al. 2011; Mace et al. 2021).

The BCNAM design has several interesting properties for 
genetic analyses. Compared to biparental crosses, it addresses a 
larger genetic diversity and captures more recombination events. 
Compared to association panels, it offers better control over the 
population structure, which can reduce false-positive detection 
(Myles et al. 2009). BCNAM designs also allow the origin of favor-
able alleles to be traced back to a specific parent, a highly desirable 
feature in the design of future crosses. MPPs like BCNAM increase 
rare allele frequencies, which is essential to the precise estimation 
of their additive effects (Myles et al. 2009). Moreover, an extension 
of the reference NAM design by the use of several recurrent par-
ents allows the characterization of the genetic effect in multiple 
genetic backgrounds (Christopher et al. 2021). BCNAM designs 
are also interesting in the study of GxE because they allow the ex-
posure of structured diversity to contrasting environments, which 
can maximize the detectable allelic expression (Cobb et al. 2019).

Several approaches have been developed for the detection of 
single-environment MPP quantitative trait loci (QTL). For example, 
Li et al. (2011) developed a method based on maximum likelihood 
QTL effect significance. Xavier et al. (2015) used mixed models em-
ployed for genome-wide association analysis. Garin et al. (2017, 
2018) proposed a framework assuming different allelic configura-
tions at the QTL position. More recently, Paccapelo et al. (2022)
adapted the whole-genome interval mapping method for the NAM 
design. A more general strategy consists of using models based on 
probabilistic estimation of identity by descent (IBD) calculated in 
any type of design (Zheng et al. 2015; Broman 2022). This information 
can be integrated into models using random QTL effects with the 
IBD matrix associated (Wei and Xu 2016; Li et al. 2021). A last solution 
is to estimate MPP QTL effects with a Bayesian approach, which of-
fers an elegant solution to the question of model determination (Wu 
and Jannink 2004). By treating more sources of randomness in the 
estimation procedure, can also offer greater precision for haplotype 
or allelic series effect estimation, but at the price of a higher compu-
tational demand (Zhang et al. 2014; Crouse et al. 2020).

Compared to separate within-environment analyses, the QTL 
detection using MPP data characterized in multiple environments 
(MPP-ME) in a joint model is more challenging, but it allows a more 
direct comparison of the estimated effects. Until now, phenotypic 
values were averaged across environments (e.g. Giraud et al. 2014), 
which prevents the use of the full potential of those data like the 

environmental correlation (Piepho and Pillen 2004). To overcome 
this limitation, Verbyla et al. (2014) proposed a QTL detection ap-
proach for MAGIC populations characterized in ME that allows es-
timation of environment-specific parental QTL effects. In the 
same vein, Garin et al. (2020) extended their framework to esti-
mate MPP-ME QTL models with parental or ancestral haplotype 
effects. Diouf et al. (2020) proposed a forward–backward algorithm 
for MPP-ME analysis in MAGIC. Finally, De Walsche et al. (2023)
proposed approaching MPP-ME QTL detection as a meta-analysis 
of single environment analyses.

The extension of multi-environment QTL models with environ-
mental covariates (ECs) for biparental populations and MPPs has 
proven useful in estimating the sensitivity of the QTL effect to spe-
cific dimensions of the environment (Malosetti et al. 2004; Boer 
et al. 2007; Garin et al. 2020). Recent advances in sensor technology 
have considerably increased the availability of high-resolution en-
vironmental characterization and the possibility of integrating 
this information into genetic analysis, often termed envirotyping 
(Xu 2016; Costa-Neto et al. 2021). In this study, we propose an ap-
proach to integrate the available high-resolution environmental 
information in MPP-ME QTL models to improve our understanding 
of the QTLxE interaction by testing the sensitivity of multiple al-
leles to various ECs.

Photoperiod is a key EC for sorghum development, especially in 
West Africa. Photoperiodism is the developmental response of 
plants to the relative length of daylight or photoperiod (Hopkins 
2008). The influence of photoperiod on flowering time is particu-
larly important for sorghum because it represents an important 
source of adaptation by adjusting the length of the vegetative 
and reproductive phases given local environmental conditions 
(Kouressy et al. 2008). Sorghum is a short-day plant generally sen-
sitive to photoperiod that delays its panicle initiation when days 
become longer (Wolabu and Tadege 2016). The flowering time 
can be represented as a broken linear function of the photoperiod 
with a baseline duration remaining constant until a certain photo-
period and then an increasing slope where flowering time in-
creases with the photoperiod (Van Oosterom et al. 2001; Fig. 4g). 
Photoperiod sensitivity is the variation in the steepness of the 
slope. Next to photoperiod, temperature is another environmen-
tal covariate that is assumed to influence sorghum flowering 
time at the genetic level (Mace et al. 2013).

In this article, we present a multireference sorghum BCNAM of 
populations composed of 24 diverse parents anchored on 3 West 
African elite lines that represents one of the most relevant 
publicly available resources for West and Central Africa sorghum 
(WCA-BCNAM, Table 1, Supplementary Fig. 1). The population 
was phenotyped for 8 traits covering phenology and yield compo-
nent aspects of the plant in ME. To analyze those data, we devel-
oped MPP-ME QTL models integrating environmental covariables. 
We illustrate our approach through a fine characterization of ma-
jor QTL for flowering time and plant height.

Material and methods
Figure 1 is an overview of the proposed analytical strategy. In the 
following sections, we will first describe the data used. Then, we 
will present the statistical models for phenotypic analyses, MPP 
QTLxE analysis extended with ECs, and the procedure to project 
QTL behavior beyond the tested environments.

Plant material
The WCA-BCNAM is composed of 3 BCNAM populations produced 
after the crossing of the Grinkan (GR), Kenin-Keni (KK), and Lata3 
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Table 1. WCA-BCNAM parents with racial classification, origin, relative height (PH), relative maturity, reaction to photoperiod sensitivity 
(Kp3), and specific advantages. The last 3 columns specify the crossing scheme with the year when the cross was phenotyped (2012 and/or 
2013).

Parent information Crossing scheme

Parent Race Origin PH Mat Kp3 Specific advantage References GR KK LT

GR G/C Mali av av av Elite line Guitton et al. (2018) 13
KK G/C Mali av av av Elite Line Leroy et al. (2014)
LT G/C Mali + av av Elite Line Diallo et al. (2019)
Fara-Fara G Nigeria + + + Diversity Andrews (1973) 12 12 13
E36-1 C Ethiopia – av – Drought tolerance Mahalakshmi and Bidinger (2002) 12/13 12
IS15401 G Cameroon + + + Striga resistance FAO (2008) 12 12 13
IS23540 C Ethiopia – av – Sweet stem FAO (2023) 12 13 13
B35 D/C Ethiopia – – – Drought tolerance Rama Reddy et al. (2014) 12 12
Konotene D Mali + + – Grain weight Clément et al. (1980) 12
SC566-14 C Nigeria – – – Al tolerance Magalhaes et al. (2004) 12 13
Framida C S. Africa – + – Striga resistance Haussmann et al. (2001) 12 13
CSM417 G Mali + + + Grain quality Clément et al. (1980) 12 12/13
CSM63 G Mali av – – Precocity Chantereau et al. (1998) 12
CSM388 G Mali + + + Grain quality Folliard et al. (2004) 12/13
Gadiaba Dié D Mali + + + Grain weight Clément et al. (1980) 12
W. Kaura D/C Nigeria – + + Diversity Goma et al. (2012) 12
V33/08 G/C Mali av + av Grain quality Soumaré et al. (2008) 13
Kalaban C Mali – av – Productivity FAO (2008) 13 13
Malisor 84-7 C Mali – – + Head bug resistance Ratnadass et al. (2002) 13 13
BimbG G Guinea + + + Grain quality Sagnard et al. (2011) 13 13
Hafijeka G Gambia + + + Grain quality Folkertsma et al. (2005) 13 13
S. Kaura D/C Nigeria + + + Diversity Kassam and Andrews (1975) 13 13
Sangatigui G Mali av av av Diversity CEDEAO-UEMOA-CILSS (2016) 13
DouaG G Mali + + + Low-P adaptation Kante et al. (2017) 13
Gnossiconi G Burkina F. av av av Yield stability vom Brocke et al. (2014) 13
Ngolofing G Mali + av + Grain quality Clément et al. (1980) 13
Sambalma G/C Nigeria + + + Al tolerance Kante et al. (2019) 13

