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Introduction: The knowledge about forest growth, influenced by factors such as
tree species, tree age, and environmental conditions, is a key for future forest
preservation. Height and age data can be combined to describe forest growth and
used to infer known environmental effects.

Methods: In this study, we built 14 height growth curves for stands composed of
monospecific or mixed species using ground measurements and satellite data.
We built a random forest height model from tree species, age, area of
disturbance, and 125 environmental parameters (climate, altitude, soil
composition, geology, stand ownership, and proximity to road and urban
areas). Using feature elimination and SHapley Additive exPlanations (SHAP)
analysis, we identified six key features explaining the forest growth and
investigated how they affect the height.

Results: The agreement between satellite and ground data justifies their
simultaneous exploitation. Age and tree species are the main predictors of
tree height (49% and 10%, respectively). The disturbed patch area, revealing
the regeneration method, impacts post-disturbance growth at 19%. The soil pH,
altitude, and climatic water budget in summer impact tree height differently
depending on the age and tree species.

Discussion: Methods integrating satellite and field data show promise for
analyzing future forest evolution.
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satellite imagery, forest inventory, secondary tree growth, temperate forest, tree
species, random forest

1 Introduction

Forests are critical to both the environment and human wellbeing and provide services
ranging from carbon sequestration to biodiversity conservation and climate regulation (IPCC,
2019). Forest productivity is a major factor of forest resources and, thus, a concern for both
forestry and climate sciences. In addition, preserving carbon stocks and maintaining a carbon
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sink in the forest sector are fundamental elements of the EU Forestry
Strategy 2020 and the EU neutrality objectives (Korosuo et al., 2023). In
the EU, most forests are managed (FOREST EUROPE, 2020), and
management options include rotation ages, thinning regime,
regeneration cuttings, the choice of tree species in regeneration and
plantation, and forest growth rates (Pretzsch, 2009; Bontemps and
Bouriaud, 2014). Natural disturbances can also lead to stand
suppression in the case of severe events. The growth rate of forest
stands after a management or natural disturbance is linked to the time
since the disturbance or stand age, tree species, and site quality (Franklin
et al., 2002; Swamy et al., 2003; D’Amato et al., 2011; Luyssaert et al.,
2008; Niinemets, 2010; Chazdon et al., 2016; Poorter et al., 2016; Liang
et al., 2016;Messier et al., 2019; Pugh et al., 2019; Seidl et al., 2017; Thom
et al., 2017). Site quality refers to the intrinsic capacity of local
conditions to facilitate the growth of vegetation, and it is influenced
by factors such as climate, soil characteristics, topography, and
hydrology. Stands located in areas with better site quality have
higher growth rates and reach higher carbon stocks at maturity
(Swamy et al., 2003; Pan et al., 2011). The importance of forest
growth rates has been highlighted in the “Forest Principles” for
sustainable forest management at the Rio Conference (UN
Conference on Environment and Development, 1992) and
confirmed in the criteria for forest management under the Montreal
Process (Montreal ProcessWorkingGroup, 1994) and at theMinisterial
Conference on the Protection of Forests in Europe (MCPFE, 2002).

Despite being crucial, determining the growth rates of forests has
consistently posed a significant challenge in the field of forestry due to
the long-living nature of forest stands and the diversity of development
patterns. Several studies analyzed tree height as a function of site-related
environmental variables used as proxies of productivity (Bontemps and
Bouriaud, 2014; Huang et al., 2017; Günlü et al., 2019; Pretzsch, 2020;
Vacek et al., 2023; Viet et al., 2023). Although environmental factors
affecting tree growth have been known for decades, these findings are
based on a limited amount of field data collected under controlled
conditions (Watt et al., 2015; Zhang et al., 2019; Barrio-Anta et al., 2020;
Harvey et al., 2020). To remove these limitations, remote sensing data
offer sufficient information to conduct an analysis on a large scale and
under actual conditions of tree growth (Coops, 2015; Gopalakrishnan
et al., 2019; Wang et al., 2022; Antón-Fernández et al., 2023; Appiah
Mensah et al., 2023). Remote sensing data may contain significant
systematic errors (Palahí et al., 2021; Wernick et al., 2021; Breidenbach
et al., 2022). In this context, combining both field and remote sensing
data on the same level enhances the accuracy of the resulting products,
and some national forest inventories and studies have started to
combine both data sources (Tomppo et al., 2008; Nagel et al., 2014;
Venier et al., 2014; Breidenbach et al., 2020; Gustafsson et al., 2020;
Lister et al., 2020; Næsset et al., 2020; Breidenbach et al., 2021;
Schumacher et al., 2020; Sims, 2022).

This study presents one of the first analyses of temperate forest
growth detailing tree species, previous disturbance patch areas, and a
large number of environmental variables and management practices
on a large scale. Our method integrates remote sensing data with
inventory measurements to capitalize on the advantages of both data
types: the abundance of remote sensing data and the extensive range of
tree ages accessible through the inventory data. Thanks to global tree
height maps (Besnard et al., 2021; Potapov et al., 2021; Lang et al.,
2023), our growth monitoring analysis is applicable to any region
across the globe. In this study, our primary objective is to examine the

correlation between forest height growth, forest age, species, past
disturbance patch size, and a combination of environmental factors
to address the following key research questions: (A) can height, age,
and tree species data obtained through remote sensing be effectively
integrated with similar field measurements? (B) Can we categorize
forest growth based on species, and what are the growth disparities
between mixed-species forests and pure-species forests? (C) What is
the influence of environmental factors beyond age and species on tree
height? The study area is a large temperate forest region in the
northern-central part of France that has a diversity of tree species
and well-documented environmental variables.

We provide an overview of the data sources and processing
methods in Section 2. In Section 3, we present a consistency
assessment of the two data sources (question A), show the
polymorphic age–height curves per species from satellite and
field data (question B), and analyze the factors influencing spatial
variations in height using explainable machine learning (question
C). Then, Section 4 contains a discussion of the results, including the
limitations and perspectives.

