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Abstract
Purpose  To determine correlations between chemicals in follicular fluid (FF) and follicular reproductive hormone levels.
Methods  The analysis was part of a larger cohort study to determine associations between exposure to EDCs and in vitro fer-
tilization (IVF) outcomes. FF was aspirated from a single leading follicle per participant. Demographics and data on exposure 
to EDCs were self-reported by the participants using a questionnaire. The concentrations of estradiol (E2), progesterone (PG), 
anti-Mullerian hormone (AMH), and inhibin B, as well as that of 12 phthalate metabolites and 12 phenolic chemicals were 
measured in each FF sample. Multivariate linear regression model was used to identify the drivers of hormone levels based 
on participant’s age, BMI, smoking status, and chemical exposure for the monitored chemicals detected in more than 50% 
of the samples. Benjamini–Hochberg false discovery rate (FDR) correction was applied on the resulting p values (q value).
Results  FF samples were obtained from 72 women (mean age 30.9 years). Most of the phthalates and phenolic substances 
monitored (21/24, 88%) were identified in FF. Ten compounds (7 phthalate metabolites, 3 phenols) were found in more 
than 50% of samples. In addition, there were positive associations between E2 levels and mono-n-butyl phthalate (MnBP) 
(beta = 0.01) and mono-isobutyl phthalate (MiBP) (beta = 0.03) levels (q value < 0.05).
Conclusion  Higher concentrations of several phthalate metabolites, present among others in personal care products, were 
associated with increased E2 levels in FF. The results emphasize the need to further investigate the mechanisms of action of 
such EDCs on hormonal cyclicity and fertility in women.
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Introduction

The follicular fluid (FF) microenvironment regulates oocyte 
quality, maturation, and subsequent embryonic devel-
opment. Hormones play a crucial role in signaling and 

regulating folliculogenesis, enabling the development of 
mature oocytes [1]. For this reason, even the slightest endo-
crine disruption may alter the delicate hormonal balance 
during oocyte maturation and affect fertility.
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Phthalates, as well as many phenolic substances (includ-
ing bisphenols and benzophenones), are confirmed or sus-
pected endocrine-disrupting chemicals (EDCs) present in 
food and everyday consumer products [2–6]. The most com-
mon sources of exposure to these chemicals include personal 
care products, medical devices, thermal receipts, and food 
packaging materials [5, 6]. Personal care products, includ-
ing cosmetics, may be of particular concern for women of 
reproductive age. These ubiquitous compounds have been 
linked to adverse human health effects [7–10].

Several studies have shown a negative association 
between urinary levels of EDCs among women undergo-
ing in vitro fertilization (IVF) and impaired cycle outcomes 
[11–15]. However, possible associations between levels of 
EDCs in FF and reproductive outcomes have rarely been 
addressed [16]. Limited research using both in vivo and 
in vitro models has provided evidence that some EDCs may 
alter the FF milieu, including alterations in the steroid pro-
file. Changes in steroid hormone synthesis can contribute 
substantially to adverse reproductive effects linked with 
exposure to specific EDCs [17–19].

To expand on our understanding of this important area of 
study, in this investigation, we sought to determine correla-
tions between chemicals in FF and follicular reproductive 
hormone levels.

Materials and methods

The study was approved by our hospital’s Institutional 
Review Board (SMC 6140/19). All participants provided 
written informed consent upon enrollment.

The present study included women from a prospective 
preconception cohort, designed to determine associations 
between exposure to endocrine disruptor chemicals and IVF 
outcomes [13, 18]. Participants were enrolled from January 
2014 to August 2016. The study recruited women aged 19 
to 38 years, undergoing a first to fifth IVF treatment due 
to male factor, unexplained infertility, or preimplantation 
genetic testing for monogenic disorders (PGT-M) of auto-
somal recessive diseases. Patients with diminished ovarian 
reserve according to the Bologna criteria, endometriosis, 
polycystic ovary syndrome (PCOS), or those who were 
oocyte donors were excluded [20].

The participants’ age, body mass index (BMI), smoking 
status, infertility diagnosis, number of previous pregnancies 
and deliveries, number of IVF attempts, length of stimula-
tion, total dose of gonadotropins, and number of oocytes 
retrieved and embryo quality were obtained from patients’ 
medical records.

All patients were treated with a gonadotropin-releasing 
hormone (GnRH) antagonist protocol. FF (without dilut-
ing fluid) was aspirated from a single leading follicle per 

participant (diameter 17–20 mm) during oocyte retrieval 
in one IVF cycle. In order to exclude possible confound-
ers associated with oocyte maturation status, only FF from 
follicles that contained MII oocytes were included in the 
analysis. Day 3 top quality embryos was defined as those 
with 7–8 equal cells and < 10% of fragmentations [21, 22].

