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Abstract

We analyze the impact of agricultural productivity growth on tropical deforestation. Our dynamic model of

forest-to-farmland conversion incorporates costs and market constraints on agricultural output, emphasizing

that productivity growth, rather than its absolute level, shapes deforestation patterns. Addressing the

Jevons’ paradox and Borlaug hypothesis, the model predicts that rising agricultural productivity, reflected

by declining fertilizer price growth, has an ambiguous effect on deforestation. Using tropical forest loss

data (2000-2022) and fertilizer price variations, we find a negative correlation between fertilizer price

growth and deforestation, particularly in regions with high market potential. Without the 10% annual

rise in fertilizer prices over the period, deforestation rates would have been 57% faster, representing 6.6

million additional hectares annually. Conversely, the 3% annual increase in crop prices has a minimal

impact on deforestation. Our results highlight that protected areas do not mitigate the adverse effects of

fertilizer price growth on deforestation.
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1 Introduction

Halting tropical deforestation has been a prominent global policy objective for over three decades.

Yet, global deforestation in 2022 was 20% higher than at the turn of the 21st century.1 This increase in

deforestation has been driven by the expansion of agricultural lands (Branthomme et al., 2023). With

projections indicating a 30% increase in global food demand by 2050 (Fukase & Martin, 2020), the pressure

on forests will intensify in the coming decades.

One potential strategy for curbing deforestation without compromising agricultural output, known

as Borlaug’s hypothesis, involves promoting technologies that improve agricultural productivity such as

fertilizers (Borlaug, 2007; Phalan et al., 2011). These technologies allow farmers to increase yields on their

existing lands, potentially sparing forests from conversion to agriculture. However, increasing yields also

raises the opportunity costs of protecting remaining forests, leading to a potential increase in deforestation

through a rebound effect (Kremen & Merenlender, 2018; Rudel et al., 2009). Both general equilibrium

effects2 and policy interventions, such as the creation of protected areas, could mitigate this rebound effect.

Early discussions in the literature have acknowledged the ambiguous theoretical predictions (Angelsen &

Kaimowitz, 1999; Balboni et al., 2023), and empirical results diverge (Abman & Carney, 2020; Hess et al.,

2021).

In this article, we start by presenting a theoretical model of agricultural production that clarifies

how agricultural productivity affects deforestation over time. We derive three theoretical predictions

from this model that we empirically test in the second part of the paper. In particular, we focus on the

dynamic decision of a farmer to clear forest to expand their agricultural land. Agricultural production in a

given season depends on cumulative deforestation over the previous seasons, and agricultural productivity

depends on the amount of fertilizer used during the current season. Solving the model reveals that

the growth in agricultural productivity, rather than the absolute level of agricultural productivity itself,

influences deforestation rates. It also leads us to our first theoretical prediction which is that the overall

relationship between fertilizer price growth and deforestation is ambiguous.

Farmers across the tropics face varying levels of demand for their agricultural outputs, influenced by

their proximity to densely populated areas (such as the Great Lakes region in Central Africa or across East

Asia) or by their remoteness (like the Congo Basin or the State of Acre in northern Brazil). Consequently,

the ability of farmers to sell their output might be constrained by their market potential.3 We show that

the impact of fertilizer price growth on deforestation is negative when the farmer does not reach their

market potential and positive when they do. As output and fertilizer prices vary from season to season,

farmer’s production may be limited by market potential in some seasons and not in others. This leads to

our second prediction: the impact of fertilizer price growth is larger in regions with lower market potential

compared to areas with higher market potential.
1The data from the Global Forest Initiative used in this paper, available at: https://research.wri.org/gfr/latest-analysis-

deforestation-trends, supports this.
2See (Hertel et al., 2014; Stevenson et al., 2013; Villoria, 2019).
3Market potential is defined as the maximum quantity of product they can sell within each period and is measured by

nightlight intensity inversely weighted by geographical distance.
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Our model finally incorporates environmental policies to explore whether existing ones can be effective

at protecting forests against increases in agricultural productivity. More particularly, our model considers

two types of forests: protected and unprotected ones. Drawing from the law and economics literature, we

assume that enforcement of protected areas is imperfect and primarily operates through fines (Becker,

1968). Our third prediction is that the presence of protected areas in our dynamic setting does not alter

the relationship between fertilizer price growth and deforestation.