2 Rationale, datasets, and methods

2.1 Logics of the study

We combined satellite observations and national forest inventory
measurements. The methodology consisted of three sequential steps
(Figure 1). In the first step (see Figure 1A), we ensured the coherence of
the data. This involved assessing the spatial consistency of satellite-
derived parameters, tree height, tree age, and tree species, with the
corresponding values acquired through field measurements at specific
locations. In the second step (see Figure 1B), we modeled the
relationship between tree height and age at the species level. To do
so, we retrieved tree height, age, and tree species information from
satellite observations and the French National Forest Inventory (NFI).
These datasets were then integrated to construct empirical growth
height–age curves of various tree species, with both satellite and field
data. The height–age data were fitted using a Chapman–Richards
equation. Additionally, we calculated simple metrics for comparing
the height–age curve characteristics of different tree species. In this step,
height is explained by age and species only. In the third step (see
Figure 1C), we extended our analysis by considering a range of
environmental variables, in addition to age and species, to better
explain the variations in the height growth. This was done by
building an explainable machine learning model to predict the
height using the age, species, and the environmental variables as
predictive features. This model is made parsimonious using
recursive feature elimination to retain only the most influential
environmental factors explaining the height. Finally, SHapley
Additive exPlanations (SHAP) indexes (Lundberg and Lee, 2017;
Lundberg et al., 2020) were used to elucidate the impact of the
selected environmental variables on the prediction of tree height.

2.2 Study area

In 2009, the French metropolitan territory was divided into
distinct forest regions for taking into account biogeographical
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factors determining forest production and the distribution of
major forest habitat types. In this paper, we study the large
ecological region (GRECO) B, which is in north-central
France. The GRECO B (north-central semi-oceanic) has a
relief of plains and plateaus not exceeding 400 m over a
149,800-km2 area (see Figure 2) (IGN, 2013). It has an oceanic
climate with increasing continental influences.

Production forests are rather diverse in this region, both in
terms of species and stand quality. The average forestation rate
over the whole GRECO is 21% but with very important
variations between sub-regions, which range from 5% to 51%.
The tree species diversity within a stand is low in GRECO B: 42%
of the forest stands are dominated by a single species and 33% by
two species. The GRECO B region is predominantly made up of
pure hardwood stands (80%), with pure conifers accounting for
only 8%. A total of 90% of the forest areas have a regular
structure with or without an understory (IGN, 2020).
According to the NFI, 46% of the forest area is composed of
oaks, the cultivated poplar covers 16%, and the other broadleaf
covers 38%. The coniferous species amount to 8%. The
plantations constitute only 13% of the stands in GRECO B,
while the others are established by natural regeneration (IGN,
2020). The mixed stands most often combine oaks, pines, and
birches. Forest management differs depending on whether the
forest is privately owned (82%), state-owned (14%), or city-
owned (5%) due to different legal constraints (IGN 2018b;
Canopée, 2020). Public forests that are either state or city
owned are subject to the Forestry Regime. In private forests
larger than 25 ha, a management plan guaranteeing sustainable
management is mandatory.

2.3 Datasets

2.3.1 Tree species map
We used BD Forêt® version 2, henceforth referred to as BDF (see

Figure 2A), to provide tree species localization in all the steps of the
study (see Figure 1) (IGN 2018a). It was developed between
2007 and 2018 by the photo-interpretation of color and infrared
images. A forest is described by the density of cover of the stand, its
composition, and the dominant species for all patches that are more
than 0.5 ha and larger than 20 m. We selected only the closed forest
stands with canopy covers superior to 40%. For forest patches where
at least 75% of the tree canopy consisted of the same species, the
dominant species was identified among 16 common genera or
species. Less frequent species were categorized under a general
deciduous or coniferous classification. For the sake of simplicity,
tree species refer to the 11 monospecific and 3 mixed-species
categories explained in Table 1.

2.3.2 High-resolution map of tree height from
satellites

We used a new 10-m resolution satellite tree height map of
France (Forest Multiple Satellite—Height [FORMS-H]; Schwartz
et al., 2023; Schwartz et al., 2024; Fayad et al., 2024) corresponding to
2020 (see Figure 2C) to provide tree height in all steps of the study
(see Figure 1). It was obtained from a deep learning model based on
multi-stream remote sensing measurements (NASA’s GEDI LiDAR
mission and ESA’s Copernicus Sentinel-1 and 2 satellites), and it
does not use any ground measurements for calibration. The
accuracy of FORMS-H has been evaluated with respect to the
NFI height for 2020 over all of France (MAE = 2.94 m) and two

FIGURE 1
Flowchart. Input data (in black) are made consistent in step (A) and collocated with ground measurements, allowing us in step (B) to build an
empirical height–age relationship for each species. In step (C), an explainable machine learning model is used to predict height from age, species, and
environmental factors and separate the influence of each factor.
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ALS heights from high definition LiDAR measurements (MAE =
3.54 m and MAE = 4.50 m).

2.3.3 Historical forest disturbance maps
We used the European forest disturbance dataset at a

resolution of 30 m built by Senf and Seidl (2021), hereafter
S&S, derived from Landsat satellite data (see Figure 2D), to
compute an age map of forests by 2020 (see Figure 1). We
assumed that the selected disturbances were all severe enough
to replace the previous stand (i.e., disturbance intensity greater
than or equal to 0.95) and were followed by regrowth. The forest

age was computed as the difference between 2020 and the year of
disturbance.

2.3.4 National Forest Inventory plots
We used plot data from the French NFI (see Figure 2B) (IGN,

2005) from 2017 to 2021 to provide tree height and age (see
Figure 1). The French NFI consists of temporary plots
distributed throughout the country on a systematic grid of
1 by 1 km surveyed over a 10-year rotation and made up of
three concentric plots of radii of 6, 9, and 15 m. Dendrometric
measurements are collected on the 6-, 9-, and 15-m circles for

FIGURE 2
(A) Tree species map from the National Institute of Geographic and Forest Information (IGN) (BDF). (B) French National Forest Inventory (NFI). (C)
High-resolution tree height map (FORMS-H) of forests computed from GEDI, Sentinel-1, and Sentinel-2. (D) Year of disturbance of forests maps (S&S)
computed from historical forest disturbances since 1986 from satellites.
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trees with diameters greater than 7.5 cm, 22.5 cm, and 47.5 cm,
respectively. For each size class and tree species, a representative
tree is selected for the plot, and a height measurement is taken.
The dominant height of the plot is the average height of the
tallest trees on the plot. Two trees chosen from the six tallest in
the plot are cored at a height of 1.30 m to the pith for age
measurement by counting annual rings. A general description of

the stand including the vertical structure and tree species is
established using a 25-m radius plot. We filtered out the trees
that are not in the target population. We corrected the age values
at 1.30 m to take into account the missing tree rings at heights
between 0 and 1.30 m using calibrating measurements from the
NFI made in 2005. In order to select the even-aged plots, we
selected only the plots with a regular vertical structure with or
without understory. In addition, we computed the mean and
standard deviation of the distribution of the age per plot, and we
selected the plots with a coefficient of variation of age smaller
than 0.25 knowing that we kept the plots with single age data.
The age of the plot is the average age of the trees within the plot.