Following collection of the oocyte, the FF was centri-
fuged at 500 g for 15 min. at 4 °C for separation of cellular 
from the FF. The FF supernatants were collected and kept 
at − 80 °C until the hormonal analysis.

The concentration of four reproductive hormones, estra-
diol (E2), progesterone (PG), anti- Mullerian hormone 
(AMH), and inhibin B, were measured in the FF samples.

Estradiol was measured using a solid-phase, competitive 
chemiluminescent enzyme immunoassay kit (ADVIA Cen-
taur XP, Siemens Healthcare Diagnostics, Inc. Tarrytown, 
NY, USA). The assay’s functional sensitivity is 69.8 pmol/L, 
and the intra- and inter-assay coefficient of variation (CV) 
ranges are 2.3–11.1% and 3.0–13.3%, respectively.

Progesterone was measured using a solid-phase, competi-
tive chemiluminescent enzyme immunoassay kit (Immulite 
2000, Siemens Healthcare Diagnostics Products Ltd., United 
Kingdom). The assay’s functional sensitivity is 0.64 nmol/L, 
and the intra- and inter-assay CV ranges are 7–17.4% and 
9.5–21.7%, respectively.

AMH and inhibin B concentrations were measured using 
AMH Gen II enzyme-linked immunosorbent assay (ELISA) 
and inhibin B Gen II ELISA kits (Beckman Coulter, Fuller-
ton, CA, USA) according to the manufacturer’s instructions. 
For AMH, the assay range (standard curve) is 0.16–22.5 ng/
ml, and the inter- and intra-assay CV were ≤ 10.8% 
and ≤ 10.3%, respectively. For inhibin B, the assay range 
(standard curve) is 10–1000 pg/ml, and the inter- and intra-
assay CV were ≤ 6.6% and ≤ 5.6%, respectively.

FF samples were shipped to the National Science Foun-
dation (NSF, Ann Arbor, MI, USA) on dry ice. The con-
centrations of 12 phthalate metabolites were measured: (1) 
mono-benzyl phthalate (MBzP); (2) mono (3-carboxypro-
pyl) phthalate (MCPP); (3) mono-(2-ethyl-5-carboxypentyl) 
phthalate (mECPP); di-(2-ethylhexyl) phthalate (DEHP) 
metabolites: (4) (2-ethylhexyl) phthalate (MEHP) and 
(5) mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP); 
(6) mono (2-ethyl-5-oxohexyl) phthalate (MEOHP); (7) 
monoethyl phthalate (MEP); (8) mono-isobutyl phthalate 
(MiBP); (9) mono-isononyl phthalate (MiNP); (10) mono-
n-butyl phthalate (MnBP); (11) monocarboxyoctyl phtha-
late (MCOMHP); and (12) monocarboxy-isononyl phthalate 
(MCOMOP).

The levels of 12 phenolic substances were also measured 
in the FF: (1) 2,4-dichlorophenol (DCP24); (2) 2,5-dichloro-
phenol (DCP25); (3) benzophenone-3 (BP-3); (4) bisphenol 
F (BPF); (5) bisphenol A (BPA); (6) bisphenol S (BPS); (7) 
butyl paraben (BPB); (8) ethyl paraben (EPB); (9) methyl 
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paraben (MPB); (10) propyl paraben (PPB); (11) triclocar-
ban (TCC); and (12) triclosan.

The NSF developed the analytical strategy based on that 
of the Centers for Disease Control and Prevention (CDC). 
The analysis was performed by solid-phase extraction in 
conjunction with high-performance liquid chromatography-
isotope dilution tandem mass spectrometry and adhered to 
accepted quality assurance/quality control practices. Con-
centrations below the limit of detection (LOD) were assessed 
using instrumental reading values.

Statistical analysis

To analyze the associations between chemicals and hor-
mones, we used multivariate linear regressions to pre-
dict the hormone levels based on each chemical, adjust-
ing for the participants’ age, BMI, and smoking status. 
Each model separately examined one chemical (out of ten 
chemicals whose concentration was above LOD (limit of 
detection) in > 50% of the samples) to one hormone (out of 
four hormones). Benjamini–Hochberg false discovery rate 
(FDR) correction was applied (Benjamini and Hochberg, 
1995) to correct multi-hypotheses. Statistical significance 
was set at a p value < 0.05. For multiple comparisons, q 
value < 0.05 was set.

