

20 - 23 September 2021

Towards an ontology-based decision support system for the design of emulsion based cosmetic products

Juliana Serna Jose-Luis Rivera-Gil Alex Gabriel Javier A. Arrieta-Escobar Vincent Boly Véronique Falk Paulo César Narváez Rincón

Trends in chemical products engineering

Research in Chemical product

Hegedus, L. L. (2005). Chemical engineering research of the future: An industrial perspective. *AIChE Journal*, *51*(7), 1870–1871.

Context

Trends in the chemical industry					
Commodities	Produits chimiques de performance	Produits chimiques spécialisés et de consommation			

Produits moléculaires	Produits formulés		
Volume élevé - Faible coût	Faible volume - haute qualité		

Big Companies

Conception axée sur les procédés

Opportunités pour les PME

conception axée sur le produit

Some market trends

CHEMICAL SECTOR

Source: Cefic Chemdata International 2020

Unless specified, chemical industry excludes pharmaceuticals

(1) Cefic Facts and Figures 2021

of VSEs and SMEs

(2) https://www.loreal-finance.com/(3) febea.fr

Comparison: chemical process and product design

COMMODITIES/PROCESS DESIGN

- Raw materials and chemical routes selection
- Purity and selectivity
- Process intensification
- Energy integration

FORMULATED PRODUCTS/PRODUCT DESIGN

- From needs to specification
- Ingredient's selection
- Ingredients-process synergy
- Scale-up restrictions

- 1. https://www.icis.com/explore/resources/news/2021/03/12/10617016/eu-chemicals-need-stable-strong-regulatory-framework-to-grow-execs
- 2. Gani, R., & Ng, K. M. (2015). Product design Molecules, devices, functional products, and formulated products.

Comparison: chemical process and product design

COMMODITIES/PROCESS DESIGN

- Raw materials and chemical routes selection
- Purity and selectivity
- Process intensification
- Energy integration

FORMULATED PRODUCTS/PRODUCT DESIGN

- From needs to specification
- Ingredient's selection
- Ingredients-process synergy
- Scale-up restrictions

Robust methodology for process design

Unit operations Thermodynamics Transport phenomena Systems thinking

Comparison: chemical process and product design

COMMODITIES/PROCESS DESIGN

- Raw materials and chemical routes selection
- Purity and selectivity
- Process intensification
- Energy integration

FORMULATED PRODUCTS/PRODUCT DESIGN

- From needs to specification
- Ingredient's selection
- Ingredients-process synergy
- Scale-up restrictions

Unit operations Thermodynamics Transport phenomena Systems thinking

Challenges in the design of formulated products

Challenges during formulation

Complexity. The design process is not sequential but iterative.

Product development is based on Know-how and staff experience.

There are many sources of information, and it is often incomplete

There is a high uncertainty in decisions, especially in early design stages

BtoC. Fuzzy target properties.

Formalization of the design of formulated products and associated data

Ontology : knowledge management approach

Ontology is "an explicit specification of a conceptualization" which is an abstract, simplified view of the world that is represented for some purpose. (1)

ADVANTAGES

Knowledge representation

Consistent and reliable knowledge representation

Industry 4.0

Knowledge valorization Digital application

Greater complexity

Designer teams, SEM, organizations Learning from experience

Our research: interdisciplinary and growing					

- Formulated products
- Consumer products
- Cosmetic products
- Multi- scale from an organizational point of view/ consideration of the design context.
- Holistic: from need análisis until producto formulation

Ontology : knowledge management approach

Ontology is "an explicit specification of a conceptualization" which is an abstract, simplified view of the world that is represented for some purpose ⁽¹⁾

ELEMENTS (2)

Individuals/instances

Objects in the domain in which we are interested

Property/slot/attribute

Object properties are relationships between two individuals. Datatype properties describe relationships between individuals and data values.

Class/concepts

Sets containing individuals

⁽¹⁾ Gabriel et al. 2016
⁽²⁾ Protégé OWL tutorial. University of Manchester

Ontology scope and contextualization

1. Scope, goal and competences definition

The scope of the ontology is the representation of the information and knowledge developed by our research group in chemical product design (1) (2). It comprises a flexible design workflow, ingredients and heuristic databases and developed study cases.