2.3.5 Environmental variables
We used 125 environmental variables from various datasets

(see Figure 1C). Specifically, we incorporated 14 climatic features,
encompassing temperature (Ninyerola et al., 2000; Bertrand
et al., 2011; Richard, 2011), precipitation (Ninyerola et al.,
2000; Richard, 2011), solar radiation (Lebourgeois and
Piedallu, 2005; Piedallu and Gégout, 2007; 2008; Richard,
2011), evapotranspiration (Bertrand et al., 2011), climatic
water budget (Piedallu and Gégout, 2007; Piedallu and
Gégout, 2008), and the maximum and available water capacity
(Al Majou et al., 2008; Piedallu et al., 2011; Piedallu et al., 2013).
From the digital elevation model at a resolution of 25 m, we
computed the aspect, the slope, the hillshade, and the roughness,
leading to five altimetry features with the altitude (IGN, 2017).
The 92 soil composition features include a 1-km forest soil
pH map and composition data on various soil properties,
texture components, essential nutrients, and minerals at a
resolution of 16 km (Antoni et al., 2011). The geology of the
soil is characterized by eight features (BGRM, 2017). The human
impact on growth was taken into account by four features: the
private or public ownership of the forest stand, whether the forest
stand is in a national park or reserve, and the proximity to roads

TABLE 1 Tree species classification.

Common
name

Species

Deciduous oaks Quercus petraea (Matt.) Liebl., Quercus robur L., Quercus
pubescensWilld., Quercus rubra L., and Quercus pyrenaica
Willd.

Poplars Populus x canescens (Aiton) Sm. and other cultivated
species of the genus Populus L.

Beech Fagus sylvatica L.

Chestnuts Castanea sativa Mill.

Locusts Robinia pseudoacacia L.

Maritime pine Pinus pinaster Aiton

Scotch pine Pinus sylvestris L.

Douglas fir Pseudotsuga menziesii (Mirbel) Franco

Austrian pine Pinus nigra var. Corsicana, Pinus nigra subsp. Nigra

Fir/spruce Abies alba Mill., Picea abies (L.) H. Karst., and Picea
sitchensis (Bong.) Carriere

Other pines Other species of the genus Pinus L.

Mixed broadleaf At least 75% broadleaf species

Mixed broadleaf At least 75% conifer species

Mixed species At least 75% conifer species

FIGURE 3
Conceptual figure of the growth curve processing per species (A). For each age bin, a percentile of the height distribution is computed, leading to
percentile growth curves (PGCs) (shown as disks). Chapman–Richards fitting with an offset h0 (B). The Chapman–Richards equation is fitted to each PGC
(disks). The offset h0 is set to a value equal to a centile of the height distribution at an age of 4 years, leading to different fitted curves for each centile (lines).
The chosen offset value affects the goodness of fit. The offset value that maximized the coefficient of determination averaged across all tree species
is chosen. Metrics characterizing tree growth (C). Maximum height hmax , the time t90 for which the growth curve has reached 90% of the maximum
height, and the early growth rate r defined by the rate of height change in the first 30 years.
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TABLE 2 Datasets used in the study.

Feature name Reference Data source Number of
features

Native
resolution

Target

Height Schwartz et al. (2023) https://doi.org/10.5281/zenodo.
7840108

Target 10 m

Demography

Age Senf and Seidl (2021) https://doi.org/10.5281/zenodo.
4570157

1 30 m

Disturbed patch area Senf and Seidl (2021) https://doi.org/10.5281/zenodo.
4570157

1 30 m

Intensity of disturbance averaged
over the patch

Senf and Seidl (2021) https://doi.org/10.5281/zenodo.
4570157

1 30 m

Tree species

Tree species (IGN 2018b) IGN (2018b) https://geoservices.ign.fr/bdforet 1 10 m

Climate

Temperature (whole year, winter,
and summer)

Base de données Digitalis, Laboratoire SILVA
(Université de Lorraine-AgroParisTech-INRA)

https://silvae.agroparistech.fr/
home/?page_id=2683

3 50 m

Precipitation (whole year and
summer)

Base de données Digitalis, Laboratoire SILVA
(Université de Lorraine-AgroParisTech-INRA)

https://silvae.agroparistech.fr/
home/?page_id=2683

2 1 km

Solar radiation (whole year and
summer)

Base de données Digitalis, Laboratoire SILVA
(Université de Lorraine-AgroParisTech-INRA)

https://silvae.agroparistech.fr/
home/?page_id=2683

2 1 km

Potential evapotranspiration (whole
year and summer)

Base de données Digitalis, Laboratoire SILVA
(Université de Lorraine-AgroParisTech-INRA)

https://silvae.agroparistech.fr/
home/?page_id=2683

2 50 m

Climatic water budget (whole year
and summer)

Base de données DIGITALIS, Laboratoire SILVA
(Université de Lorraine-AgroParisTech-INRA)

https://silvae.agroparistech.fr/
home/?page_id=2683

2 50 m

Maximum available water capacity Base de données Digitalis, Laboratoire SILVA
(Université de Lorraine-AgroParisTech-INRA)

https://silvae.agroparistech.fr/
home/?page_id=2683

1 500 m

Available water capacity (whole year,
winter, and summer)