Results

We analyzed FF samples from 72 women with a mean age 
of 30.9 ± 3.5 years and a mean BMI of 23.1 ± 4.4 kg/m2. 
About two-thirds of the participants (63.8%) underwent their 
first IVF cycle at the time of FF collection. Thirty women 
underwent PGT-M. Participant demographic and clinical 
characteristics are detailed in Table 1.

Ten chemicals were detected in at least 50% of the sam-
ples (Table 2), including three phenolic substances: one 
benzophenone and two parabens (BP3; MPB and PPB) and 

seven phthalate metabolites (MBzP, MCOMHP, MCOMOP, 
mECPP, MEP, MiBP, and MnBP).

The mean ± SD (range) FF concentrations were 
2.2 ± 1.1 µmol/L (range 0–5.3) and 32.2 ± 10.8 µmol/l (range 
5.9–55.0) for estradiol and progesterone, respectively. The 
mean ± SD (range) concentrations were 3.1 + 2.2 ng/ml 
(range 0.5–15.1) and 41.02 ± 31.4 ng/ml (range 5.01–163.8) 
for AMH, and Inhibin-B, respectively.

Higher MiBP and MnBP levels were statistically sig-
nificantly associated with higher levels of E2. The results 
are described in Table 3. Supplemental Table 1 shows the 
non-significant associations between estradiol levels and 
FF chemicals. No other significant associations were found 
between the other FF hormone tested (progesterone, AMH 
and inhibin B) levels and FF chemicals tested.

Further separate linear regressions were performed to test 
possible associations between FF hormone levels and FF 
chemicals in subgroups of: (1) FF from patients undergo-
ing PGT-M vs. infertile women and FF chemical hormone 
levels, (2) FF from patients undergoing their first IVF cycle 
and FF from women undergoing their 2–5 IVF cycles, (3) 
FF that yielded day 3 top quality embryos vs. non top quality 
embryos. The results were null.

Discussion

Out of 24 chemicals tested, 21 were detected in at least one 
FF sample, which included phthalate metabolites, bisphe-
nols, parabens, and chlorophenols. The occurrence of sev-
eral contaminants in FF was found to be low, notably for 
chlorophenols and TCC. The detection rates of BPA (6% of 
samples) and closely related analogs, were also low, which 
may be because bisphenols have relatively short half-lives in 
mammals, and because volunteers participating in this study 
fasted for several hours before sampling. Of note, 39% of the 
samples were still positive for BPB. Although the impact of 
this specific bisphenol has yet to be sufficiently documented, 

Table 1   Demographic and 
clinical characteristics of the 
study population

Variable Participants 
n = 72
Mean ± standard deviation (range)

Age (years) 30. 9 ± 3.6 (19.3–37.6)
Body mass index (kg/m2) 23.1 ± 4.4 (16.3–37.3)
Gravidity (number of pregnancies) 0.9 ± 1.1 (0–5)
Parity (number of deliveries) 0.5 ± 0.7 (0–3)
Number of in vitro fertilization attempts (n) 1.6 ± 0.9 (1–5)
FSH dose (IU) 1740 ± 743 (750–5250)
Days of stimulation (n) 9.8 ± 2.0 (6–16)
Oocytes retrieved (n) 9.2 ± 5.3 (2–27)
Years of education (years) 15.4 ± 2.78 (12–23)
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it was previously established that BPB possesses endocrine-
disrupting properties and can impact steroidogenesis [23, 
24]. Our findings demonstrate the presence of this substance 
in FF for a significant proportion of the studied population.

Our results indicate a positive association between two 
phthalate metabolites (MiBP, MnBP) and E2 levels. The 
associations between chemicals and follicular hormone 
levels might be of concern as oocytes are exposed to these 
chemicals during oocyte maturation, which is a critical step 
in oogenesis [25, 26].

In another study that examined possible correlations 
between phthalate metabolites and hormone levels in FF, 
monomethyl phthalate (MMP), which was not measured in 
the current study, was inversely associated with estradiol, 
progesterone, and testosterone levels. MBP and MEHHP 

were positively correlated with estradiol, progesterone, and 
testosterone levels [16]. In contrast with Du et al.’s study, we 
found no correlation between MBzP or MEP and hormone 
levels in FF. The difference in the results might be attributed 
to various statistical approaches, different study populations, 
and protocols. Over 67% of the women in Du et al.’s study 
were treated with a GnRH agonist long protocol, and 99% 
were non-smokers. In our study, all women were treated with a 
GnRH antagonist protocol, and 26.4% were smokers. In addi-
tion, while we excluded patients with polycystic ovary syn-
drome due to possibly different reproductive hormone levels, 
especially AMH, women with this syndrome were included in 
Du et al.’s cohort. In addition, inclusion criteria in Du et al.’s 
cohort consisted of FF from follicles > 18 mm. Consequently, 
some of the oocytes retrieved may have been immature, and 