Race: D: durra; C: caudatum; G: guinea. Photoperiod sensitivity (Kp3):—Kp < 0.4; av 0.4 < Kp < 0.6; + 0.7 < Kp < 1. PH:—PH < 1 m; av 1m < PH < 2 m; + PH > 2 m. 
Maturity (cycle):—cycle <70 days; av 70 days <cycle < 110 days; +cycle >110 days (These estimations were carried out under early sowing conditions (June) in Mali; 
Thera 2017).

Fig. 1. Overview of the analytical strategy. a) Raw genotypic, phenotypic and environmental covariables; b) Statistical models for QTL detection in MPP 
characterized in ME, correlations between trait and EC analysis, and synthesis in QTLxEC models; c) Inference using the results gathered in a database 
and projection of the QTL effect beyond the tested environments.
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(LT) recurrent parents with 24 donor parents representative of the 
Western African sorghum diversity with lines from Central and 
Eastern Africa (Table 1, Supplementary Table 1: parents name sy-
nonyms). The whole population contains 3,901 BC1F4 genotypes 
from 41 crosses (GR: 2,109 genotypes, 19 crosses; KK: 896 geno-
types 10 crosses; LT: 896 genotypes, 12 crosses, Supplementary 
Fig. 1). The LT population crosses involved male sterile sister lines 
of LT to produce the BC1 generation, while the BC1 generations of 
GR and KK crosses were produced using manual emasculation. 
The recurrent parents are elite lines selected in Mali through 
farmer variety testing. GR was developed through pedigree breed-
ing methods. KK was derived from a directed recurrent selection 
population involving local parents of different botanical types 
(Leroy et al. 2014). LT was selected from a random mating popula-
tion of Guinea parents (Diallo et al. 2019). During the development 
of the populations, moderate selection pressure was applied at 
the BC1F2 generation against too early flowering and too high 
genotypes.

The recurrent parents were chosen for their productivity, their 
adaptation to soil and climate, and their resistance to major biotic 
and abiotic stresses. The recurrent lines also have weaknesses like 
poor grain quality and mold susceptibility (GR), suboptimal glume 
opening and/or susceptibility to Striga hermonthica (LT), and low 
productivity and yield stability (KK). The 24 donor parents cover 
diverse racial (Guinea, Caudatum, Durra) and geographical ori-
gins (Table 1). They are characterized by key adaptive traits like 
height, maturity, and photoperiod sensitivity (Kp3). Those parents 
were also selected for traits like tolerance to Striga hermonthica, soil 
phosphorus deficiency and/or drought, and good grain quality 
that could increase farmer acceptance. Several donor parents 
were tested with multiple genetic backgrounds. Fara-Fara, 
IS15401, and IS23540 were crossed with the 3 recurrent parents. 
Ten donor parents were tested in 2 genetic backgrounds.

Genotypic data
The 3,901 offspring and their parents were genotyped using geno-
type by sequencing (GBS, Elshire et al. 2011) with 384-plex libraries 
on an Illumina HiSeq 2000 sequencer. The offspring were geno-
typed at generation BC1F3. The sequence data were analyzed run-
ning the reference genome-based TASSEL GBS pipeline (Glaubitz 
et al. 2014). Unique tags (3,844,911) were aligned on the sorghum 
reference genome v2.1 (Paterson et al. 2009). After the filtering of 
raw genotype data for minor allele frequencies (MAF < 0.05) and 
single marker missing data (<0.9), 51,545 segregating single nu-
cleotide polymorphisms (SNPs) were identified between the par-
ents with between 11,856 and 26,128 SNPs segregating in the 
individual crosses. Missing values in the parents were imputed 
using Beagle (Browning et al. 2018). Missing values in the offspring 
genotypes were imputed using FSFHap (Bradbury et al. 2007). We 
determined a unique genetic consensus map (Supplementary 
Table 2) by projecting the physical distance of the 51,545 markers 
on a high-quality genetic consensus map (Guindo et al. 2019) using 
the R package ziplinR (https://github.com/jframi/ziplinR).

Phenotypic data
Because of logistic constraints, the GR and KK populations could 
not be entirely phenotyped during 1 season. Therefore, the crosses 
of those populations were phenotyped over 2 seasons (2012 and 
2013, Table 1, Supplementary Fig. 1). Due to minimal overlap be-
tween the genotypes phenotyped in 2012 and 2013 (maximum 
of 2 crosses per recurrent parent), GR (GR2012, GR2013) and 
KK (KK2012, KK2013) subpopulations were analyzed independent-
ly. Each subpopulation was phenotyped in a combination of 

2 locations (Sotuba and Cinzana, Fig. 5a) for 2 sowing dates 
(Sowing 1: end of June, sowing 2: 3–4 weeks later, Supplementary 
Table 3), totaling 4 environments (SB1, SB2, CZ1, CZ2; 
Supplementary Fig. 2). The Sotuba location is characterized by 
around 900 mm/year of precipitation and lower temperatures, 
while the Cinzana location is characterized by lower precipitation 
(600–700 mm/year) and higher temperatures. In both locations, 
the second sowing date had a lower level of precipitation and hu-
midity and higher temperatures (Supplementary Fig. 2, 
Supplementary Table 4). In each environment, the progenies of 
the GR and KK populations were laid out as an augmented design 
(Kempton 1984), with the 3 recurrent parents used as checks. The 
LT population was entirely phenotyped in 2013 in 3 environments 
defined by 2 levels of phosphorus fertilization (low-P and HIGH-P) 
at the Samanko station and standard conditions at the 
Kolombada station (Fig. 5a). In each environment, the genotypes 
were laid out as an alpha-lattice design (Kempton 1984) with 2 repli-
cations (Diallo et al. 2019).

We measured 8 traits listed hereafter with crop ontology (CO) 
code. Flag leaf appearance (FLAG, CO_324:0000631) was the num-
ber of days after sowing when half of the plot had their ligulated 
flag leaves visible. For the QTL analysis, FLAG data were converted 
into degree day (DD). Plant height (PH, CO_324:0000623) was the 
distance in cm between the soil and the panicle top. The number 
of internodes (NODE_N, CO_324:0000605) was the number of 
nodes on the main stem −1 and the average length of the inter-
nodes (NODE_L) was the main stem length divided by NODE_N. 
The peduncle length (PED, CO_324:0000622) was the distance in 
cm between the final node and the panicle bottom. The panicle 
length (PAN, CO_324:0000620) was the distance in cm from the 
end of the peduncle to the panicle top. Grain weight (GWGH) 
(CO_324:0000424) was the weight in grams of 1000 grains. 
Finally, YIELD (CO_324:0000403) was measured in kg/ha at the 
plot level. All traits except FLAG were measured at harvest. 
Some traits, like GWGH and PAN, were not measured in all envir-
onments (Supplementary Table 5).