Base de données Digitalis, Laboratoire SILVA
(Université de Lorraine-AgroParisTech-INRA)

https://silvae.agroparistech.fr/
home/?page_id=2683

2 50 m

Altimetry

Altitude IGN (2017) https://geoservices.ign.fr/bdalti 1 25 m

Aspect IGN (2017) https://geoservices.ign.fr/bdalti 1 25 m

Slope IGN (2017) https://geoservices.ign.fr/bdalti 1 25 m

Hillshade IGN (2017) https://geoservices.ign.fr/bdalti 1 25 m

Roughness IGN (2017) https://geoservices.ign.fr/bdalti 1 25 m

Soil composition and properties

Soil pH Base de données Digitalis, Laboratoire SILVA
(Université de Lorraine-AgroParisTech-INRA)

https://silvae.agroparistech.fr/
home/?page_id=2683

1 1 km

Clay Antoni et al. (2011) https://www.gissol.fr/donnees/
tableaux-de-donnees

3 16 km

Silt Antoni et al. (2011) https://www.gissol.fr/donnees/
tableaux-de-donnees

6 16 km

Sand Antoni et al. (2011) https://www.gissol.fr/donnees/
tableaux-de-donnees

6 16 km

Water content Antoni et al. (2011) https://www.gissol.fr/donnees/
tableaux-de-donnees

3 16 km

(Continued on following page)
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TABLE 2 (Continued) Datasets used in the study.

Feature name Reference Data source Number of
features

Native
resolution

Water pH Antoni et al. (2011) https://www.gissol.fr/donnees/
tableaux-de-donnees

3 16 km

Aluminum Antoni et al. (2011) https://www.gissol.fr/donnees/
tableaux-de-donnees

6 16 km

Boron Antoni et al. (2011) https://www.gissol.fr/donnees/
tableaux-de-donnees

3 16 km

Carbon Antoni et al. (2011) https://www.gissol.fr/donnees/
tableaux-de-donnees

5 16 km

Calcium Antoni et al. (2011) https://www.gissol.fr/donnees/
tableaux-de-donnees

6 16 km

Limestone Antoni et al. (2011) https://www.gissol.fr/donnees/
tableaux-de-donnees

3 16 km

Cation exchange capacity Antoni et al. (2011) https://www.gissol.fr/donnees/
tableaux-de-donnees

3 16 km

Iron Antoni et al. (2011) https://www.gissol.fr/donnees/
tableaux-de-donnees

11 16 km

Potassium Antoni et al. (2011) https://www.gissol.fr/donnees/
tableaux-de-donnees

6 16 km

Organic matter Antoni et al. (2011) https://www.gissol.fr/donnees/
tableaux-de-donnees

3 16 km

Magnesium Antoni et al. (2011) https://www.gissol.fr/donnees/
tableaux-de-donnees

6 16 km

Manganese Antoni et al. (2011) https://www.gissol.fr/donnees/
tableaux-de-donnees

6 16 km

Nitrogen Antoni et al. (2011) https://www.gissol.fr/donnees/
tableaux-de-donnees

3 16 km

Sodium Antoni et al. (2011) https://www.gissol.fr/donnees/
tableaux-de-donnees

6 16 km

Phosphorus Antoni et al. (2011) https://www.gissol.fr/donnees/
tableaux-de-donnees

3 16 km

Geology

Lithology Bureau de Recherches Géologiques et Minières
(BRGM)

http://infoterre.brgm.fr/page/
telechargement-cartes-geologiques

1 10 m

Land/sea BRGM http://infoterre.brgm.fr/page/
telechargement-cartes-geologiques

1 10 m

Geochemistry BRGM http://infoterre.brgm.fr/page/
telechargement-cartes-geologiques

1 10 m

System BRGM http://infoterre.brgm.fr/page/
telechargement-cartes-geologiques

1 10 m

Age of the geological stratum BRGM http://infoterre.brgm.fr/page/
telechargement-cartes-geologiques

1 10 m

Nature of the stratum BRGM http://infoterre.brgm.fr/page/
telechargement-cartes-geologiques

1 10 m

Geochemistry simplified BRGM http://infoterre.brgm.fr/page/
telechargement-cartes-geologiques

1 10 m

Simplified lithology BRGM http://infoterre.brgm.fr/page/
telechargement-cartes-geologiques

1 10 m

(Continued on following page)
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TABLE 2 (Continued) Datasets used in the study.

Feature name Reference Data source Number of
features

Native
resolution

Human variables

Forest ownership IGN (2020) https://geoservices.ign.fr/bdtopo 1 <10 m

Park or natural reserve IGN (2020) https://geoservices.ign.fr/bdtopo 1 <10 m

Proximity to roads IGN (2020) https://geoservices.ign.fr/bdtopo 1 10 m

Proximity to urban areas IGN (2020) https://geoservices.ign.fr/bdtopo 1 1 km

Other

Dataset I or II — — 1 —

FIGURE 4
Recursive feature elimination. (A)Coefficient of determination R2 versus the number of features obtained from the recursive feature elimination. The
mean values ofR2 (markers) and the standard deviation (filled color) correspond to the 3-fold distribution after each step corresponding to the elimination
of the least important feature. The feature importance has been computed using the Gini impurity (black) and permutation importance with the R2 metric
(blue). The red dashed line corresponds to six features. (B–D) Performances of the random forest models with 128 features (B), 29 features (C), and
6 features (D). Density plots of the predicted height versus the true height, with brighter colors indicating a higher density of points. The dashed line
represents the 1:1 axis. Distributions and error between the true and predicted heights. The boxplots show the variation in the error with the true height.
The median value is represented by a red line, while the upper and lower quartiles are represented by the upper and lower edges, respectively. The
whiskers symbolize the 5th and 95th percentiles.
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(i.e., an estimation of skidding distance) (IGN, 2022) and urban
areas (IGN, 2018c).

2.4 Consistency of satellite and NFI data

This section makes forest attributes such as height, age, and
species consistent across satellite observations and ground-based
NFI measurements (see Figure 1A). The BDF tree species and
the FORMS-H height were extracted at the precise localization
of the NFI plots. Similarly the S&S age map was collocated
with the NFI plots and compared with the associated NFI age.
The NFI tree species was compared to the corresponding BDF
tree species.

2.5 Fitting height–age growth curves for
post-disturbance recovery

In this section, we explain how height–age relationships were
derived for individual species (see Figure 1B). First, the FORMS-H
height and S&S age pixels were assigned to a species from the
corresponding BDF stand (dataset I). We then used the BDF map to
assign a species to each NFI height and age combination to maintain
consistency with the satellite data (dataset II).