Table 2   Chemical detection rate 
(µg/l) of phenols and phthalate 
metabolites in FF

Chemical LOD (µg/l) Number of samples > LOD (%) in 
the study population

Median (range [min–max])

DCP24 0.2 2 (3%) 0.06 (0.001–0.4)
DCP25 0.2 10 (14%) 0.04 (0.00–1.38)
BP3 0.4 38 (53%) 0.42 (0.15–12.45)
BPA 0.4 4 (6%) 0.21 (0.00–0.56)
BPF 0.4 2 (3%) 0.00 (0.00–1.81)
BPS 0.4 0 0.04 (0.00–0.25)
BPB 0.2 28 (39%) 0.15 (0.00–2.83)
EPB 1 26 (36%) 0.64 (0.15–8.45)
MPB 1 61 (85%) 2.92 (0.29–73.24)
PPB 0.2 39 (54%) 0.22 (0.00–13.85)
TCC​ 2 0 0.00 (0.00–0.78)
Triclosan 2 20 (28%) 0.46 (0.18–33.08)
MBzP 0.2 66 (92%) 0.52 (0.08–5.39)
MCOMHP 0.2 70 (97%) 0.54 (0.14–6.76)
MCOMOP 0.2 60 (83%) 0.26 (0.08–0.97)
MCPP 0.2 2 (3%) 0.00 (0.00–0.63)
mECPP 0.2 69 (96%) 0.49 (0.02–2.59)
MEHHP 0.1 27 (38%) 0.08 (0.00–0.34)
MEHP 1 25 (35%) 0.77 (0.01–46.82)
MEOHP 0.1 9 (13%) 0.04 (0.00–0.5)
MEP 1 53 (74%) 1.62 (0.07–22.98)
MiBP 0.2 61 (85%) 0.95 (0.01–75.25)
mlNP 0.5 0 0.08 (0.00–0.29)
MnBP 0.5 67 (93%) 1.72 (0.18–344.01)

Table 3   Statistically significant multivariate linear regression and association with estradiol levels

Predicted 
hormone

Intercept (p value) Chemical name; beta
(p value)

Age
(p value)

BMI beta
(p value)

Smoking status 
beta (p value)

Model R2 (RMSE) Model p value
(q value)

E2 2.40 (0.09) MiBP; 0.03 (< 0.04) –0.04 (0.32) 0.03 (0.32) 0.79 (0.01) 0.15 (0.99) 0.009
(0.018)

E2 2.44 (0.08) MnBP; 0.01 (0.05) –0.03 (0.41) 0.02 (0.4) 0.7 (0.02) 0.1 (1.02) 0.03
(0.03)
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therefore, their reproductive hormone profile may have been 
different. In contrast, our study included only mature oocytes.

Of note, in addition to our focus on significant substances 
of concern about potential EDC effects, our study has several 
strengths concerning the IVF protocol. Study participants were 
treated at a single division by the same IVF protocol (thereby 
preventing potential varied effects of ovarian stimulation on 
hormones in FF) and with a uniform method for FF collection 
following strict protocols. Moreover, only FF from follicles 
that contained mature oocytes were analyzed to overcome pos-
sible confounders of oocyte maturation status on reproduc-
tive hormone levels. However, it would have been interesting 
to understand if FF EDC levels correlated with immature or 
degenerate oocytes.

Our findings are constrained by the relatively small sam-
ple size (n = 72), which may have prevented us from finding 
more correlations between chemical metabolites and hormone 
levels. As this study was a further analysis of a larger study 
(n = 136), the number of FF aliquots left for this analysis was 
limited. In addition, FF was collected from fasting women, 
and it is possible that the levels do not accurately reflect the 
levels in the general population. As we supposed that infertile 
women might be more prone to EDC damage, we included 
both infertile women and fertile women undergoing PGT-M 
for the diagnosis of autosomal recessive disease or undergoing 
IVF for male factor infertility.

Conclusions

Increased concentrations of selected phthalate metabolites 
were correlated with increased E2 levels in FF. The results 
highlight the possible effects of EDCs on folliculogenesis 
and oocyte development and emphasize the need for further 
research on the mechanism of action of EDCs on the hormonal 
cycle of female fertility.
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