The goal is to create a system to assist the decision-making process during formulated product design and more specifically cosmetic product design.

It can be used in a near future for the development of decision support software for the design of formulated products, capable of

- a. Present and graphically represent relevant information based on a query of a user.
- b. Store information for specific developed cases
- c. Combine heuristic, strategies and ingredient information for decision making or recommendations.

13 properties for emollients

Ontology development

3. Development

Heuristic database:

Example (instance)	HeuristicType	deegreeOfGenerality	Product Property
Rheology: when not thickener polymer s used, the concentration of fatty alcohol is at least twice the cationic polymer in molar base	Ingredient	SpecificApplication: Hair Cream	RheologicalProfile
Sensorial: at least one emollient of each spreading type should be used: nigh, medium and low	IngredientProper ty: spreading	OWCosmeticEmulsion	Sensorial

Ontology development

Ontology example

4. Example of information from both databases

Call all heuristics related to the product hair conditioner

Product	Applicability	Description	Ingredientrelated	Product Characteristic
Hair condicioner	very specific [Hair conditioner]	O/W emulsion with 10 to 25% oily phase	oilyphase%	General
Hair condicioner	very specific [Hair conditioner]	Usually, cationic surfactants are used to control hair static	CationicSurfactant	Sensorial; Functional
Hair condicioner	veryspecific [Hair conditioner]	Combination of cationic surfactants and the sensory characteristics of conditioners	CationicSurfactant [Instance, %]	Sensorial [Moist and lubricating; Moist and soft; Soft and moist]
Hair condicioner	O/W Cosmetic emulsion	Ideal cream should have an "initial" viscosity n1 between 1350 and 3500 Pa.s and a "final" viscosity n2 between 0.023 and 0.500 Pa.s. Also, the "final" viscosity is perceived at a typical shear rate of ~500 s-1	Thickener[Instance, %];oilyphase;equatic n	Rheology [Rheological profile]
Hair condicioner	veryspecific [Hair conditioner]	when not thickener polymer is used, the concentration of fatty alcohol is at least twice the cationic polymer in molar base	Fattyalcohol, %	Rheology [Rheological profile]
Hair condicioner	O/W Cosmetic emulsion	A typical product specification is a greasiness value in the middle of the scale: between 2.0 and 2.4	Emollient,greasines s,%	Sensorial; greasiness
Hair condicioner	0/W Cosmetic emulsion	Cationic surfactants at about 20% of the oily phase, should stabilize the emulsion	CationicSurfactant, %	Stability
Hair condicioner	O/W Cosmetic emulsion	there should be two but not more than 3 cationic surfactants	CationicSurfactant	General
	0/W Cosmetic emulsion	at least one emollient of each type should be used: high, medium and low	Emollient,spreading, %	Sensorial;spreading

Ontology example

4. Example of information from both databases

Call information and represent it graphically	W/O	Polyglycerol ester - Polyglyceryl3 Diisostearate Polyglycerol ester - Polyglyceryl3 Oleate Monoglycerol esters - Glyceryl Oleate Alkylglucosides - Methyl Glucose Isostearate Sorbitans - Sorbitan trioleate Sorbitans - Sorbitan sesquioleate
		Fatty acid salt - Stearic Acid (and) Palmitic Acid POE Alkyl ethers - Steareth100 POE Alkyl ethers - Ceteareth20 Cream Lotion
Class: Surfactant	O/W	Polyglycerol ester - Polyglyceryl3 DistearateMonoglycerol esters - Glyceryl Stearate SEMonoglycerol esters - Glyceryl Stearate CitrateAlkylglucosides - Methyl Glucose SesquistearateAlkylglucosides - Cetearyl GlucosideSorbitans - Sorbitan LaurateSucrose ester - Sucrose StearateAlkyl sulfate - Sodium Cetearyl SulfatePolyethylene sorbitans - Polysorbate 60Polyethylene sorbitans - Polysorbate 80Polyethylene sorbitans - PEG100 StearatePOE Alkyl ethers - Steareth20POE Alkyl ethers - Steareth25Sulfosuccinates - Disodium CetearylSulfosuccinateAcylamino acid salts - Sodium Stearoyl Glutamate
	O/W and W/O	Monoglycerol esters - Glyceryl Stearate Sorbitans - Sorbitan Monopalmitate Sorbitans - Sorbitan Monostearate Sorbitans - Sorbitan isostearate POE Alkyl ethers - Steareth2 Sucrose ester - Sucrose Distearate

