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Abstract 43 

Classical theories predict that relatively constant environments should generally favor 44 

specialists, while fluctuating environments should select for generalists. However, theoretical 45 

and empirical results have pointed out that generalist organisms might on the contrary perform 46 

poorly under fluctuations. In particular, if generalism is underlaid by phenotypic plasticity, 47 

performance of generalists should be modulated by the temporal characteristics of 48 

environmental fluctuations. Here, we used experiments in microcosms of Tetrahymena 49 

thermophila ciliates and a mathematical model to test whether the period or autocorrelation of 50 

thermal fluctuations mediate links between the level of generalism and the performance of 51 

organisms under fluctuations. In the experiment thermal fluctuations consistently impeded 52 

performance compared to constant conditions. However, the intensity of this effect depended 53 

on the level of generalism: while the more specialists strains performed better under fast or 54 

negatively autocorrelated fluctuations, plastic generalists performed better under slow or 55 

positively autocorrelated fluctuations. Our model suggests that these effects of fluctuations on 56 

organisms’ performance may result from a time delay in the expression of plasticity, restricting 57 

its benefits to slow-enough fluctuations. This study points out the need to further investigate 58 

the temporal dynamics of phenotypic plasticity to better predict its fitness consequences under 59 

environmental fluctuations. 60 

  61 
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Introduction 62 

Organisms inhabit environments that are constantly changing, leading to variations of selective 63 

pressures affecting their performance, and consequently their ecology and evolution [1]. Given 64 

the ubiquity of environmental fluctuations, understanding how organisms deal with such 65 

changing conditions has attracted much attention [2,3]. A common first step in this investigation 66 

process consists in quantifying tolerance curves, i.e., variations in how organisms perform 67 

across a gradient of environmental conditions [4–6]. Tolerance curves allow to place organisms 68 

on a continuum ranging from specialists to generalists depending on the breadth of 69 

environmental conditions they manage to live in (i.e., their niche width).  70 

Theory classically predicts that constant environments should favor specialists, while 71 

organisms able to tolerate a broader range of environmental conditions should be selected in 72 

fluctuating environments [7–11]. However, empirical and theoretical studies have revealed that 73 

generalism is not always favored under environmental fluctuations [1,6,12–14]. This 74 

discrepancy suggests that evolutionary strategies providing fitness benefits under constant 75 

conditions may be neutral or even disadvantageous in fluctuating environments, and conversely 76 

[5,6,11,15]. For instance, Botero and colleagues [11] showed that the evolution of adaptive 77 

mechanisms underlying tolerance curves (i.e., phenotypic plasticity, bet-hedging, adaptive 78 

tracking) should depend on the characteristics of environmental fluctuations, i.e., the 79 

predictability and timescale of fluctuations relative to generation time. Especially, phenotypic 80 

plasticity, the ability of a given genotype to produce multiple phenotypes depending on the 81 

environment, is classically considered to underlie the degree of generalism or organisms, and 82 

requires environmental changes to evolve [11,16–19].  83 

However, whether generalist organisms perform well in fluctuating environments 84 

should depend on the interaction between the characteristics of fluctuations and the mechanisms 85 

underlying generalism. In the case of phenotypic plasticity, implementing changes in trait 86 
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expression most often takes time and notably depends on the speed at which underlying 87 

mechanisms occurs  (i.e., the rate of plasticity; [20–26]). Consequently, if generalism results 88 

from adaptive plastic changes occurring at a rate below that of environmental fluctuations, 89 

generalist organisms might attain only low performance under temporally fluctuating 90 

conditions [6,13,20,25–27]. Although considered in some theoretical works (e.g., 91 

[19,20,28,29]), whether the rate of plastic changes could determine the effects of environmental 92 

fluctuations on how generalists and specialists perform remains experimentally unexplored 93 