Environmental covariables—ECs
We complemented the data by 15 daily observed ECs 
(Supplementary Table 6) to evaluate the environmental influ-
ence on plant adaptation of the GR and KK populations. With 4 
environments (SB1, SB2, CZ1, CZ2) we could observe environ-
mental gradients, which was not possible for the LT data. The 
ECs were divided into 3 categories. The atmospheric ECs con-
tained: cumulated rain (mm), humidity (%), vapor pressure def-
icit (VPD—kPa), slope of saturation VP curve (SVP—kPa/d), 
potential evapotranspiration (ETP—mm/day), and atmospheric 
water deficit (PETP—mm/day). The temperature ECs covered: 
maximum and minimum temperatures (d), temperature range 
(d), the effect of temperature on radiation use efficiency (FRUE; 
0–1), and cumulated DD. The radiation ECs were the cumulated 
hours of sun (hSun), the photoperiod (day length) (h), and the so-
lar radiation (MJ/m2/day). We also included the photothermal 
time as the product between photoperiod and DD. A principal 
component analysis of the environments’ EC values showed im-
portant differences between the environmental conditions and a 
good coverage of the EC variability (Supplementary Fig. 3).

The EC values came from weather stations at the field experi-
ments complemented by Nasapower satellite observations 
(Spark 2018) and transformation using the R package EnvRtype 
(Costa-Neto et al. 2021). We projected the genetic effects beyond 
the tested environments, using compiled environmental data 
from various sources extended with EnvRtype for a grid of 
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60 points between 12.25 and 13.75 degrees of latitude and −12.5 
and −2 of longitude (Fig. 5).

Phenotypic data analysis
We estimated the genotypic variance component and broad-sense 
heritability ( h2) using the following mixed model:

yicjkl = Ej + R(E) jk + B(R, E) jkl + Cc + G(C)ic + GE(C)ijc + eicjklm (1) 

Where, yicjkl  = plot phenotypic observation of the ith genotype 

from cross c in environment j, replication k, and block l; Ej  = envir-

onment effect; R(E) jk  = replication effect within-environment 

(only for LT subpopulation); B(R, E) jkl  = block effect within repli-

cation and environment; Cc  = cross effect; G(c)ic  = genotype effect 

conditional on cross; GE(C)ijc  = GxE effect conditional on cross. 

The underlined terms were considered as random, and the other 
ones as fixed. The genotype, GxE, and error terms were normally 

distributed with cross-specific variance ( σ2
G(cr), σ

2
GE(cr), σ

2
e(cr)). We es-

timated the model components using Genstat 18 (VSN 
International 2022). Given those, we calculated the broad-sense 

h2 using the formula of Hung et al. (2012):

h2 =
σ2

G(cr)

σ2
G(cr) +

σ2
GE(cr)

Nenv
+

σ2
e(cr)

(Nenv∗Nrep) 

Where, Nenv is the number of environments and Nrep the number of 

replications. For the multi-environment QTL analysis, we calcu-
lated within-environment best linear unbiased estimates 
(BLUEs) by removing the environment and cross term from model 
1 and by considering the genotype term as fixed. We used the plot 
field coordinates to model the spatial variation using a 2D P-spline 
(SpATS model, Rodriguez-Alvarez et al. 2018). We performed cor-
relation analyses of the BLUEs to investigate the relationships be-
tween traits.

Environmental covariable selection
For each subpopulation (GR2012, GR2013, KK2012, KK2013) by 
trait combination, we selected the 5 ECs that had the strongest in-
fluence on the phenotype and the time window where this effect 
was maximal using the method of Li et al. (2018). This method con-
sists of calculating the correlation between the trait BLUE means 
across the environments and the EC values inside time windows 
of different sizes (20, 40, 60, 80, or 100) starting on different days 
of the plant cycle. We selected the 5 ECs with the highest overall 
average correlations and determined the most influential window 
and corresponding EC values as the one with the highest EC-trait 
correlation. Those EC values and time windows were later used in 
the QTLxEC models.

MPP QTLxEC modeling
To detect QTL and characterize their effect, we performed a se-
quential analysis with models increasing in complexity. We 
started by detecting QTL positions with an extended version of 
the linear mixed model 3 proposed by Garin et al. (2020):

yicj = Ej + Ccj + xiqp∗β pj + GEicj + eicj (2) 

Where, yicj  = BLUE of genotype i from cross c in environment j.  

Ej  = environment effect and Ccj  = within-environment cross 

effect. We assumed that the QTL effect was multi-allelic with a 
different allelic effect carried by each parent. Indeed, the potential 
existence of multiple alleles (Giraud et al. 2014), of multiple gen-
omic regions controlling the trait with cross-specific differences 
of frequency including absence of segregation and fixation (Xu 
1998; Holland 2007), as well as of difference of linkage disequilib-
rium in different crosses (Bauer et al. 2013) make the multi-allelic 
hypothesis realistic. The use of a parental model is a common pro-
cedure in MPP QTL detection (Li et al. 2011; Bardol et al. 2013; Garin 
et al. 2017), which presents the advantage of linking the source of 
the QTL effect to an identified parent (Christopher et al. 2021). 
Therefore, the QTL position, xiqp represented the number of alleles 

from parent p carried by genotype i. It was inferred by looking at 
marker score similarity between the genotype and its parent with-
in cross. An alternative bi-allelic model would infer genetic simi-
larity by looking only at marker score similarity ignoring the 
cross information. Accordingly, β pj represents the QTL allelic ef-

fect of parent p in environment j. The recurrent parent was set 
as a reference. The overall QTL effect significance was estimated 
using the Wald test (Verbeke et al. 1997), which is a standard pro-
cedure to test for fixed effects significance in mixed models. Under 
H0, all parent environment-specific effects ( β pj) were assumed to 

be equal to 0, and the test statistic followed a chi-squared distribu-
tion with N alleles degrees of freedom. Under H1, at least one 
β pj ≠ 0.

The GEicj term is the residual genetic by environment variation 
and eicj is the plot error term that cannot be estimated separately 
due to the nonreplicated nature of the BLUEs. To model the ( 
GEicj + eicj) term, we extended the model from Garin et al. (2020)
using an unstructured variance covariance (VCOV) structure 
(Boer et al. 2007). The unstructured model estimates 1 (co)variance 
( σ2

Gj, j′ ) for each pair of environments, which requires an estimate of 
Nenv∗(Nenv + 1)/2 parameters. For example, for 2 genotypes (i and i’) 
measured in 4 environments the VCOV is equal to

V =

yi.1
yi′ .1
yi.2
yi′ .2
yi.3
yi′ .3
yi.4
yi′ .4

⎡

⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

σ2
G1 0 σ2

G1,2 0 σ2
G1,3 0 σ2
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σ2
G1 0 σ2

G1,2 0 σ2
G1,3 0 σ2
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σ2
G2 0 σ2

G2,3 0 σ2
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σ2
G2 0 σ2
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σ2
G3 0 σ2

G3,4 0
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⎥
⎥
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.