Ontology example

4. Example of information from both databases

Call information and represent it graphically

Class: Thickener

Ontology example

4. Example of information from both databases

Call all ingredients by property

Ex: low spreading

							1
Category	INCIName	Cost (USD/kg)	Greasines s*	RHLB	HLB	Hazard Index	Spreading
Emollient	Cetyl Dimethicone (very high viscosity, nonpolar)	35	3.2			1	Low spreading
Emollient	Dimethicone 1000 CSt	29.3	3.2	5		3	Low spreading
Emollient	Oleyl Erucate	23.9	2			1	Low spreading
Emollient	Persea Gratissima Oil	16.7	2	7		1	Low spreading
Emollient	PPG-14 Butyl Ether	23	3.2			1	Low spreading
Emollient	PPG-15 Stearyl Ether	21.75	2	7		1	Low spreading
							. 0
Emollient	Triisostearin	30	3.2	8		1	Low spreading

Conclusions

Chemical product design challenges

Complexity. The design process is not sequential but iterative. It is mostly based on expert knowledge

Formalization

It is necessary to structure knowledge and information for the design of formulated products.

Ontology for knowledge management

It is a versatile tool to represent knowledge that can be easily adapted, and expanded

It can be used to create digital applications

It can be used to search and represent specific data

Our Ontology

It represents the knowledge and information for formulated product design and cosmetic product design developed and gathered by our design team

It has been especially used to represent information from ingredient databases and heuristics.

The ontology organizes ingredients according to their functionality and chemical nature and characterizes them with properties relevant to their use in formulations

The ontology organizes ingredients according to their functionality and chemical nature and characterizes them with properties relevant to their use in formulations

The ontology organizes the heuristics according to the desired properties of the product and the ingredients and properties involved

The combined use of the two databases allows for a comprehensive view of the formulation possibilities.

1 Background	2. Methodology	3. Development	4.Results	5. Conclusions and perspectives

Perspectives

Figure 1 : Ontology – Ingredient data base

Figure 2 : Layaout of decision support software

Towards an ontology-based decision support system for the design of emulsion based cosmetic products

Bibliography

- Alex, G., Chavez, B. P., & Davy, M. (2019). Methodology to design ontologies from organizational models: Application to creativity workshops. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 33(2), 148–159. https://doi.org/10.1017/S0890060419000088
- Arrieta-Escobar, J. A., Camargo, M., Morel, L., Bernardo, F., Orjuela, A., & Wendling, L. (2020). Methodology for the Design of Formulated Products Incorporating Consumer Preferences and Heuristic Knowledge. https://doi.org/10.22541/au.158879155.54817449
- Chandrasegaran, S. K., Ramani, K., Sriram, R. D., Horváth, I., Bernard, A., Harik, R. F., & Gao, W. (2013). The evolution, challenges, and future of knowledge representation in product design systems. Computer-Aided Design, 45(2), 204–228.
- Cisternas, L. A., & Gálvez, E. D. (2006). Principles for Chemical Products Design. In W. Marquardt & C. Pantelides (Eds.), European Symposium on Computer Aided Process Engineering 16 (pp. 1107–1112).
- Serna, J., Narváez Rincón, P. C., Falk, V., Boly, V., & Camargo, M. (2021). A Methodology for Emulsion Design Based on Emulsion Science and Expert Knowledge. Part 1: Conceptual Approach. Industrial & Engineering Chemistry Research. https://doi.org/10.1021/acs.iecr.0c04942
- Zhang, L., Mao, H., Liu, Q., & Gani, R. (2020). Chemical product design recent advances and perspectives. Current Opinion in Chemical Engineering, 27(November 2019), 22–34. https://doi.org/10.1016/j.coche.2019.10.005