[26]. 94 

In this study, we used experiments in microcosms and a mathematical model to explore 95 

how phenotypic plasticity affects the relationship between the degree of generalism and 96 

performance under thermal fluctuations. We performed experiments using 15 strains of the 97 

ciliate Tetrahymena thermophila that differ in their degree of thermal generalism and capacity 98 

of phenotypic plasticity for morphological and movement traits [30,31] (Figure 1). Cell 99 

morphology (cell size) was previously related to resource acquisition and metabolic rate in 100 

protists [32], while cell movement (velocity) tends to be associated with dispersal [33,34]. We 101 

first tested whether the strains' level of generalism correlated with morphological and 102 

movement plasticity. Then, each isolated strain was independently exposed to two fluctuation 103 

gradients: the first varied in the timescale of fluctuations (i.e., period) and the second in the 104 

temporal autocorrelation of fluctuations (i.e., as a proxy of predictability [2,18]; Figure 1A), 105 

with a timing of fluctuation centered on average generation time. Phenotypically-plastic 106 

generalists are expected to perform better under rapidly changing thermal conditions (i.e., low 107 

period), and to be favored by positively autocorrelated fluctuations (i.e., predictable) compared 108 

to less plastic genotypes. However, if phenotypic plasticity incurs time delays larger than the 109 

rate of environmental changes, fluctuations might become detrimental for plastic generalists 110 

[26]. Finally, we used a model to test whether effects of fluctuations on the performance of 111 
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specialists and generalists can result from a rate of plasticity. We incorporated the temporal 112 

dynamics of the plastic response into a simple model of tolerance to fluctuations and compared 113 

the predictions to the effects of fluctuations on performance found in the experiment. 114 

 115 

Methods 116 

Study system 117 

Tetrahymena thermophila is a 20 to 50μm ciliate naturally living in freshwater ponds and 118 

streams [35,36]. Previous studies provided evidence for differences between genotypes in 119 

thermal tolerance curves [30,31] and phenotypic plasticity of morphological and movements 120 

traits [30,31,37–39]. Moreover, thermal fluctuations are known in this species to affect 121 

population dynamics and the evolution of heat shock protein Hsp90 expression [40]. Here we 122 

used 15 strains originally sampled in the early 2000' from different locations in North America 123 

[41]. Isogenic strains reproduce clonally in laboratory conditions, meaning that for a given 124 

clonal strain, differences in trait values after two hours between replicated environmental 125 

conditions result from the expression of phenotypic plasticity [31,39,42]. Cells were maintained 126 

in axenic liquid growth media (0.6% Difco proteose peptone, 0.06% yeast extract) at 23°C, a 127 

classic laboratory maintenance condition for this species [43,44]. All manipulations were 128 

performed in sterile conditions under a laminar flow hood. 129 

 130 

Figure 1: Illustration of the key steps of the experimental design. Using 15 isolated strains of T. thermophila, 131 

we quantified (A) morphological and movement plasticity following two hours of exposure to a gradient of thermal 132 

conditions to reconstruct thermal reaction norms for each trait and (B) tolerance curves across constant 133 

temperatures. Colors in A) and B) illustrate a diversity of possible forms of plasticity and tolerance curves expected 134 

based on previous studies [30,31] (see Figure S1). The same 15 isolated strains were separately exposed for two 135 

weeks to gradients of either period (C1) or autocorrelation (C2) of thermal fluctuations (period: from 1 to 12 hours; 136 

autocorrelation: from -0.7 to 0.7 with changes every 3 hours; average generation time across genotypes and 137 
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temperatures: 3 to 8 hours). During the two weeks of thermal fluctuations, population growth was measured to 138 

quantify the effects of fluctuation period (D1) and autocorrelation (D2) on population growth (i.e., growth rate and 139 

maximal density).  140 

 141 
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 142 

Growth along gradients of fluctuation period and autocorrelation 143 

We quantified the influence of thermal fluctuations on the 15 isolated genotypes of T. 144 

thermophila by inoculating a small number of cells (~100) from each isolated strain into 250 145 