We detected QTL by performing a simple interval mapping to se-
lect cofactors followed by a composite interval mapping. To reduce 
the computational demand of the QTL detection scans, we calcu-
lated an approximate test statistic similar to the generalized least 
square strategy implemented by Kruijer et al. (2015; Method S1). 
The cofactors and final QTL were selected per chromosome using 
an iterative process: (1) select the most significant position; (2) ex-
clude the position inside the window; (3) repeat until no free pos-
ition is significant. The cofactor and QTL detection threshold was 

set at 1 − (1 − 0.05)
1

M eff , where Meff was the effective number of 

markers accounting for multiple testing determined with the pro-
cedure of Li and Ji (2005) (Supplementary Table 7: threshold va-
lues). We selected a maximum of 1 cofactor per chromosome to 
avoid model overfitting. The QTL exclusion window was set to 
20 cM. We estimated a global R squared for the whole set of QTL 
as well as partial R squared for each final selected QTL position 
using a linear model.
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After detecting QTL, we determined if the parental allelic ef-
fects composing the overall QTL effect had significant QTL by en-
vironment interactions (QEI). For that purpose, we decomposed 
the parental QTL effects into a main effect component ( αp) and 
a QEI component ( β pj) that were estimated simultaneously, which 
give the following multi-QTL model

yicj = Ej + Ccj +
nQTL

q=1

xiqp∗(αp + β pj) + GEicj + eicj (3) 

We tested for the significance of the αp and β pj terms using the 

Wald test (P-value <0.05). Those tests allowed us to determine if 
the parental effects were significant ( αp or β pj significant), and if 

the parental alleles interacted with the environment ( β pj signifi-

cant). For the parents with a significant QEI (pxE), we replaced 
the β pj with ECj∗Sp + l pϵ to test the environmental sensitivity of 

the QTL allele with respect to the environmental covariate ECj 

(e.g. humidity) that represent the EC value in environment j asso-
ciated with the sensitivity term Sp and the residual effect l pϵ . The 

fitted model was the following:

yicj = Ej + Ccj +
nQTL

q=1

xiqp∗(αp + β pj) + xiqpxE(αp + ECj∗Sp + l pϵ) + GEicj

+ eicj (4) 

We estimated model 4 for the 5 most influential ECs previously de-
termined the significance of the sensitivity term Sp using again the 

Wald test (P-value <0.05). For the parental alleles showing at least 
1 significant EC interaction, we could predict the allelic effect be-
yond the tested environments by substituting the average ECe va-
lues over the next seasons (2014–2020) for a grid of 60 points in the 

QTL sensitivity equation (Qeff = α̂p + ECj∗Ŝp). The estimation of 

model 3 and 4 effects was done using an exact restricted max-
imum likelihood. The methodology was added to the mppR R 
package (Garin et al. 2018).

We considered that QTL positions detected for the same trait but 
in different subpopulations (e.g. GR2012 and LT) represented the 
same “unique” QTL position if they were distant by less than 10 
cM. For each trait, we iteratively identified unique QTL positions by 
searching for groups of QTL with a maximum distance of 10 cM be-
tween the 2 most extreme positions, starting with the positions 
with the smallest distance. We searched for candidate genes behind 
the unique QTL positions using the sorghum QTL atlas (Mace et al. 
2019).

Results
Genetic diversity
Figure 2a illustrates the genetic diversity covered by the parental 
lines of the WCA-BCNAM population compared to a panel repre-
sentative of the global sorghum diversity (Supplementary 
Method 2) and the parent of the sorghum US-NAM (Bouchet 
et al. 2017). Overall, the WCA-BCNAM parents covered from 
69.9 to 86.8% (depending on the MAF threshold applied to the 
SNP dataset) of the global sorghum genetic diversity, which of-
fers a better coverage than the parents from the sorghum 
US-NAM which captured 38.12–57.5% of the considered diversity 
(Supplementary Method 3 and Table 8). Principal component 
analysis of the WCA-BCNAM genetic data (Fig. 2b–d) detected 3 
distinct groups corresponding to the 3 recurrent parents 

(Supplementary Fig. 4). Clear subdivisions of the populations ac-
cording to the donor parent race and some specific divergences 
from this general pattern (e.g. Hafijeka Guinea margaritiferum 
accession) were observed.

Phenotypic data
The differences between the adjusted phenotypic value distribu-
tions were substantial, with medium to large standard devia-
tions [e.g. 130 degree days (∼7 days) for FLAG, 43 cm for PH, or 
892 kg/ha for YIELD]. The phenotypic value distributions were 
also characterized by large ranges, with 47 days for FLAG and 
289 cm for PH (Supplementary Fig. 5). The average heritability 
values over populations were larger for FLAG (0.78–0.95), 
NODE_L (0.8–0.9), PH (0.76–0.88), and PED_L (0.68–0.9) compared 
to PAN_L (0.38–0.77), NODE_N (0.4–0.66), GWGH (0.09–0.89), or 
YIELD (0.37–0.64) (Supplementary Table 9). Heritability values 
were larger in the LT subpopulation, which is due to the 
within-environment replication as well as the greater similarity 
between the environmental conditions in which the LT subpopu-
lation was phenotyped.

In terms of correlations between the BLUEs of traits 
(Supplementary Figs. 6 and 7), we observed an overall negative 
relationship between FLAG and YIELD with an average Pearson 
correlation of −0.28 (P-val = 0.01) and a standard deviation of 
0.17 over the different subpopulations and environments. This 
negative relationship was observed in all genetic backgrounds. 
FLAG and NODE_N were positively correlated in all genetic back-
grounds. Concerning the correlation of PH with its components, 
the strongest 1 was with NODE_L (0.74 ± 0.12; P-val < 0.001), and 
the weakest with NODE_N (0.26 ± 0.14; P-val = 0.06). It took inter-
mediary values for PED (0.53 ± 0.15; P-val = 0.06) and PAN (0.41 ±  
0.13; P-val = 0.06). This pattern was observed in all configura-
tions. PH was positively correlated with YIELD (0.23–0.56 
P-val = 0–0.007), except for the GR subpopulation measured in 
2013 at Sotuba (−0.11 ± 0.01 P-val = 0.13). Finally, GWGH was 
generally correlated with YIELD (0.27 ± 0.18 P-val = 0.03), with a 
stronger correlation in KK 2012 (0.46 ± 0.01 P-val < 0.001). The 
ECs influencing the traits the most and the time windows when 
the influence was maximal are listed in Supplementary 
Table 10 and Fig. 8.

QTL detection—general results
The total length of the consensus genetic map was 1412 cM, with 
a number of cross-overs equal to 47,669, 20,343, and 20,120 in the 
GR, KK, and LT populations, respectively (Supplementary 
Table 2). We detected 100 significant QTL over the 5 subpopula-
tions and 8 traits, which represented 64 unique QTL (Table 2, 
Supplementary Fig. 9). The total variance explained by the QTL 
was rather large for FLAG (32–53%), PH (10–48%), and NODE_L 
(11–47%), moderate for PED (10–32%), NODE_N (10–22%), and 
GWGH (8–30%), and low for YIELD (4–14%) and PAN (5–9%).

