

Colégio Brasileiro de Reprodução Animal X INTERNATIONAL SYMPOSIUM ON ANIMAL **BIOLOGY OF REPRODUCTION**

July 1-2 2024 - Fortaleza, CE, Brazil

NRAC Bisphenol S chronic exposure interacted with ewe metabolic status to impair female reproduction

Lebachelier de la Riviere ME., Desmarchais A., Téteau O., Maillard V., Uzbekova S., Elis S. INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France

Bisphenol A (BPA), a plasticizer used in the food industry, is reported to be an estrogenomimetic endocrine **disruptor**¹, involved in deleterious effects on oocyte meiosis and maturation as well as in steroigegenesis impairment^{2,3}. BPA being regulated, structural analogs emerged including bisphenol S (BPS). Studies on fish and rodent species reported that BPS affects reproduction similarly to BPA⁴. Moreover, because metabolism affects the ovarian functioning, we hypothesized that the metabolic status could interact with the effects of environmental factors.

This study assessed BPS 50 µg/kg/d chronic exposure on oocyte quality, steroidogenesis and granulosa cell proteomic data

MATERIAL & METHODS

After hormonal oestrus synchronization

6

5

4

3

2

1

0

DIET MODEL VALIDATION

EMBRYO PRODUCTION DATA

FOLLICULAR STEROIDOME DATA

Significant effect of the interaction between estradiol.

Diet x

Significant effect of **diet x BPS dose interaction** for **cleaved embryos**, embryos with more than 4 cells, number of blastocysts and early blastocysts.

R0 vs R50

Effect of the interaction between metabolic status and BPS exposure most of the proteins corresponding to the effect of diet (21 and 30 proteins) **differ according** to exposure to BPS.

GUSB which is capable of deglucuronidating BPA, is overabundant after BPS exposure and could **prolonged** the **estrogenic** activity of BPS at the ovarian level. WF0 vs WF50 According to the literature and our data, GUSB expression increases with adiposity.

	Steroids	RO	R50	WFO	WF50	Diet effect	BPS effect	BPS effect	Compartment
I	17α-OH								Follicular
	PREG	38,4 ± 9,4 ^a	20,6 ± 4,9 ^{ab}	11,2 ± 5,1 ^b	23,3 ± 5,1 ^{ab}	0,07	0,65	0,03	Fluid
	PROG	$0,1 \pm 0,01^{a}$	0,06 ± 0,01 ^b	$0,04 \pm 0,01^{b}$	0,06 ± 0,01 ^{ab}	0,04	0,32	0,03	Plasma
	5α-DHT	0,2 ± 0,1 ^a	0,05 ± 0,02 ^b	0,08 ± 0,02 ^b	0,1 ± 0,01 ^b	0,08	0,01	0,001	Follicular Fluid Follicular
	Estradiol	92,3 ± 7,8 ^a	76,2 ± 12,9 ^a	36,4 ± 11,2 ^b	100,3 ± 24,1 ^a	0,34	0,16	0,02	Fluid
	E1	< 0,001 ^a	0,01 ± 0,01 ^b	0,01 ± 0,003 ^b	0,01 ± 0,001 ^b	0,42	0,46	0,01	Plasma

References: ¹Moreman et al., 2017. Environ. Sci. Technol. 2017, 51 (21): 12796–12805; ²Ma et al. 2019. Environmental Research 176: 108575 ; ³Grasselli et al. 2010. Domest. Anim. Endocrinol. 39 (1): 34-39 ; ⁴European Food Safety Authority, 2015. EFSA Journal 13; ⁵Desmarchais et al. 2022 Ecotoxicology and Environmental Safety 229: 113096 ; ⁶Téteau et al. 2022 Front. Endocrinol. 13: 892213

PPT1

CONCLUSIONS & PERSPECTIVES

The deleterious effects of BPS and its interaction with metabolic status indicate that its use in food packaging should be regulated. Our data also suggest that people with a high level of adiposity may be more sensitive to the effects of bisphenols^{5,6}.