µL of growth media in 96-well plates, and exposing them for two weeks to treatments of 146 

different fluctuation period and autocorrelation (Figure 1).  147 

First, we quantified the role of fluctuation period by setting up a regime of alternating 148 

temperatures: 19 and 31°C, corresponding to the margins of 80% of the area under a Gaussian 149 

distribution representative of averaged thermal tolerance curve in this species [45]. We 150 

generated a gradient of fluctuation period from 1 to 12 hours (1, 2, 3, 4, 6, 8, 10, 12h; the 151 

average generation time of T. thermophila is ~3-8h in our experimental conditions [45] and 152 

depends on temperature; Fig. S1C). We performed three replicates per strain and fluctuating 153 

period. Second, we defined a gradient of fluctuation autocorrelation by generating time 154 

sequences where temperature changed every 3h, was distributed following a Gaussian 155 

distribution of mean 25°C, and was comprised between 11 and 39°C (considered as maximal 156 

viable margins). We defined two negatively autocorrelated fluctuation regimes (-0.7 and -0.4), 157 

one without temporal autocorrelation (autocorrelation = 0), and two positively autocorrelated 158 

regimes (0.4 and 0.7) by generating 10,000 time-series for each autocorrelation value, and 159 

selecting the series that best matched the requirements (mean, autocorrelation and variance of 160 

temperature through time). To avoid time series where parameters may change through the 161 

growth phase (e.g., with lower mean value during earlier growth than at stationary phase [46]), 162 

we performed the selection of best matches by computing desired parameters for each 24h time 163 

window. As for the fluctuation period, we performed three replicates per strain and level of 164 

autocorrelation. 165 
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We quantified population growth rate, a classic proxy of fitness, through absorbance 166 

measurements at 450nm using a microplate reader (TECAN Infinite 200) twice a day until the 167 

stationary phase was reached. Growth curves were smoothed using General Additive Modelling 168 

(GAM; gam R-package [47]) to avoid any bias due to slight technical variability in absorbance 169 

measurements. For each strain and each fluctuation treatment, we computed performance using 170 

the growth rate measured as the maximum slope of population growth using the gcfit function 171 

(grofit R-package [48]) with spline fit. We additionally quantified the maximal population 172 

density reached at the plateau, which was highly correlated to growth rate (Pearson correlation: 173 

0.893; df=583; t=47.91; p<0.001) and was therefore not included in the following analyses, 174 

thus focusing on the exponential phase.  175 

 176 

Thermal tolerance curves 177 

We additionally reconstructed thermal tolerance curves (Figure 1) by quantifying the growth 178 

rate of each isolated strain across a gradient of eight constant temperatures (11, 15, 19, 23, 27, 179 

31, 35, 39°C; Figure S1), as done previously (e.g., [30,31]). We quantified population growth 180 

through absorbance measurements as explained for growth under fluctuations: ~100 cells from 181 

each genotype into 250 µL of 96-well plates. For this part, we performed four replicates in 182 

different plates for each temperature, each being technically duplicated on each plate that were 183 

latter on averaged for analyses. We fitted the relationship between temperature and growth rate 184 

using GAMs, and computed the width of thermal tolerance curves as 90% of the area under the 185 

curve (other cutoffs leading to similar results [30]). We furthermore quantified the thermal 186 

optimum as the temperature corresponding to maximal growth rate, which did not significantly 187 

correlate with thermal niche width (Pearson correlation coefficient = -0.241; t = -0.894, p = 188 

0.388).  189 

 190 
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Thermal plasticity 191 

We quantified reaction norms of cell morphology and movement following [31], by exposing 192 

five replicates of one-week old cultures (close to asymptotic density) from each strain for two 193 

hours (less than the generation time) to five different temperatures: 11, 19, 25, 31 and 39°C 194 