QTLxEC extend
Each of the 100 significant QTL was modeled by assuming 
Npar(sub−pop) − 1 allelic effects, which represented a total of 948 ef-
fects for which we could estimate the significance of the main 
and GxE additive effects (Supplementary Table 11). Overall, 51% 
of the parental alleles presented significant effects, 26% inter-
acted with the environment (238 alleles corresponding to 87 
QTL), and 16% interacted with at least 1 EC (128 alleles corre-
sponding to 61 QTL). The FLAG, PH, and PED QTL were more sig-
nificantly affected by the EC than the QTL of PAN and YIELD 
(Supplementary Table 12). For example, photoperiod strongly 
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influenced FLAG, NODE_N, and PH QTL. Atmospheric ECs like VPD 
influenced PED and NODE_L QTL effects, while YIELD QTL was 
sensitive to humidity. PAN and NODE_L QTL were sensitive to 
minimum temperature.

QTL with large effects and candidate genes
Eleven QTL showed medium to large effects ( R2 ∈ [2.7 − 29.9]) 
with strong significance and consistency over several subpopula-
tions and environments (Table 3 and Supplementary Fig. 9). The 
range of the parental allelic effects could reach 300 dd (around 
15 days) for FLAG, or 1.07 m for PH, which accounts for an import-
ant fraction of the phenotypic variability (Supplementary Fig. 5). 
On chromosome 3, we detected a strong QTL for FLAG 

(QTL_FL_3_78) which was significant in all subpopulations and en-
vironments. Almost at the same position, we also detected a large 

effect QTL for NODE_N (QTL_NN_3_78). QTL_FL_3_78 and 
QTL_NN_3_78 are probably linked to the early flowering (Elf3) pos-

sible candidate gene (Guitton et al. 2018) or SbCN12 (Yang et al. 
2014). Another FLAG QTL (QTL_FL_6_3) with a consistent effect 
in all subpopulations and environments was detected at the be-

ginning of chromosome 6. It colocalized with a QTL for NODE_N 
(QTL_NN_6_2). Those QTL could be related to the Ma6 gene 

(Rooney and Aydin 1999; Murphy et al. 2014). We also detected a 
QTL with medium effects on FLAG on chromosome 6 around 

36 cM (QTL_FL_6_38) in the region of the Ma1 gene (Murphy 
et al. 2011) and another on chromosome 9 around 105 cM 

Fig. 2. Genetic diversity and structure of the WCA-BCNAM design. a) Coverages of the global sorghum molecular diversity by the WCA-BCNAM and 
sorghum US-NAM (white square, Bouchet et al. 2017) parents. Principal component biplots performed on a subset of 5,000 markers randomly selected 
from the b) GR c), KK d) LT subpopulations.
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(QTL_FL_9_105) potentially close to the SbFL9.1 gene (Higgins et al. 
2014; Bouchet et al. 2017).

A strong QTL for PH has detected on chromosome 7 around 75 
cM (QTL_PH_7_76) with significance in the GR2013 and KK2013 
subpopulations. This QTL colocalized with a highly significant 
QTL for NODE_L (QTL_NL_7_78) and a strong and highly consist-
ent QTL for PED (QTL_PED_7_78). Nearby this QTL, another QTL 
(QTL_PH_7_106) also had a large effect on PH and colocalized 
with a large effect QTL for NODE_L (QTL_NL_7_98). The QTL re-
gion of chromosome 7 could be related to 1 or 2 genes. The main 
candidate gene is Dw3 (Multani et al. 2003; Brown et al. 2008). 
However, according to Li et al. (2015), chromosome 7 could harbor 
2 genes: qHT7.1, positioned before Dw3, may influence both stem 
length and peduncle length, while Dw3 may only influence stem 
length.

Complex QTL effect pattern at large effect QTL
QTL with large effects showed complex patterns with effects dis-
tributed over many parents and a wide range of effects modu-
lated by the genetic background and the environment. Almost 
all parental alleles had at least 1 significant EC interaction. 
Such a complex pattern can be illustrated for QTL_FL_3_78 
(Fig. 3). First, we noticed the contrasting parental effects with 
parents like CSM417 or CSM388 whose alleles reduced maturity, 
while IS15401 alleles increased it. Then, we observed differences 
in expression due to the genetic backgrounds. For example, the 
allele of Fara-Fara had a small effect in a GR background, while 
it strongly increased maturity in the LT and KK backgrounds. 
Finally, we also observed environmental differences, like the 
stronger cycle reduction of the CSM388 allele in 2012 compared 
to 2013.

QTL effect on photoperiodism
The plots of Fig. 4a–c represents QTL allele additive effects for a 
given photoperiod compared to the recurrent (reference) parent. 
QTL_FL_6_3 (Ma6) was the QTL with the highest proportion of al-
leles influenced by the photoperiod (Fig. 4a). At that position 

compared to GR, the effects of E36-1 or B35 were negatively af-
fected by the photoperiod. Those alleles reduced the photoperiod 
sensitivity. When the days were longer (e.g. at the first sowing date 
∼12.5 h) a genotype carrying those alleles increased its cycle less 
than a genotype carrying the allele of the central parent. 
QTL_FL_6_38 (Ma1) was also sensitive to photoperiod with 5 par-
ental alleles interacting significantly with the photoperiod over 
the different genetic backgrounds. For example, in GR2012, the al-
lele of White Kaura increased the photoperiod sensitivity com-
pared to the recurrent parent (Fig. 4b).

At QTL_FL_3_78 (Elf3, Fig. 4c), the parental alleles were mostly 
insensitive to photoperiod. We only detected significant effects 
of the photoperiod for 3 alleles. The alleles of Fara-Fara and 
IS15401 had a reduced sensitivity, while the allele of B35 
increased it. The alleles of QTL_FL_9_105 (SbFL9.1) were also in-
sensitive to the photoperiod with only 2 significant interactions. 
Even though the EC range looks small (0.3 h), it caused import-
ant variations of the QTL effect. For example, at QTL_FL_6_36, 
the effect of an SC566-14 allele varied by 60 dd (around 3 days; 
Fig. 4b).

Dissecting PH genetic determinism
The phenotypic data for PH and its components (NODE_N, 
NODE_L, PED, PAN) allowed us to dissect PH genetic architecture. 
PH can be expressed as PH = (NODE_N * NODE_L) + PED + PAN. 
Since the phenotypic values of NODE_N are strongly correlated 
with FLAG, it was not surprising to find overlapping QTL for the 
2 traits on chromosomes 3 and 6 (QTL_NN_3_78, QTL_NN_6_2). 
In terms of photoperiod sensitivity, the QTL for NODE_N followed 
a similar pattern to the ones from FLAG. QTL_NN_3_78 (Elf3) was 
rather insensitive to photoperiod with 4 parental alleles having a 
significant interaction, while QTL_NN_6_2 (Ma6) was more sensi-
tive with 6 alleles with significant interactions with the photo-
period (e.g. Malisor 84-7).

We also observed a strong agreement between the QTL 
positions detected for PH and NODE_L on chromosome 
7. QTL_PH_7_76 and QTL_NL_7_78 (qHT7.1) colocalized, while 

Table 2. Number of QTL detected for the traits and reference genotype by year combinations. Total R2 explained by the QTL are provided 
in parentheses.

FLAG PH NODE_N NODE_L PED PAN GWGH YIELD

Grinkan 2012 6 (48.9) 3 (48) 4 (17.6) 2 (47.1) 6 (31.2) 5 (8.5) 3 (13.5) 3 (5.4)
GR 2013 4 (32.1) 4 (44.5) 1 (9.6) 2 (42.6) 2 (21.1) 1 (4.6) 0 2 (7.3)
KK 2012 6 (53.4) 2 (9.6) 2 (16.8) 3 (18.8) 3 (14.3) 2 (5.2) 2 (7.9) 1 (3.9)
KK 2013 2 (35.5) 2 (12.7) 2 (22.3) 0 2 (16.9) 1 (5.8) 0 1 (5.9)
LT 4 (50.3) 2 (20.1) 2 (13.7) 1 (11) 2 (10.2) 0 6 (30.4) 4 (14.3)

Table 3. List of large and medium effect QTL with trait, chromosome, position, average R², QTLxE effect range, number of parental alleles 
with significant effects, and candidate genes.