Next, we test these three theoretical predictions using tree cover loss data covering 22 years and the

entire tropics. We combine tree cover loss and soil characteristics data with global fluctuations in fertilizer

prices to identify local exogenous shifts in fertilizer prices between 2000 and 2022 at a spatial resolution

of 0.5 degrees × 0.5 degrees (≈ 55km×55km at the equator). Our empirical results reveal a negative

correlation between fertilizer price growth and tree cover loss at a global scale. This implies that areas

where agricultural productivity decreased over the past 22 years have experienced lower deforestation

rates than in areas where agricultural productivity increased. The effect of fertilizers prices is substantial.

It exceeds by ten times the effect of output price growth. During the study period, fertilizer prices rose by

approximately 10% annually, while output prices increased by 3% annually. Without the observed increases

in fertilizer prices, we estimate that the deforestation rate would have been 57% higher. Conversely,

without the increases in output prices, the deforestation rate would have been only 3% lower.

Furthermore, consistent with our second theoretical prediction, we find that the negative correlation

between fertilizers price growth and deforestation is stronger in areas with high market potential. In

addition, we observe a similar negative effect across both protected and unprotected lands. Finally, we

control in some specifications for both the price growth of fertilizers and the agricultural output to account

for general equilibrium adjustments. When doing so, the negative effect of fertilizer price growth on

deforestation remains unchanged.

Contribution. Our study makes several contributions to the economic literature on deforestation.

Firstly, our model highlights the importance of ensuring consistency between the measures used on the

right-hand side (prices, quantities, productivity) and those on the left-hand side (forest cover, forest

loss, or deforestation rate). If the left-hand side variable is measured in levels (such as forest cover),

the right-hand side variables must also be measured in levels. Likewise, if the left-hand side variable

is measured in changes (such as deforestation), the right-hand side variables must also be measured in

changes. Yet, it is common in the literature to explain deforestation (a change) by using right-hand side

variables in levels (Abman & Carney, 2020; Assunção et al., 2023; Berman et al., 2023; Bernard et al.,

2023; Carreira et al., 2023; Cisneros et al., 2021; Harding et al., 2021; Hess et al., 2021; Kassouri, 2024).

Our model underscores that such specification fails to account for the fact that agricultural production

can utilize land that has been deforested in the past, not just the land cleared in the current season.

Secondly, while deforestation and agricultural expansion are intrinsically dynamic phenomena, most

theoretical models in the literature are static (Angelsen, 1999; Chomitz & Gray, 1996; Dominguez-Iino,

2023; Souza-Rodrigues, 2019) or focus on the steady state without deforestation (López, 1997). An

important exception is Harstad (forth.),4 who examines the effects of trade between two entities—the
4Another exception is Farrokhi et al. (2024) who consider a dynamic model of trade and deforestation and focus on the
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South and the North—both possessing market power, on these dynamic phenomena. However, our

objective here is to investigate deforestation at a local level. Therefore, we concentrate on the actions of

price-taking farmers who determine the rate at which they convert forests into farmland, in response to

productivity shocks, such as variations in fertilizer prices.

Thirdly, existing empirical tests of the Borlaug vs Jevons hypotheses for deforestation have been

conducted at the scale of countries. Our dataset encompasses the entire tropics, thereby enhancing the

external validity of our findings.

Fourthly, several empirical studies demonstrate that expanding market access correlates with increased

deforestation, including in Ghana (Abman & Lundberg, 2024), Brazil (Souza-Rodrigues, 2019), the D.R

Congo (Damania et al., 2018) or when focusing on the impact of ratifying a regional trade agreement

(Abman & Lundberg, 2020). Our results on market potential point in the same direction, showing that

higher market potential amplifies the impact of fertilizer price growth on deforestation.

Finally, a substantial body of literature in conservation science shows that protected areas in the tropics

have only limited effectiveness in reducing deforestation (Geldmann et al., 2019; Lindsey et al., 2018;

Meng et al., 2023), especially when farmers face adverse economic conditions (Desbureaux & Damania,

2018). Our analysis contributes to this literature by theoretically and empirically illustrating that existing

protected areas do not attenuate the impact of agricultural productivity growth on deforestation.