(Figure 1). Immediately after the two-hour exposure, we recorded 20s videos of two samples 195 

of 10µl of cells placed in counting slides under dark-field microscopy to measure cell 196 

morphology and movement characteristics using the BEMOVI R-package [49]. We described 197 

cell morphology as cell size (measured as mean cell area in videos), a commonly measured trait 198 

known to be linked to resource acquisition and metabolic rate in protists [32]. In standard 199 

conditions, variability of cell size among strains in this species is not significantly correlated to 200 

population growth rate [50,51]. Cell movement was measured as velocity, defined as the total 201 

distance travelled by cells divided by the duration of the trajectory, a trait classically used to 202 

describe movement in microorganisms [33,34]. Averaged cell size and velocity across all cells 203 

of each experimental replicate (i.e., two videos, see above) were then used to compute the 204 

morphological and movement thermal plasticity of each strain as the slope of the reaction norm 205 

of the scaled trait along temperature [31] (Figure S1). We summarized plasticity through linear 206 

slopes since quadratic relationships were not significant (morphology: temperature2 x strain: 207 

F14,171 = 1.192; p = 0.286; temperature2: F1,171 = 0.018; p = 0.894; movement: temperature2 x 208 

strain: F14,171 = 1.380; p = 0.168; temperature2: F1,171 = 0.003; p = 0.987). Slopes close to zero 209 

indicate flat reaction norms (and hence, no plasticity), while positive or negative values 210 

respectively denote increase and decrease in traits along temperature (Figure S1). 211 

 212 

Statistical analyses 213 

We first tested whether tolerance curve width correlated with the plasticity of morphological 214 

and movement traits using linear regressions (lm function, with 1/standard error of the reaction 215 
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norm slope as weights). Then, we tested for the role of thermal tolerance width in response to 216 

thermal fluctuations using linear simple and mixed models, separately for periodic and 217 

autocorrelated fluctuations. First, we used the growth rate under fluctuations relative to constant 218 

temperature as dependent variable in models, allowing to quantify the effects of thermal 219 

fluctuations independently from differences of mean growth rate among genotypes using linear 220 

models. Second, we tested for effects of thermal tolerance width, thermal fluctuations (either 221 

period or autocorrelation) and their interaction on growth rate under fluctuations using linear 222 

mixed models with strain as a random factor. All analyses were performed using R (version 223 

4.1.0; R Core Team 2021).  224 

 225 

Model 226 

We investigated how the rate of phenotypic plasticity affects growth in fluctuating 227 

environments by modifying the model of [19]. This model describes a population of N 228 

individuals experiencing a time-varying environment E, here temperature. Their phenotype P, 229 

the same for all individuals, varies as a deterministic function of the variation of the 230 

environment (i.e., reversible plasticity).  231 

The fitness landscape specifies the instantaneous growth rate r(P,E) of the population 232 

with phenotype P at temperature E. Population growth is assumed density-independent:  233 

!"
!#
= 	𝑟(𝑃, 𝐸)𝑁  (1) 234 

For a fixed temperature E, the growth rate is maximal at a specific phenotype P = φ(E). Away 235 

from this optimal phenotype the growth rate decreases quadratically (see supplementary 236 

material).  237 

We incorporated into this model a rate of plasticity, specifying the dynamical response 238 

of the phenotype to the thermal fluctuations:  239 

!$
!#
=	− %

&!
(𝑃 − 	𝜓(𝐸))  (2) 240 
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where ψ(E) is the target phenotype at a constant temperature E, and τP is the time-lag of the 241 

plasticity. The function ψ(E) determines the reaction norm, and together with the fitness 242 

landscape r(P,E) the thermal performance curve r(ψ(E),E). In particular, for generalists the 243 

reaction norm ψ(E) is close to the optimal phenotype φ(E), leading to a wide thermal niche (see 244 

supplementary material). 245 

For simplicity, we considered periodic thermal fluctuations with a sine wave:   246 