QTL ID Trait chr Range (cM) Range (Mbp) R2 QxE range Npar Candidate genes

Q_FL_3_78 FLAG 3 77.34–78.36 51.1–51.5 17.1 (−123; 144) (dd) 21 Elf3, SbCN12
Q_NN_3_78 NODE_N 3 78.13–78.75 51.4–51.7 9.3 (−1.8; 2.1) (n) 15 Elf3, SbCN12
Q_FL_6_3 FLAG 6 1.49–2.94 0.4–0.8 19.4 (−178; 130) (dd) 17 Ma6
Q_NN_6_2 NODE_N 6 1.49–2.73 0.4–0.8 7.9 (−2.6; 1.8) (n) 15 Ma6
Q_FL_6_38 FLAG 6 36.32–39.4 40.4–41.2 6.3 (−192; −27) (dd) 6 Ma1
Q_FL_9_105 FLAG 9 103.7–106.7 54.6–55.4 2.7 (−40; 91) (dd) 9 SbFL9.1
Q_PH_7_76 PH 7 74.28–76.69 54.7–55.2 21.9 (−37; 69) (cm) 16 qHT7.1, (Dw3)
Q_NL_7_78 NODE_L 7 76.29–79.59 55.1–55.8 29.9 (−0.1; 4.2)) (cm) 14 qHT7.1, (Dw3)
Q_PED_7_78 PED 7 74.8–82.1 54.84–56.26 12.6 (−8; 10) (cm) 21 qHT7.1, (Dw3)
Q_NL_7_98 NODE_L 7 96.1–100.7 58.3–59.1 11.8 (−5.8–4.2) (cm) 9 Dw3
Q_PH_7_106 PH 7 102–108.3 59.4–60.7 7.6 (−14; 58) (cm) 15 Dw3
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QTL_PH_7_106 and QTL_NL_7_98 (Dw3) were separated by less 
than 10 cM. The QTL influencing NODE_L were not sensitive to 
photoperiod, but other ECs like VPD or potential ETP modulated 
the parental allelic effects at those positions. For example, at 
QTL_PH_7_76, the effects of parents like Hafijeka or Short Kaura 
were reduced when VPD increased (Fig. 4e). Surprisingly, the cor-
responding QTL (QTL_PH_7_76) detected for PH showed 
significant interaction with the photoperiod (Fig. 4d) in the GR 
subpopulations. We consider that this apparent effect of 
photoperiod on QTL_PH_7_76, is due to the fact that PH is propor-
tional to the interaction NODE_N * NODE_L. Therefore, at 
chromosome 7, the signal is due to the interaction between a 
photoperiod-sensitive component (NODE_N) and a photoperiod- 
insensitive part (NODE_L). We hypothesize that the apparent 
photoperiod sensitivity of QTL_PH_7_76 is due to the NODE_N 
component of the height that is strongly photoperiod-sensitive, 
for example via the QTL on chromosome 6 (QTL_NN_6_2).

For PED, QTL_PED_7_78 (qHT7.1) was the most environmentally 
sensitive QTL. This QTL was not photoperiod-sensitive, but covari-
ables like SVP had a negative effect on the propensity to increase 
PED compared to the reference parent. This effect was consistent 
in the GR2013 subpopulation with 5 parents (V33/08, BimbG, 

Kalaban, Hafijeka, and Short Kaura) reducing their propensity to 
increase PED when SVP increased (Fig. 4f). It is interesting to 
emphasize that drought-related ECs (VPD, SVP) influenced both 
QTL_PH_7_76 and QTL_PED_7_78 with effects going in the same 
direction.

Expected QTL effect beyond the tested 
environments
Between 12 and 13.75 degrees of latitude, the Malian environment is 
characterized by a southwest-to-northeast gradient (Supplementary 
Fig. 2). The southwest is cooler with lower temperature ranges, 
higher precipitation, and humidity, while the northeast is drier 
with higher temperature ranges and lower precipitations. A final 
extension of our results is the projection of QTL allelic effects having 
a significant interaction with 1 of the ECs in the Malian environment. 
For that we substituted the observed EC values from a grid of 
60 points in the estimated allele sensitivity equation (Fig. 5). Those 
results represent the expected QTL allele additive effect given the 
new EC conditions with respect to the central parent in the 
environment with the lowest EC value.

In Fig. 4d and f, we represented the expected behavior of the 
BimbG and V33/08 alleles at QTL_PH_7_76 and QTL_PED_7_78, 
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Fig. 4. Sensitivity of the QTL parental allele effects to environmental covariables calculated with model (4). Each slope is described by α̂p + ECj∗Ŝp, with α̂p 

representing the main allelic additive effect and Ŝp the sensitivity to increase in the environmental covariate ( ECj). a) Flag leaf QTL chr 6 (3 cM) in GR2012 
given photoperiod; b) Flag leaf QTL chr 6 (36.3 cM) in GR2012 given photoperiod; c) Flag leaf QTL chr 3 (77.3 cM) in KK2012 given photoperiod. d) PH QTL chr 
7 (76 cM) in GR2013 given photoperiod. e) PH QTL chr 7 (76 cM) in GR2013 given temperature range. f) Peduncle length QTL chr 7 (78 cM) in GR2013 given 
SVP. g) Illustration of the relationship between flowering time, PH, and photoperiod with influential genomic regions on the right side. Flowering time can 
be seen as a broken linear function with a constant baseline period and a photoperiod-sensitive period when time to flowering increases with 
photoperiod. Plants with early (late) flowering time due to an extended baseline period (Elf3) and/or an increased photoperiod sensitivity (Ma6, Ma1) 
become shorter (taller) due to the accumulation of fewer (more) internodes (Elf3, Ma6) whose average size (red arrow, qHT7.1, Dw3) is not influenced by 
the photoperiod. The peduncle length (green arrow) is also not photoperiod-sensitive (qHT7.1).
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respectively. The BimbG allele was positively influenced by hu-
midity, which increases its effect on PH in the more humid south-
west and reduces it in the drier northeast regions (Fig. 5b). 
Figure 5c illustrates the effect of VPD on the effect of the V33/08 
allele at QTL_PED_7_78 on PED extension. PED extension was re-
duced in the northeast drier regions, while it was increased in 
the more humid southwest part of Mali. We can emphasize that 
those 2 alleles react similarly to the environmental gradient by in-
creasing PH more in the southwest.

Discussion
The main objectives of this work were the introduction of a new 
sorghum genetic resource and a new statistical methodology to 
dissect QTLxE interactions. Here, we emphasize the properties 
of the Western and Central Africa BCNAM design and of the pro-
posed statistical methodology, which constitute a lever to support 
the development of improved varieties. Although grain yield and 
GWGH have been analyzed, only a limited set of QTL and 
QTLxEC interactions have been identified for those traits. This 

likely results from a lack of power due to a too small set of experi-
ments combined with moderate broad-sense heritability of these 
traits. In this context, the final sections of the discussion are fo-
cused on flowering time and PH, 2 traits well recognized as key 
components of the adaptation to local abiotic conditions 
(Buckler et al. 2009; Moles et al. 2009).