2.5.1 Chapman–Richards equation
Growth curves (height–age relationships) per species were

computed from all triplets (height, age, and tree species) across
the region using space-for-time substitution. For each tree

FIGURE 5
Comparison of satellite-derived height and age with those obtained from the NFI and consistency of growth curves across satellite and NFI data. (A)
Distribution, error, and density plots of the satellite (FORMS-H) height versus the NFI height. (B) Distribution, error, and density plots of the satellite (S&S)
age versus the NFI age. The dashed line represents the 1:1 axis. Data points likely resulting from geolocation errors and edge effects and the associated
MAE are in gray. Themedian value is represented by a dotted line, while the upper and lower quartiles are represented by the upper and lower edges,
respectively. The whiskers symbolize the 5th and 95th percentiles. Coefficient of determination R2 (C) and fitted parameters (A–F) for the 14 tree species
associatedwith the Chapman–Richards equation fitted to themedian growth curve PGC50. The fitting uncertainty on the fitted parameters is displayed by
the whiskers.
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species, the percentile-based growth curves denoted by PGCi(t)
were computed from the 5th, 25th, 50th, 75th, and 95th
percentiles of the height distribution. For each tree species,
the percentiles of the height distribution were computed for
each 1-year age bin of dataset I and for each 10-year bin of
dataset II (see Figure 3A), leading to polymorphic growth curves.
For tree species with fewer than 34 data points in dataset II, we
refrained from calculating percentiles and utilized the raw data
instead. For each tree species, we thus obtained percentile-based
growth curves denoted by PGCi(t) for the ith percentile. The
Chapman–Richards Eq. 1 was then fitted to each PGCi(t). An
offset h0 parameter was added to take into account the possible
overestimation of ground height at young ages (Beck et al., 2020;
Dubayah et al., 2020).

PGC t( ) � a 1 − e−bt( )
c + h0. (1)

To ensure a robust fit, we fixed the offset value h0 based on both
the tree species and the growth curve percentile, reducing the
number of adjustable parameters to three. Specifically, we
selected the value of h0 based on the height distribution [denoted
as h(4)] corresponding to the smallest age bin (4 years) (see
Figure 3B). For each tree species and percentile growth curve
PGCi(t), we used Eq. 1 to fit the combined datasets I and II
while varying h0 in 1-percentile increments of h(4). We used the
Levenberg–Marquardt algorithm via the curve_fit function in the
Python SciPy library for this optimization. The final choice of h0,
which maximized the coefficient of determination averaged across

all tree species, was determined by analyzing how the coefficient of
determination varied with the percentile of h(4) for each quantile
regression. Specifically, we set h0 as follows: the minimum value of
h(4) for PGC5, PGC25, and PGC50; the 65th percentile of h(4) for
PGC75; and the 94th percentile of h(4) for PGC95. We used the trust
region reflective algorithm implemented in the curve fit function of
the Python SciPy library with bounds equal to [0,40], [0.001,1], and
[0.1,100] for the fitting parameters a, b, and c, respectively.

2.5.2 Consistency of satellite and NFI data
In order to check the consistency between satellite-derived and

field-measured height–age relationships (see Figure 1A), a
Chapman–Richards equation was fitted to the median growth
curve PGC50 using three methods based on different
combinations of datasets I and II: (M1) dataset II alone, (M2)
dataset I + dataset II, the latter only for ages beyond the satellite
era (tree age >34 years), and (M3) dataset I + dataset II for all ages.
Then, the same Chapman–Richards equation was fitted to each
PGCi(t) for all tree species using M3.

2.5.3 Growth metrics
Using the fitted parameters, we derived three simple metrics to

compare growth curve characteristics between species: the
maximum height hmax � a + h0, the time for which the growth
curve has reached 90% of the maximum height
t90 � −1

b ln(1 − (0.9 − 0.1 h0
a )

1
c), and the early growth rate defined

by the rate of change in height in the first 30 years PGC(30)/30
(see Figure 3C).

FIGURE 6
Growth curves for different tree species. Satellite data are in color (green for pure deciduous trees, red for pure coniferous trees, and blue for mixed
species), and NFI data are in black. Themedian (dots), interquartile range (dark filled color), and the interval between the 5th and 95th quantiles (light filled
color) are shown for satellite data and deciduous oak, mixed broadleaf, and mixed species of NFI data. For the other tree species of NFI data, the black
points correspond to the data points. The numbers of 10-m pixels (left number) and BDF stands (right number in parentheses) are given in black for
the NFI data and in color for satellite data.
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2.6 Explainable machine learning model for
predicting height

Height variability between locations is not only dependent on
age and species but also on the variability of environmental factors
and management practices, which are included in a model based on
interpretable machine learning (see Figure 1C). We opted for a
random forest architecture due to its versatility and robustness as a
machine learning algorithm (Breiman, 2001; Khajavi and Rastgoo,
2023; Zhu et al., 2023). The resilience of random forest to noisy and
collinear data (Yue et al., 2023) allowed us to compute feature
importance (Ishwaran and Lu, 2019), which we used to identify the
key environmental variables affecting tree height.

We used the satellite-derived FORMS-H height map as a
dependent variable and the S&S age map derived from forest
disturbance analysis, the BDF tree species map, and
125 environmental parameters from various French datasets as
predictors (see Table 2). We converted the S&S age map into
aggregated patches and computed the S&S disturbed patches
areas and the intensity of disturbance averaged over the patch,
which were also used as predictors (see Table 2). A 10-m buffer was
drawn inside the S&S disturbance patches, and the S&S age and
disturbed patch area maps, along with the FORMS-H height data
and the tree species map from BDF resampled at a resolution of
20 m, were collocated with the 125 environmental variables,
resulting in dataset I. The tree species from the BDF and the tree
height and age from the NFI were extracted using spatial consistency
between the NFI plots and the BDF stands. Then, the
125 environmental variables maps were collocated with the

center of the grid associated with the NFI plots, leading to
dataset II. One-hot encoding was used to encode the categorical
features. We included an additional feature to indicate whether the
data originated from dataset I or II.