𝐸(𝑡) = 	 𝑐' + 𝑎' 	sin(2p
#
&"
)  (3) 247 

where cE is the mean temperature, aE the amplitude and τE the period of the fluctuations. By 248 

combining equations (1-3) and averaging the instantaneous growth rate r over time, we obtained 249 

the long-term population growth rate R (see supplementary material):  250 

𝑅 = 	 𝑐( − 𝑎(
(%*+#)$-(.p

%!
%"
)$

%-	(.p%!%"
)$

𝑎'.   (4) 251 

where cR is the growth rate in the constant environment cE, and aR is a positive constant 252 

independent of the degree of generalism aψ.  253 

We used equation (4) to construct tolerance curves for generalists and specialists, 254 

characterized by a high and low degree of plasticity aψ, respectively. This allowed us to 255 

investigate how the rate of plasticity affects the relationship between fluctuation period τE and 256 

growth rate R in generalists and specialists.  257 

The model predicts an increase of R along τE both for generalists and specialists. Since 258 

the experimental results showed that the relationship between growth rate and fluctuation 259 

period can also decrease in specialists (Figure 2), we added to the model a mechanism that can 260 

generate such a pattern: we assumed that the transmission of the temperature to the individuals 261 

is buffered by a thermal inertia. The simplest model for thermal transmission with inertia is:  262 

!'0
!#
=	− %

&&
(𝐸′ − 𝐸)  (5) 263 

where E is the requested temperature (e.g., the temperature set on the incubator), E′ is the body 264 
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temperature of the individuals, and τI is the time-lag of the thermal transmission. The 265 

transmitted fluctuations E′ can differ substantially from the intended fluctuations E if τI is 266 

comparable or larger than τE. For the sine-wave fluctuations considered above, the reduction in 267 

amplitude from the requested E to the transmitted E' is given by:  268 

𝑎'0
𝑎'

=	
1

71 +	82p 𝜏1𝜏'
:
.
 269 

The long-term population growth rate becomes:  270 

𝑅 = 	 𝑐( − 𝑎(
(%*+#)$-(.p

%!
%"
)$

%-	(.p%!%"
)$

+"
$

%-2.p%&%"
3
$  (6) 271 

 272 

 273 

Results 274 

We first quantified the width of thermal tolerance curves and the plastic capacity of 15 strains 275 

of the ciliate T. thermophila (Figure S1). We refer to strains with broader tolerance curves as 276 

the most generalists, and to those with narrower thermal tolerance as the most specialists. The 277 

level of thermal generalism of strains was positively correlated with cell size plasticity (estimate 278 

± SE = 0.170 ± 0.053; df = 1,13; t = 3.222; p = 0.007), but not with the plasticity of cell velocity 279 

(-0.044 ± 0.063; df = 1,13; t = -0.688; p = 0.503). The most generalist strains showed higher 280 

size plasticity with positive reaction norm slopes (i.e., cells became larger with increasing 281 

temperature), while most specialists strains appeared less plastic or even showed negative 282 

slopes (Figure S2). Note that strains' plasticity did not significantly correlate with thermal 283 

optimum (-0.090; t = -0.327, p = 0.749).  284 

We then separately exposed the 15 strains to two independent gradients of period and 285 

temporal autocorrelation of thermal fluctuations (Figure 1). Fluctuations impeded the growth 286 

of all strains compared to constant conditions: when averaged across all period and 287 
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autocorrelation levels, growth rates were respectively reduced by 66.5 ± 1.6% (mean ± SE; 288 

period), and by 59.1 ± 2.5% (autocorrelation; Figure S3). This averaged sensitivity of strains to 289 

thermal fluctuations did not significantly correlate with their degree of generalism (periodic 290 

fluctuations: -0.004 ± 0.009; df = 1,358; t = -0.484; p = 0.629; autocorrelated fluctuations: -291 

0.013 ± 0.014; df = 1,223; t = -0.952; p = 0.342).  292 

However, the extent to which the period and autocorrelation of fluctuations impeded 293 

performance significantly depended on the degree of generalism (tolerance curve width * 294 

period: F1,343 = 38.234; p < 0.001; tolerance curve width * autocorrelation: F1,208 = 9.912; p = 295 