Multireference BCNAM design properties
A major contribution of this work is the development of a new sor-
ghum genetic resource taking the form of a multireference 
BCNAM design. Its usefulness can be evaluated given criteria 
like genetic diversity, mapping power and resolution, and poten-
tial for genetic gains. In terms of diversity exploration, the use of 
3 recurrent parents instead of one, as in almost all the (BC)NAM 
populations, substantially increases the exploitable genetic diver-
sity. This extra diversity increases the contrast between the recur-
rent and the donor parent, which should help to detect significant 
genetic regions and estimate their environmental sensitivity.

In terms of QTL detection, the usefulness of a design can be 
evaluated in terms of detection power, capacity to estimate and 

Fig. 5. Extrapolating the QTL by EC at the Malian scale a) map of Mali with testing locations and neighboring areas of projection. b and c) Projections of 
additive QTL allelic effects given allelic sensitivity and new VPD and humidity conditions. The effect must be interpreted as the deviation with respect to 
the central parent in the environment with the lowest EC value. QTL positions: b) QTL_PH_7_76 BimbG×humidity; and c) QTL_PED_7_78 V33/08×VPD. The 
projections were obtained by substituting observed environmental covariables in a grid of 60 points of the Malian environment in QTL allele sensitivity 
equations.
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trace the QTL effect, and mapping resolution. The power gain 
offered by the NAM design compared to biparental populations 
(Li et al. 2011) or association panels (Bouchet et al. 2017) has al-
ready been demonstrated. This should also be valid for our popu-
lation. The most relevant advantage of a multireference BCNAM 
design is the possibility to test allelic effects in several genetic 
backgrounds. Similarly to Christopher et al. (2021), we show that 
the parent allelic effect can be strongly modulated by the genetic 
background (Fig. 3). More generally, in terms of QTL effect charac-
terization, MPPs like the (BC)NAM designs increase the allele fre-
quencies and allow the user to trace back the allelic effect to a 
specific parent (Myles et al. 2009). Analyzed properly, such data al-
low the precise estimation of the parental allelic effect, which is 
fundamental for breeding applications.

The main disadvantage of the (BC)NAM design is the low map-
ping resolution compared to designs involving further intercross-
ing like MAGIC (Klasen et al. 2012). Even though the (BC)NAM 
design involves more recombination than biparental populations, 
the recombinations are still restricted within a cross, which con-
siderably extends the linkage disequilibrium decay (Garin et al. 
2021). The combination of our design with strategies like 
RapMap (Zhang et al. 2021) could improve the resolution. In terms 
of genetic gain, Bernardo (2021) showed that populations like 
MAGIC do not have a significant advantage compared to multiple 
cross populations like the BCNAM. Designs like the (BC)NAM 
population can also increase the prediction ability of untested 
lines in genomic selection schemes due to the genetic relatedness 
between lines composing the population (Lehermeier et al. 2014).

A last question related to the multireference BCNAM design op-
timization is the need to cross all donor parents to the recurrent 
parents (full factorial) or only a subset. On the one hand, by per-
forming all crosses we improve our ability to estimate QTL allelic 
effects in multiple genetic backgrounds and determine the stabil-
ity of those effects. On the other hand, given a fixed total popula-
tion size, the use of a partial factorial design could increase the 
individual cross sizes, which increases the QTL detection power 
(Garin et al. 2021). Reducing the number of crosses per parent 
could also increase the number of parents included in the design 
and therefore the addressed genetic diversity. Given that the esti-
mation of the QTL effect is conditioned by its detection, we con-
sider that performing only a selected number of crosses in a 
multireference (BC)NAM design could be an interesting strategy 
to increase the QTL detection power and/or diversity. More defini-
tive answers regarding the optimization of multireference BCNAM 
designs could be obtained by simulations.

Statistical methodology properties and 
limitations
In this work, we propose an approach allowing the integration of 
high-resolution environmental information in MPP-ME QTL ana-
lyses to improve our understanding of the GxE interaction. Few al-
ternative approaches analyze this kind of data (e.g. De Walsche et al. 
2023). We propose a sequential strategy to identify parental alleles 
exhibiting GxE interactions and decompose them into environmen-
tal covariate sensitivity curves. We used a mixed model with un-
structured VCOV structure to control for the genetic (co)variance 
and performed an approximate model estimation for the QTL 
scan. However, we performed an exact model estimation of the 
QTL effects and their interaction with the environment. Such a joint 
effect estimation could be more precise than the meta-analysis of a 
single environment proposed by De Walsche et al. (2023).

The main limitation to illustrate our approach was the number 
of available environments, especially for the QTLxEC sensitivity 

estimation. Even if the selected environments cover a broad vari-
ability, their reduced number limits the statistical inference of our 
models. From a general point of view, 2 environments are suffi-
cient to estimate QTL effect variations. However, our extension 
of the QTLxE effect to estimate its sensitivity to the environmental 
covariates requires that each genotype be observed in a number of 
conditions that are large enough to estimate the sensitivity curve 
parameters. Statistically, the available degrees of freedom to esti-
mate the α̂p and Ŝp terms are equal to Nenv − 2. This forced us to 
test for a maximum of 1 EC at a time, and to interpret our results 
with caution. Our strategy still allowed us to establish whether the 
QTL environmental variation could be explained by some of the 
ECs, but it was often difficult to make precise distinctions between 
several ECs showing similar degrees of correlation with the QTL 
effect variation.

The combination of genetic analysis and crop modeling is an al-
ternative and complementary approach. The construction of a 
genotype-to-phenotype (G2P) set-up integrating QTL expression 
of crop model parameters potentially allows the extrapolation of 
the QTL effect to any environment (Reymond et al. 2003). Such a 
G2P set-up can support the design of new ideotypes (Gu et al. 
2014), and the prediction of new genotype behavior in future cli-
mate scenarios (Kadam et al. 2019). This strategy builds on the 
knowledge accumulated in the crop model to reconstruct the 
GxE interaction, while our QTLxEC approach is based on less com-
plex physiological relationships derived from observed data that 
make the prediction dependent on the observed conditions 
(Bustos-Korts et al. 2016). However, the success of the G2P ap-
proach is based on the identification of less complex physiological 
mechanisms that are stable across environments (Tardieu 2003). 
The crop model parameters are often difficult to phenotype and 
require controlled environments that strongly differ from natural 
conditions (Gu et al. 2014).

Variations in flowering time genetic architecture 
and its GxE component
Our method helped us to gain insight into the genetic architecture 
of flowering time in the emerging C4 model sorghum. Our results 
showed that, in this experimental design, flowering time was con-
trolled by 3–4 QTL with very strong effects. Those effects were 
consistent in most of the genetic backgrounds and environments 
but could be strongly modulated by ECs, especially the photo-
period. Those observations strongly contrast with those of Mace 
et al. (2013), who observed that flowering time was controlled by 
many small loci with a low proportion of GxE due to the tempera-
ture rather than the photoperiod.

Despite important similarities with Mace et al. (2013), like the 
use of a similar BCNAM design covering a large genetic diversity 
and the characterization in a large spectrum of environments pro-
ducing important phenotypic differences, the selection applied 
during the population development and the statistical method-
ology can explain observed differences. Compared to us, Mace 
et al. (2013) applied a stronger control of the flowering time range 
during the development of their population. They considered that 
this selection strongly reduced the effect of important genes in-
volved in the photoperiod pathway like Ma1, which can explain 
why most of the detected genomic regions were involved in the 
temperature pathway and the reduction of the observed GxE 
interaction. Our moderate control of flowering time certainly al-
lowed the preservation of strong allelic effects involved in the 
photoperiod pathway.