In the following Section 2, we present our dynamic model of agricultural production and deforestation.

Section 3 describes the data, the methodology used to construct our main variables of interest, and

our econometric approach. Section 4 contains the baseline results, a number of sensitivity analyses and

investigations of the role of market potential and protected areas. The last section concludes.

2 The Model

2.1 Assumptions

We consider a farmer who produces a quantity of crop y using two inputs: agricultural lands lt and

fertilizers ft. We assume a Cobb-Douglas production function, y(l, f) = lαfγ , with α + γ < 15 and

α, γ ≥ 0. The farmer is price-taker and sells their output at price po
t . The unit cost of farming surface lt is

cl and the unit price of fertilizer at time t is pf
t . The total land surface that can be cultivated at time t,

thereafter agricultural land, is a stock At. This stock can be increased by converting forests to farmlands

at unit cost ca ∈ {ca, ca}. This cost is low (ca = ca) if the converted forest is outside protected areas, and

is high (ca = ca > ca) if the forest belongs to a protected area since it includes the expected fines imposed

for the violation of protected areas.

The dynamics of agricultural land accumulation are At = At−1 + at, where at represents the newly

converted land at time t. Land can only be cultivated if it has been converted into agricultural land.

effect of unilateral versus multilateral changes in trade costs on deforestation at the steady state.
5The Cobb-Douglas function is the standard functional form for agricultural production (Chamberlin & Ricker-Gilbert, 2016;

Griliches, 1964; Hayami, 1970).
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However, farmers are not obligated to cultivate all their agricultural lands, implying that the cultivated

area land must be less than or equal to the total agricultural land, lt ≤ At.

Since not all deforested land is exclusively used for agricultural purposes but also for infrastructure

such as roads, residential buildings for families and workers, and machinery, we introduce ϵ ≥ 0 as the

elasticity of forest conversion to agricultural land. This parameter signifies that to increase agricultural

land by 1%, forest cover must decrease by ϵ%. Denoting Ft as the forested area, we relate it to the

agricultural land At as Ft = 1
ϵ A−ϵ

t .

Additionally, we assume that farmer cannot store their output and face a market potential limit ȳ.

This limit is defined as the maximum quantity of production the farmer can sell in each period, constrained

by transportation costs and the market sizes accessible via the transportation network.

The farmer aims to maximize their expected discounted profits with discount factor δ ∈ [0, 1[, and

thus solves the following optimization program:

max
at,lt,ft≥0

+∞∑
0

δtπt, (1)

where πt = po
t y(lt, ft) − caat − cllt − pf

t ft, given the dynamics of agricultural land At = At−1 + at, the

agricultural land constraint lt ≤ At and the market potential constraint y(lt, ft) ≤ ȳ.

2.2 Theoretical results

The Lagrangian for the optimization problem of the farmer is:

L =
+∞∑
t=0

(
δtπt + λt (at + At−1 − At) + µA

t (At − lt) + µy
t (ȳ − y(lt, ft)) + µa

t at + µl
tyt + µf

t ft

)
, (2)

where λt is the co-state variable associated with the stock At, and, the µs are the multipliers associated

with the non-negativity constraints At − lt ≥ 0, and ȳ − y(lt, ft) ≥ 0, at ≥ 0, lt ≥ 0 and ft ≥ 0.

Assuming that the farmer clears some land and produces some output (lt, ft, at > 0), we must have

µa
t = µl

t = µf
t = 0 and the following necessary conditions hold:

∂L

∂at
= −δtca + λt = 0, (3)

∂L

∂lt
=
(
δtpo

t − µy
t

)
yl(lt, ft) − cl − µA

t = 0, (4)

∂L

∂ft
=
(
δtpo

t − µy
t

)
yf (lt, ft) − pf

t = 0, (5)

∂L

∂At
= λt+1 − λt + µA

t = 0, (6)

µA
t (At − lt) = 0, (7)

µy
t (ȳ − y(lt, ft)) = 0, (8)
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µA
t , (At − lt) , µy

t (ȳ − y(lt, ft)) ≥ 0, (9)

where yx denotes the derivative of y with respect to x = l, f .