0.002; Figure 2). Specifically, the effect of the fluctuation period on performance reversed 296 

along the degree of thermal specialization (Figure 2A). The most specialist strains (i.e., with 297 

narrowest thermal tolerance) performed better under fast fluctuations compared to slower ones 298 

(i.e., negative effect of fluctuation period on growth rate; Figure 2A). Conversely, the most 299 

generalist strains performed better under slow fluctuations (i.e., positive effect of period on 300 

growth rate; Figure 2A). Similarly, the effect of autocorrelation depended on thermal tolerance 301 

width: the most specialist strains showed higher growth rates under negatively autocorrelated 302 

fluctuations compared to positively autocorrelated ones, while the most generalist ones 303 

performed better under positively autocorrelated fluctuations (Figure 2B). As expected from 304 

the correlation between thermal generalism and morphological plasticity, equivalent analyses 305 

using phenotypic plasticity of cell size instead of thermal tolerance width as explanatory 306 

variable gave similar results (fluctuation period * morphological plasticity: F1,356 = 24.048; p < 307 

0.001; fluctuation autocorrelation * morphological plasticity: F1,221 = 6.114; p = 0.014). Finally, 308 

the interactions between fluctuation period or autocorrelation and thermal optimum had non-309 

significant effects on growth rate (thermal optimum * period: F1,343 = 0.074; p = 0.787; thermal 310 

optimum * autocorrelation: F1,208 = 2.070; p = 0.152). 311 

  312 
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Figure 2: Relationships between tolerance width and effects of fluctuation period (A) and autocorrelation 313 

(B) on performance (i.e., growth rate). Each point in the main plots corresponds to a strain, with bars showing 314 

standard error. Values on the y-axis are the effect of fluctuation period or autocorrelation on growth, measured as 315 

the slope of the relationship between fluctuations and growth (either positive or negative, as illustrated by the 316 

schematic relationships on the left of the axes; see also Figure S3). They are computed as a Z-score effect size 317 

derived from the linear relationship between growth rate and the fluctuation gradients [52]: positive values indicate 318 

that strains are more affected by fast fluctuations compared to slow ones, or by negatively autocorrelated 319 

fluctuations compared to positively autocorrelated, while negative values show that strains are more affected by 320 

slow or positively autocorrelated fluctuations. 321 

 322 
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To explicitly test the potential role of the speed of plasticity in how organisms responded 324 

to environmental fluctuations, we used a simple model that included a rate in the adaptive 325 

plastic response underlying tolerance curves. We restricted the model to a simple gradient of 326 

fluctuation period, since period and autocorrelation of fluctuations led to similar effects in the 327 

experiment and gave similar results in the model (Figure 2). In the model, generalists have 328 

steeper reaction norms (i.e., higher plasticity capacity) and therefore reached wider tolerance 329 

curves but with a reduced maximal performance compared to specialists (here due to a cost of 330 

plasticity; Figure 3A1). This leads to a classical specialist-generalist trade-off [53], already 331 

known in the experimental system we used in this study [30].  332 

In slowly fluctuating environments, specialists were more affected by fluctuations 333 

compared to constant environments than generalists: because their tolerance curve is narrower, 334 

excursions from their optimal environment led to stronger fitness reductions (Figure 3A1). 335 

Without a rate of plasticity (i.e., in a case of immediate plasticity), the fluctuation period had 336 

no effect at all on generalist growth rates (Figure 3). When the rapidity of environmental 337 

fluctuations increased, the rate of plasticity constrained the expression of adaptive plasticity to 338 

lesser degrees, leading generalists to suffer stronger fitness reduction compared to specialists 339 

(Figure 3A2). This trend reproduced what we observed in the experiment, where generalists 340 

suffered more from fast fluctuations than slower ones (Figure 3C).  341 

It however did not reproduce the pattern of decreasing growth rates along increasing 342 

fluctuation period, as observed for specialists in the experiment. One simple mechanism that 343 

might generate such a pattern is environmental inertia, which would buffer to some degree the 344 

effects of rapid fluctuations on organisms. Implementing this simple mechanism in the model 345 