Next to the differences in selection pressure, we also want to 
emphasize the difference in terms of statistical approach used. 
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We estimated models using within-environment adjusted means, 
while Mace et al. (2013) used across-environment adjusted means 
which do not allow the estimation of QTLxE effects (Garin et al. 
2020). Even though we estimated a strong heritability for flowering 
time, which as in Mace et al. (2013) indicates a low level of GxE, our 
QTLxEC model still allowed us to detect important modulation of 
QTL effects by ECs like the photoperiod.

Using our QTLxEC models, we could further characterize the 
genetic basis of flowering time. For example, we could illustrate 
the photoperiod-insensitive nature of QTL_3_FL_78 (Elf3; same re-
sult as Guitton et al. 2018) and QTL_FL_9_105 (SbFL9.1) which only 
influenced the baseline duration. On the other hand, the QTL on 
chromosome 6 (QTL_FL_6_3 and QTL_FL_6_38) linked to the Ma6 
and Ma1 regions influenced the baseline flowering duration, but 
also had effects influenced by the photoperiod, which makes 
them a source of photoperiod sensitivity (Fig. 4g). QTL_FL_6_3 
(Ma6) was mostly influenced by the radiation covariables (photo-
period, observed hours of sun, and solar radiation), which support 
the hypothesis of Ma6 being part of the photoperiod pathway 
(Takai et al. 2012). Concerning the Ma6 region, we should also em-
phasize that, according to the original hypothesis of Rooney 
(1999), it is supposed to influence flowering time in an epistatic 
way with the Ma5 gene, located on chromosome 2 (Mace and 
Jordan 2010). We detected a strong signal in the region of Ma6, 
but only a mild signal on chromosome 2 (Ma5 region) in the GR sub-
population tested in 2012. This absence of signal on chromosome 2 
could be due to a fixation of the Ma5 gene to the favorable allele in 
our subpopulations, or to the fact that in our population Ma6 most-
ly affects flowering time independently of other genomic regions.

Finally, we observed that QTL_FL_6_38 (Ma1) was significantly 
influenced by both photoperiod-related ECs and the temperature 
range. In our trials, the temperature range was strongly influ-
enced by the sowing date (i.e. the photoperiod), therefore it is dif-
ficult to disentangle their respective effects. We still hypothesize 
that QTL_FL_6_38 (Ma1) is part of the photoperiod pathway 
(Childs et al. 1997; Rooney 1999; Higgins et al. 2014), but it is pos-
sible that temperature also influences this genomic region.

PH components and their interactions with the 
environment
Our genetic resources and methodology helped us to gain knowl-
edge about genetic regions strongly influencing PH. We showed 
that, in the considered design, PH was almost exclusively 
influenced by 2 QTL on chromosome 7 (QTL_PH_7_76 and 
QTL_PH_7_106). Those QTL cover the regions of the previously 
identified candidate genes qHT7.1 and Dw3 (Li et al. 2015; Bouchet 
et al. 2017). The decomposition of PH into the number and length 
of internodes, peduncle length, and panicle length showed that 
PH is controlled by phenology-dependent mechanisms influencing 
the number of internodes and phenology-independent genes con-
trolling the length of the internode. The colocalization of QTL for 
the number of internodes and flag leaf appearance on chromosome 
3 (QTL_FL_3_78 and QTL_NN_3_78) and 6 (QTL_FL_6_3 and 
QTL_NN_6_3) illustrates the connection of PH and plant cycle via 
the potential pleiotropic action of the Elf3 candidate gene region 
Ma6, and to a lesser extent Ma1. The genetic association between 
flowering time and the number of internodes makes sense because 
internode organogenesis is a function of the plant cycle (Takai et al. 
2012; Fig. 4g). Given sufficient nutrients, longer maturity allows the 
plant to accumulate more internodes.

Other important genetic determinants of PH were located on 
chromosome 7 with very strong effects on the length of the inter-
node (QTL_NL_7_78 and QTL_NL_7_98) and on the peduncle 

length (QTL_PED_7_78). Our data support the results of Li et al. 
(2015) concerning the existence of 2 distinct genes (qHT7.1 and 
Dw3) because the QTL effects of chromosome 7 were detected at 
different positions (around 75 cM and 100 cM) in different popula-
tions. The phenotypic effects of those positions were also consist-
ent with the observations of Li et al. (2015) because the 75 cM 
position influenced both internode length and peduncle length, 
while the 100 cM position only influenced internode length. The 
genomic region controlling the length of the internode and the 
peduncle length interacted significantly with a large number of 
ECs. Contrary to the flowering time QTL, the QTLxEC pattern 
was more heterogeneous with parental alleles interacting with 
drought-related ECs like VPD, SVP, and humidity- or temperature- 
related ECs like minimum temperature or cumulated degree days. 
The sensitivity of sorghum peduncle length to humidity was al-
ready detected by Klein et al. (2001).

Developing climate-smart varieties
The precise characterization of the genetic architecture of flower-
ing time and PH for given environmental constraints could sup-
port the development of climate-smart varieties. We showed 
that adaptation mechanisms are controlled by large effects of 
QTL related to identified genes and candidate genes, but, like 
other studies, our analyses revealed that the effects of those 
QTL positions were distributed over many parental alleles with 
differences of expression given the genetic background (Mace 
et al. 2013; Higgins et al. 2014; Christopher et al. 2021). The possibil-
ity of estimating a wide range of parental effects in the 
WCA-BCNAM population enables the use of allelic effects for dif-
ferent breeding applications. For example, changing the duration 
of the cycle without affecting the photoperiod sensitivity (e.g. 
QTL_FL_3_78 CSM417: −80 dd) or varying PH via the internode 
length independently of the environment (e.g. QTL_NL_7_78 
IS23540: +3.1 cm). All results including QTL allelic effect sensitiv-
ity were compiled in an R application (sorghum QTL effects - SQE) 
to facilitate their use by geneticists and sorghum breeders (https:// 
github.com/vincentgarin/SQE).

Conclusion
We present here a large multireference BCNAM design with un-
precedented coverage of the sorghum genetic diversity of WCA. 
We developed a multiparent multi-environment QTL method-
ology that was applied to analyses of flowering time and PH that 
allowed us to confirm the existence of genomic regions with 
strong effects, like Ma1, Ma6, or Dw3. The integration of ECs in 
the QTLxE detection model allowed the identification of genomic 
regions covering Ma6 and Ma1 that are photoperiod-sensitive, 
while the region on chromosome 3 covering the possible candi-
date gene Elf3 is photoperiod-insensitive. We also reached a better 
understanding of PH construction through the identification of 
photoperiod-insensitive regions impacting the number of inter-
nodes (Elf3) and the internode size (dw3, qHT7.1) and 
photoperiod-sensitive regions contributing to the number of inter-
nodes (Ma1).

Data availability
The genotypic and phenotypic data are available here https://doi. 
org/10.18167/DVN1/TZVGLS. The scripts to reproduce the results 
are available here https://gitlab.cirad.fr/agap/giv/sorghum_ 
bcnam_analysis. The results were gathered into an interactive 
database available here https://github.com/vincentgarin/SQE. 
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For plant material, please contact the corresponding authors for 
availability.

Supplemental material available at GENETICS online.
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