2.6.1 Recursive feature elimination
The fused dataset (dataset I + dataset II) was split into training

and test subsets, ensuring that the ratios of tree species and age
remained the same in each split. We built a random forest predicting
height using all the features and optimized the hyperparameters.
Then, using the training subset and the Python scikit-learn
implementation of RandomForestRegressor with the parameters
n_estimators = 100, max_depth = 15, max_features = 0.5, and
criterion = “friedman_mse,” we performed a recursive feature
elimination using a 3-fold cross-validation. At each iteration, the
feature associated with the lowest feature importance computed is
eliminated. The procedure is monitored by the computation of the
coefficient of determination at each step. We computed the feature
importance in two ways. First, starting from the 128 features, we
computed the feature importance using Gini impurity, leading to a
coefficient of determination R2 slowly increasing and then quickly
decreasing with the number of features (see black data points in
Figure 4A). Then, starting from the 29 features associated with the
maximum of R2, we performed another recursive feature elimination
while computing the feature importance using permutation with the
R2 metric and five repeats (see blue data points in Figure 4A). We
observed a slower decrease in R2 with the number of features when
using permutation feature importance than when using Gini
impurity feature importance. The subset of six features obtained

FIGURE 7
Fitted growth curves, height versus age, for different tree species. The satellite data are in color (green for the pure deciduous trees, red for the pure
coniferous trees, and blue for the mixed species). The NFI data have been digitized into 10-year ranges. PGC50 is denoted by the black markers, and the
black (gray, resp.) whiskers symbolize the PGC25 and PGC75 (PGC5 and PGC95, respectively) percentiles. The fitted Chapman–Richards functions are
shown in solid brown for PGC50, dashed brown for PGC25 and PGC75, and dotted brown for PGC5 and PGC95.
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by permutation feature importance was chosen as this subset
corresponds to the smallest importance exceeding 5%. In order
to avoid overfitting, the parameter max_depth was then set to 11 for
the final model.

2.6.2 SHAP values
In order to analyze the sensitivity of each of the six

explanatory variables on the simulation of tree height, we used
SHAP (Lundberg and Lee, 2017; Lundberg et al., 2020). SHAP is a
game-theoretic approach that attributes the contribution of each
feature to the prediction of a model for a specific instance. The
SHAP values indicate the difference induced by a specific feature
value to the predicted height with respect to the mean predicted
height (Lundberg and Lee, 2017). Consequently, we can assess the
significance of various features. The SHAP interaction values
differentiate between the main effect term and the interactions
of a pair of features (Lundberg et al., 2020). The remaining effects
or main effects of a feature are defined as the difference between
the SHAP value and the off-diagonal SHAP interaction values. For
each tree species, we randomly sampled 500 rows of data, each
from different BDF stands from the test subset. For the tree species
with an insufficient number of stands, the number of data is the
number of rows. The error metrics on this sample are MAE =

3.92 m and R2 = 0.103, which are similar to the metrics computed
over the whole test subset. We computed the SHAP values and the
SHAP interaction values for the 4,134 data using the SHAP
Python package. The expected mean value of the model is
11.34 m. The feature importance was computed by
permutation with respect to the R2 metric with 30 repeats
on the same subset used for the SHAP analysis. The SHAP
feature importances were obtained using the sum of the
absolute SHAP values per feature scaled by the sum over the
features (L1 norm).

3 Results

3.1 Consistency of satellite and NFI data

We compared the tree species of the NFI plots and the BDF, the
height derived from satellites with that observed at the NFI plots,
and the age inferred from S&S with that reported for NFI plots. The
BDF species classification is not very coherent with the NFI
observations: the sample-weighted F1-score (i.e., harmonic mean
of precision and recall) is 0.45. Hence, we used the BDF tree species
in the following for the NFI data. For height consistency, the results

FIGURE 8
Growthmetrics associated with themedian growth curve PGC50. Maximum height hmax (A), time t90 for which the growth curve has reached 90% of
the maximum height (B), and early growth rate r (C) for broadleaf species (green), coniferous (red), or mixed species (blue) corresponding to the fitted
parameters of the median growth curve PGC50. The mean growth metrics for broadleaf, conifer, or mixed species are represented by a horizontal line.
Maximum height hmax versus early growth rate r (D). Maximum height hmax versus time t90 (E). Time t90 versus early growth rate r (F).
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(see Figure 5A) are very good and comparable with an error of
2.94 m obtained over the whole of France (Schwartz et al., 2023). For
age (see Figure 5B), the mean absolute error on the stand age
between S&S and NFI is 11 years, but it becomes 6 years (Senf

and Seidl, 2021) when removing plots with at least one forest edge
and a tree cover smaller than 40% (see Figure 5B). The presence of
forest edges and the low tree cover density are likely to introduce bias
into the age estimation for the NFI. Furthermore, given that the

FIGURE 9
Impact of the six features on the predicted forest height. Correlation of the features (A). Feature importances of the six-feature model computed
using permutation and the R2 metrics and SHAP values (B). Boxplot of the distributions of the disturbed patch area (C), soil pH (D), the altitude (E), and the
summer climatic water budget (SCWB) (F) for each tree species. The data correspond to the data used to compute the SHAP values and interaction values.
Themedian value is represented by a black line, while the upper and lower quartiles are represented by the upper and lower edges, respectively. The
whiskers indicate the 5th and 95th percentiles. SHAP value versus feature value for the following features: age (G), disturbed patch area (H), tree species
(I), soil pH (J), altitude (K), and SCWB (L). The expected height value of 11.34 m is represented by a dashed red line. Sum of the absolute value of the SHAP
interaction values (M).
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median patch area is 4 30-m pixels, it is likely that these errors are
due to geolocalization errors and edge effects of the
disturbed patches.

We compared the growth curves based on the three curve fitting
methods explained in Section 2.4. While R2 is similar for M2 andM3, it
is significantly lower for M1. Nevertheless, the fitted parameter values
are similar between the three methods when considering the error
margins (see Figures 5C–F). This result suggests that combining
satellite, NFI height, and age allows us to better define the shape of
the growth curves at young ages rather than using only the NFI data.
The satellite data are consistent with theNFI reported values whether or
not they are used together in the fit. Based on this, we adopted M3 for
defining the “best” growth curves shown in Section 3.2.