(see Methods) resulted in a negative relationship between growth rate and fluctuation period in 346 

specialists for fast fluctuations, while the positive relationship in generalists remained 347 

unchanged (Figure 3B2). Interestingly, this decrease in specialists was even steeper if we 348 
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considered that, in addition to their smaller degree of plasticity, specialists also had a slower 349 

plastic response than generalists (i.e., slow rate of plasticity, as expected if plasticity rate and 350 

capacity correlate [26]; Figure 3B2). 351 

 352 

Figure 3: The differential effects of environmental fluctuations on the performance of specialists and 353 

generalists depend on the underlying rate of phenotypic plasticity. In the mathematical model, tolerance curves 354 

of specialists and generalists along the gradient of mean environments (i.e., either constant temperatures or means 355 

of temporally fluctuating conditions) are modified by environmental fluctuations. A1) while the maximal 356 

performance of specialists was higher than for generalists in a constant environment (respectively dotted blue and 357 

red lines), generalists reached higher maximal performance in environments fluctuating relatively slowly (high 358 

period: τE = 20, solid red and blue curves); A2) in rapidly fluctuating environments (τE = 2), generalists suffered 359 

stronger fitness reduction due to not fast enough plastic response compared to specialists; B1) In slowly fluctuating 360 

environments (i.e., long fluctuation period), specialists were more affected by fluctuations than generalists because 361 

deviations from their optimal environment lead to stronger fitness reductions. When fluctuations became faster 362 

(i.e., low period), phenotypic plasticity was not fast enough to follow environmental fluctuations, which is 363 

particularly detrimental for generalists. In a case of immediate plasticity (i.e., infinite rate), there was no effect of 364 

the fluctuation period on growth rate. B2) When environmental fluctuations are to some extent buffered as in the 365 

case of a thermal inertia, very fast fluctuations had small effects on fitness compared to constant conditions. When 366 

fluctuation period increased, generalists again showed increasing fitness as without inertia. However, specialists 367 

now showed decreasing fitness with increasing fluctuation period, as observed in the experiment (see panel C). 368 

This negative relationship was steeper if we assumed that specialists also showed slower plastic response than 369 

generalists (dashed blue line). C) Illustration of growth rate variations along fluctuation period in the three most 370 

specialist (red) and generalist (blue) genotypes (see Figure S3 for all strains). As expected with a lag time of 371 

phenotypic plasticity, generalists performed better under slow fluctuations compared to fast ones.  372 
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 375 

Discussion 376 

Although fluctuating environmental conditions are a necessary condition for plastic generalists 377 

to evolve [7–11], some theoretical and empirical studies showed that generalists able to live in 378 

a wide range of relatively stable conditions might in contrast perform badly under fluctuations 379 

[1,6,54]. In this study, we experimentally showed that while thermal fluctuations always 380 

decreased performance relative to constant conditions, the magnitude and direction of their 381 

effects depended on the interaction between the width of tolerance curves and the characteristics 382 

of fluctuations. In particular, the most specialist strains performed better under fast or 383 

negatively autocorrelated fluctuations, while the most generalist strains performed better under 384 

slower or positively autocorrelated fluctuations. Using a mathematical model, we showed that 385 

a time delay in the expression of phenotypic plasticity can generate such effects of fluctuations 386 

on organisms’ performance. 387 
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Strains with broader thermal tolerance curves showed higher morphological plasticity 388 

with positive reaction norm slopes (cells became larger with increasing temperature). On the 389 

contrary, the most specialist strains appeared less morphologically plastic, or became smaller 390 

with increasing temperatures. Our results thus provide correlative support for the hypothesis 391 

that the cell-size plasticity in response to temperature may underlie part of the ability to tolerate 392 

broad thermal conditions. Incidentally, the link between temperature sensitivity and body size 393 

is at the core of the metabolic theory in ecology [55]. Body size is also commonly related to 394 

demography and species interactions [55–57], including in protists [32,57,58]. However, 395 

whether cell size plasticity is adaptive, neutral or maladaptive in T. thermophila and other 396 

ciliates, and whether and how it might affect species interactions are still unsolved questions 397 