Condition (3) asserts that the marginal cost of land conversion must equal the shadow price of

agricultural land. Condition (4) pertains to the choice of the cultivated land area, stating that the

marginal increase in profits equals the marginal increase in the opportunity cost,which includes the

marginal cost of farming k, the scarcity of agricultural land (µA
t ), and the market-induced demand scarcity

(µy
t yl). Condition (5) concerns fertilizer use, requiring that the marginal increase in profits equals the

fertilizer price pf
t . The remaining conditions account for whether the agricultural land constraint and

the market potential constraint are saturated or not. Condition (6) (coupled with (9)) states that the

evolution of the shadow price of agricultural land must equal its marginal value to the farmer (µA
t ).

Note that condition (3) implies λt+1 − λt = δt (δ − 1) c < 0. Therefore, the shadow price of agricultural

land is strictly decreasing over time. Combined with condition (9), this indicates that the farmer has an

incentive to farm all available agricultural lands, i.e., l∗
t = A∗

t .

To simplify our equations, we introduce the following notations: Dt = − ln (1 − rt) represents our

measure of deforestation, where rt = Ft−1−Ft

Ft−1
denotes the deforestation rate, gf

t = pf
t −pf

t−1

pf
t−1

signifies the

the growth rate of fertilizer prices, and go
t = po

t −po
t−1

po
t−1

represents the growth rate of output prices.

The problem can then be solved by distinguishing two cases, based on whether the market potential is

saturated or not. Let us consider these cases separately:

Case 1: Non binding market potential (y(lt, ft) < ȳ): In this case, we must have µy
t = 0. After some

simple computations, one can solve for the optimum.6 The optimal cultivated land surface is given by:

l∗
t = A∗

t = eΦt (po
t )

1
1−α−γ

(
pf

t

) −γ
1−α−γ

, (10)

where Φt = 1−γ
1−α−γ ln

(
α(1−α)

γ
1−γ (δt)

1
1−γ

cl+(1−δ)caδt−1

)
.

We can rewrite this condition in terms of deforestation rate as follows:

− ln(1 − rt) = β1 ln
(

1 + gf
t

)
+ β2 ln (1 + go

t ) + νt, (11)

where β1 = − ϵγ
1−α−γ < 0, β2 = ϵ

1−α−γ > 0, and νt = ln(δ)
1−α−γ + 1−γ

1−α−γ ln
(

cl+ca(1−δ)δt−2

cl+ca(1−δ)δt−1

)
.

The left hand side in equation (11) represents an index of deforestation that rises with increasing

deforestation rates. This equation illustrates that higher growth in fertilizer prices correlates with lower

levels of deforestation. Moreover, deforestation diminishes with increases in the costs associated with land

conversion ca or farming cl.

6The optimal level of fertilizer use is given by f∗
t

A∗
t

= 1−α
α

cl+δt−1ca(1−δ)
p

f
t

.
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Case 2: Binding market potential (µy
t > 0 => y(lt, ft) = ȳ): In this case, using y(l∗

t , f∗
t ) = ȳ and

l∗
t = A∗

t , we directly find the optimal surface of farmed land:7

l∗
t = A∗

t = ȳ
1

α+γ

(
α

γ

pf
t

cl

) γ
α+γ

(12)

We can again rewrite this condition in terms of deforestation rate:

− ln(1 − rt) = β1 ln
(

1 + gf
t

)
, (13)

where β1 = ϵγ
1−α−γ > 0.

This condition suggests a reversal compared to the scenario where the market potential is not binding:

higher growth in fertilizer prices leads to increased deforestation levels. Additionally, in this case, the level

of deforestation is independent of the output price po
t , the cost of converting land ca, or on the cost of

farming cl.