3.2 Polymorphic growth curves per species

The height–age patterns for five broadleaf species, six coniferous
species, and other mixed forests are shown in Figure 6. While the
growth of deciduous oak, mixed broadleaf, and mixed species is
described by a large number of points in both datasets, species such
as chestnut, locust, fir/spruce, mixed pines, and mixed conifer lack
NFI data to constrain their long-term growth. From a visual
assessment of the growth curves (see Figure 6), beech, Douglas,
Austrian pines, and fir/spruce seem to have an almost linear growth.
The growth of beech and Douglas appears to reach the largest height,
larger than that of oak, locust, chestnut, and maritime and Austrian
pines. Poplars stand out due to their fast initial growth, which is the
opposite of oak, beech, Scotch pine, and mixed broadleaf. For
Douglas fir, Austrian pine, and fir/spruce stands, the low number

of measurements at ages higher than 50 years does not permit us to
depict or to estimate the asymptotic value of the maximum
dominant height.

Then, we compared the growth curves after fitting the data with
Eq. 1, fit parameters, andmetrics from Section 2.5 (see Figure 7). The
fitting yielded accurate results: R2 averaged over the five percentile
growth curves (PGCi) and the 14 tree species is 0.77, with the
smallest values corresponding to tree species associated with a small
number of data points.

The growth metrics are not significantly different on average
between deciduous trees, conifers, or a mixture of both (see Figures
8A–C): when comparing coniferous and deciduous species, we
observe similarities in both hmax and early growth rate r.
However, t90 is smaller on average for conifers than for
broadleaves. The early growth rate of mixed species is also not
distinguishable from that of conifers and deciduous trees. Our three
growth metrics, however, are not independent. While hmax and early
growth rate r are not correlated (R2 = 0.01, p = 0.96 in Figure 8C),
they are both correlated to t90 (see Figures 8D–F). The higher the
maximum height, the longer the time it takes to reach it. Conversely,
the greater the early growth rate r, the shorter t90, regardless of what
that hmax may be (see Figures 8D–F). An analogous analysis yields
similar results when comparing the metrics of the growth curves
PGC5, PGC25, PGC75, and PGC95.

3.3 Key features to explain height variations

The growth curves (see Figure 6) suggest a first-order impact of
the age and tree species in determining spatial variations in the

FIGURE 10
Growth curves for different tree species and disturbed patch areas. The median (markers) and interquartile range (filled color). The disturbed patch
areas are categorized into small (blue), medium (purple), and large (orange).
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height of forests. Using explanatory machine learning, we identified
other features that might explain variations in height, confirming a
dominant role for age and species that Figure 4 suggests. While the
coefficient of determination R2 of the random forest model
prediction decreases with the number of features (see Figure 4A),
the mean absolute errors and the coefficients of determination using
128 features, 30 features, or 6 features are similar (see Figures 4B–D).

Themodel with six features is almost as good at predicting the height
as the models using more features, and it predicts height from
satellite andNFI data with similar precision (MAE = 3.32m and R2 =
0.47 for dataset I; MAE = 3.20 m and R2 = 0.53 for dataset II). On
average, for different tree species, the model performs with aMAE of
3.38 m and R2 of 0.43 with standard deviations of 0.39 m and 0.11,
respectively. The six selected features are mostly uncorrelated (see

FIGURE 11
SHAP interaction value between two features. SHAP interaction value versus one feature value, with the interacting feature value highlighted on the
off-diagonal and remaining SHAP effect on the diagonal for the following features: age (1), disturbed patch area (2), tree species (3), soil pH (4), altitude (5),
and SCWB (6). For the age and the disturbed patch area, the colormap is in the logarithmic scale. The expected height value of 11.34m is represented by a
dashed line.
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Figure 9A). From the permutation feature importance (see
Figure 9B), the main driver to the estimated height is tree age
(49%), followed by disturbed patch area, which is defined as the area
of the patch within a stand impacted by a disturbance (19%), tree
species (10%), and the environmental parameters such as soil
pH (9%), altitude (8%), and summer climatic water budget
(SCWB) (5%). The impact of the patch area also depends on the
tree species (see Figure 10). For small patches, the distribution of
values is shifted toward larger values and more diffused than for
larger patches.

The influence of environmental variables on height estimates is
constrained by their range of variation across the study region,
illustrated by the distributions of the disturbed patch area, soil pH,
the altitude, and SCWB (see Figures 9C–F). Except for the patch
area, the distributions of the features are different between species.
We investigated the impact of the features on the model height
estimates using Shapley indexes (Lundberg and Lee, 2017), hereafter
referred to as SHAP. The feature importances from permutation and
SHAP analysis are similar (see Figure 9B). The SHAP values
correspond to the first-order impact of the features on the height
(see Figures 9G–L). The effect of tree age (see Figure 9G) shows that
the model reproduces well the exponential growth of the forest
(Bontemps and Duplat, 2012; Pretzsch, 2020). The model predicts
larger heights when the disturbed area is smaller (see Figure 9H).
Except for poplars and, to a lesser extent, Douglas firs and fir/
spruces, the SHAP values do not depend much on the tree species
(see Figure 9I). Soil pH only has a decreasing impact if the soil pH is
sufficiently basic (see Figure 9J). The altitude has a non-monotonous
effect on the model output (see Figure 9K). The predicted height
increases with the SCWB (see Figure 9L). The second-order impact
of features on the predicted height, which is how one feature
influences the importance of another, was investigated using the
SHAP interaction values (Lundberg et al., 2020) (see Figure 9M).
Mainly, the forest age has a strong interaction with the disturbed
patch area (see Figure 11, cells 1,2 and 2,1). The growth of poplars
and Douglas stands out from the growth of other tree species (see
Figure 11, cell 3). For most tree species, the predicted height
decreases when the disturbed patch area increases, but the effect
is reversed for poplars (see Figure 11, cell 3,2).

4 Discussion

This study combines data obtained from field measurements
and satellite observations to derive height–age growth curves and
retrieve well-known drivers of height. The consistency between
satellite and NFI data is to be noted as a main result. The
combination of satellite and field data enhances the result
accuracy (Hasenauer et al., 2012; Neumann et al., 2015; Næsset
et al., 2020; Breidenbach et al., 2021).