[31]. Answering them would especially require establishing causal relationships between cell 398 

size, thermal tolerance and how organisms perform under a diversity of environmental 399 

fluctuation scenarios.  400 

If generalism is achieved through phenotypic plasticity as suggested in this study, the 401 

performance of generalists should depend on the characteristics of fluctuations, and especially 402 

their rapidity [1,6,54]. In the experiment, the most generalist strains suffered more from fast 403 

fluctuations than from slow ones, the reverse being true for specialists. This pattern might have 404 

resulted from the existence of a rate of plasticity [25,26]. Changes of performance metrics 405 

across a given environmental gradient (i.e., tolerance curves) indeed often depend on acute 406 

plastic responses and acclimation mechanisms, either adaptive or not [1,59]. These plastic 407 

responses to changes in environmental conditions likely takes some amount of time [1,21–408 

23,25–27]. This rate of phenotypic change may for instance depend on the rapidity of 409 

underlying mechanisms, such as transcriptional or hormonal changes, that precede variations 410 

in the phenotypic traits of interest [25,26]. Our model accordingly suggested that a time delay 411 

in the expression of phenotypic plasticity may restrict its benefits to slow-enough fluctuations. 412 
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An organism with a broad tolerance curve under a range of constant conditions might thus 413 

perform badly under too-rapid fluctuations if the underlying mechanisms involve significant 414 

time delays relative to the speed of environmental changes [6,13,25–27]. These results point 415 

out that considering the rate at which phenotypic plasticity takes place, together with the rate 416 

of environmental changes, is key to understand the conditions under which phenotypic 417 

plasticity is expected to be favored [25,26].  418 

Interestingly, generalists performed better under positively autocorrelated fluctuations 419 

compared to negatively autocorrelated ones, and the reverse for specialists. These results 420 

therefore match with the general expectation that plasticity should be beneficial in predictable 421 

environments (sensus positively autocorrelated), as recently demonstrated experimentally [18]. 422 

Yet, positively autocorrelated fluctuations do not only translate into environmental 423 

predictability: they are also associated with a reduced degree of environmental change through 424 

time, which somehow leads to the perception of slower fluctuations than non-autocorrelated or 425 

negatively autocorrelated fluctuations. In our experiment, generalists performed better in both 426 

slow fluctuations and positively autocorrelated ones. Our results thus confirm that is that the 427 

predictability of environmental fluctuations is probably not an intrinsic property of the 428 

environmental fluctuations alone, but should rather be understood relative to the considered 429 

organisms, and especially to their rate of phenotypic plasticity [25,26]. 430 

To conclude, our study revealed that the effect of fluctuations on performance depended on 431 

the width of thermal tolerance curves: plastic generalists performing better under slow or 432 

positively autocorrelated fluctuations became poor performers under fast and negatively 433 

autocorrelated fluctuations. As reminded by our model, such dependence to fluctuations may 434 

result from the temporal dynamics of phenotypic plasticity. The speed of plasticity might thus 435 

play a major role in organisms’ response to environmental fluctuations. A better understanding 436 

of the relationship between classical measures of generalism and the response of organisms to 437 
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environmental fluctuations would thus require investigating the temporal dynamics of plasticity 438 

[25,26]. Whether phenotypic plasticity and the associated width of tolerance curves are adaptive 439 

strategies to face environmental fluctuations [5,6,15] is likely to depend on the interplay 440 

between the characteristics of fluctuations and the speed of phenotypic plasticity [25,26]. 441 

Exploring further into the mechanisms that underlie tolerance curves and the timing of 442 

phenotypic plasticity is therefore of key importance to understand the response of organisms to 443 

the different types of environmental fluctuations they face. 444 

 445 

 446 
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