The growth curves derived from the satellite and NFI data are in
agreement with similar results found in the literature for broadleaf
(Crockford and Savill, 1991; Álvarez-González et al., 2010; Bontemps
et al., 2012; Rédei et al., 2014; Pretzsch et al., 2015; Viet et al., 2023),
conifer (Aughanbaugh, 1960; Lemoine, 1991; Zhang et al., 1993; Bravo-
Oviedo et al., 2004; Cieszewski et al., 2007; Pretzsch et al., 2010; Pretzsch
et al., 2015), or mixed species (Pretzsch et al., 2010; Pretzsch et al., 2015;
del Río et al., 2016). Studies of the growth of mixed tree species show a

slower early growth than that of pure species, which is in line with our
results (del Río et al., 2016). The similarity in height between pure and
mixed forests in our results can be attributed to the irregular canopy
height and low density, which is not accurately captured at a resolution
of 10 m (Pretzsch and Schütze, 2016; Aldea et al., 2021). The effects of
tree species on growth cannot be aggregated into a single broadleaf/
coniferous/mixed species group. To date, a number of studies
calculating height or biomass have used the broadleaf/coniferous
distinction alone to take into account the effect of tree species, thus
creating a source of uncertainty (Santoro and Cartus, 2023; Schwartz
et al., 2023).

Our random forest model predicts forest height with an accuracy
(MAE = 3.20 m for 128 features) comparable to the accuracy of the
satellite height map FORMS-H (MAE = 2.94 m with respect to the
NFI and MAE = 3.54 m or 4.50 m with respect to LiDAR HD
measurements). Hence, the accuracy of the model is not reduced by
the simplicity of its architecture because it is already constrained by
the uncertain height values from FORMS-H.

Apart from the age and tree species features that were expected to be
the main predictors of height, our feature elimination procedure
selected three environmental variables (soil pH, altitude, and
summer climatic water budget) and the disturbed patch area. Other
features such as the difference between public and private forests and
the proximity to roads and cities had a negligible impact on the height
prediction. Low relief and a well-developed road network enable forest
management throughout the region (Aguiar et al., 2021). Moreover,
proximity to urban areas such as the Île-de-France region (12 million
inhabitants for 12,000 km2) does not seem to influence forest growth
much (Stone and Skelly, 1974; Pregitzer et al., 2021; Franceschi et al.,
2023). The potential management differences, highlighted by the forest
ownership and whether the stand is in a natural park, may not be very
noticeable since private forests are subject to all types of management,
from intensive cultivation to complete neglect. The ownership of the
forest and the state park features were not found to be important, likely
because this feature inadequately portrays management practices, such
as thinning or selective logging.

The importance of the disturbed patch area on the height model
may be explained by the fact that the tree age is based on the
hypothesis that the forest starts to grow back immediately after the
disturbance. While poplar stands are mostly planted after cutting,
natural regeneration prevails for the majority of other tree species
(IGN, 2020), which is in agreement with our results. In contrast,
natural regeneration is impacted by the micro-climate and the
preservation and dispersion of seeds, in part driven by the
disturbed patch area (Parde, 1962; d Oliveira and Ribas, 2011;
Hanbury-Brown et al., 2022).

Overall, our model accurately predicts the most favorable soil
pH condition for the selected tree species to reach a higher height at
a given age (Hjelm and Rytter, 2016; Cremer and Prietzel, 2017;
Arrobas et al., 2018). Since the SCWB, which corresponds to the
amount of rainfall available to plants once evaporation and
transpiration needs have been met, is always negative (see
Figure 9F), the trees draw on soil reserves to survive the summer.
Notably, in the process of recursive feature elimination, the SCWB
was chosen over summer available water capacity (SAWC), which
quantifies the water available to plants. Since water supplies are
rarely insufficient in the studied area, the accessibility of water to
trees is primarily constrained by rainfall. The susceptibility of beech
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(Weber et al., 2013; Leuschner, 2020), Douglas (Sergent et al., 2014;
Chauvin et al., 2019), fir/spruces (Solberg, 2004; Lévesque et al.,
2013), and Scotch pines (Bigler et al., 2006; Eilmann et al., 2009;
Martínez-Vilalta et al., 2012) to drought aligns with the reports of
previous research. The other species demonstrate an ability to
withstand drought conditions proficiently (Eilmann et al., 2009;
Lévesque et al., 2013). Mixed-species categories encompass the
effects of multiple species not specifically identified by the BDF
and the impacts of mixed species, making it difficult to conclude.

Different biases are associated with the satellite-derived and
ground measurement data: since the BDF was computed from
images spanning 10 years, it is possible that the recent
disturbances have led to a change in the tree species. The
historical S&S disturbance map only indicates one disturbance
event between 1984 and 2020, providing no insight into the age
homogeneity of the resulting forest. Additionally, its 30-m
resolution is coarse, potentially leading to boundary effects.

An indirect space-for-time approach was used to obtain the
growth curves. Assuming that the productivity of each forest site
does not vary over time, temporal dynamics were inferred by
studying multiple sites that differ under abiotic conditions not
directly related to stand age or time (Fukami and Wardle, 2005).
The environmental variables are also supposed to be constant over
the last 100 years. Consequently, any application of these models to
predict changes in site productivity over time is reliant on the
underlying assumption of equivalence between the stands. In the
context of climate change, the invariance of the climatic and
environmental variables is challenged, potentially compromising
our results (Rolo et al., 2016; Wu et al., 2022; Yue et al., 2023).

5 Conclusion

The consistency of the tree height and age derived from
satellite and ground measurements is promising for
monitoring a forest and its evolution at larger scales,
i.e., regional or country level. Here, satellite and ground-based
data were found to be consistent, and thus, they were combined
to produce the first growth curves per species in a large forested
region (question A). The significant variations in tree growth
according to tree species cannot be accurately reported by a
coarse categorization into broadleaf or conifer (question B).
Several environmental factors that are known to influence tree
height were identified in addition to tree age and species: soil pH,
altitude, and summer climatic water budget. In addition, the
post-disturbance growth was shown to be highly dependent on
the disturbed area due to different regeneration methods, natural
or plantation (question C). At a regional level, our results did not
showcase any discernible human impact on tree growth, whether
from urban vicinity or different management techniques, likely
due to a lack of detailed data, specifically on management types.

Management types may also be correlated with other parameters,
such as tree species, soil, and climate, which may make it difficult
to isolate their effects on tree growth.
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