We can compute the optimal value of the multiplier associated with the market potential constraint and

we obtain µy
t = ρt

(
(po

t )α+γ

(pf
t )γ

) 1
1−α−γ , where ρt = δtγ

γ
γ+α

c
α

α+γ
l

α
1−γ+γ

1−α−γ
α+γ

. Let G be the cumulative distribution of

µy
t . Thus G(ȳ) is the probability that the market potential constraint is not binding. Using this notation,

we can compute the expectation of our parameter of interest, β1:

E [β1] = G(ȳ) −ϵ

1 − α − γ
+ (1 − G(ȳ)) ϵ

1 − α − γ
= (1 − 2G(ȳ) ϵ

1 − α − γ
. (14)

This expression carries three notable implications: i) the expected effect of fertilizer price growth on

deforestation (E [β1]) can be either positive or negative, ii) E [β1] decreases as market potential increases,

and iii) it remains independent of clearing cost ca. These implications allows us to formulate three testable

predictions based on the model.

2.3 Predictions

We derive three testable predictions from equation (14):

Prediction 1 [agricultural productivity growth and deforestation]: The link between fertilizer

price growth and the deforestation rate is ambiguous, ∂rt

∂gf
t

≶ 0.

Thus, determining whether the effect is positive or negative is an empirical question. Indeed, market

potential can be binding at certain periods and not at others, particularly in areas with low market

potential. Therefore, the following prediction can be inferred:

7The optimal use of fertilizer is given by f∗
t

A∗
t

= γ
α

cl

p
f
t

7



Prediction 2 [market potential]: The effect of increased fertilizer price growth on the deforestation rate

is more pronounced in areas with lower market potential compared to those with higher market potential,

ȳ1 > ȳ2 =⇒ ∂rt

∂gf
t

|ȳ=ȳ2 > ∂rt

∂gf
t

|ȳ=ȳ1 .

As discussed above, our framework also explores the effect of protected areas by assuming that they

increase increase the cost of land clearance. Based on this assumption, we derive the following prediction.

Prediction 3 [protected areas]: Existing protected areas do not affect the relationship between the

deforestation rate and the growth of fertilizer prices, ∂rt

∂gf
t

|ca=ca
= ∂rt

∂gf
t

|ca=ca

Therefore, protected areas are unable to mitigate forest loss resulting from fluctuations in fertilizer

price growth (see equation (11) and (13)).

3 Data and Empirical Strategy

We consider a full set of grid cells for the tropics, i.e. the area between the Tropics of Cancer at 23◦26’ N

and Capricorn at 23◦26’ S, divided in sub-national units of 0.5 × 0.5 degrees latitude and longitude (≈ 55

× 55 kilometers at the equator). The unit of observation in our dataset is a cell-year between 2001 and

2022 period.

3.1 Data

Deforestation. We use annual tree cover loss data from Hansen et al. (2013) (version v1.10).8 The

data provide an estimation of tree cover density in 2000 at a 1 arc-second (around 30 meters) scale. For

each subsequent year, the data indicate if trees in a pixel were cleared or not. In our baseline estimates,

we follow other global studies and consider a 1 arc-second pixel as being a forest when initial tree cover in

2000 is larger than 25% (Hansen et al., 2010; Heino et al., 2015; Potapov et al., 2008). We estimate the

sensitivity of our results to a 10% or to a 50% canopy thresholds in Section 4.4.

We use Zvoleff (2020)’s package to aggregate data from a 1 arc second at the 0.5-degrees grid cell level,

and we compute the area of tree cover in 2000 and the yearly area deforested, from 2001 to 2022 (all in

hectares). This aggregation from 1 arc-second to the 0.5-degrees scale limits the issue of non-classical

measurement errors - a known problem in the Hansen dataset (Alix-Garcia & Millimet, 2023),9 and

allows to use the Hansen dataset in a panel setting (Garcia & Heilmayr, 2024). With this data, and

prompted by our model (equations 11 and 13), our dependent variable, the time-varying cell-specific index

of deforestation is: Deforestit = − ln(1 − rit), where rit = lossit/coverit is the deforestation rate, lossit is

forest loss, and coverit is forest cover at the beginning of year t.

8See https://www.globalforestwatch.org.
9Each 0.5-degrees grid cells contains approximately 4 millions 1 arc-second pixels.
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Fertilizer Price Index. As there are no local fertilizer price data with sufficient spatial granularity

from 2001 to 2022, and because local fertilizer prices would likely be endogenous to local deforestation, we

approximate fertilizers price as in Berman et al. (2021). The intuition is that different cells are suitable for

different crops, and the fertilizer content required for each crops varies. Fertilizers typically contain a mix

of nitrogen, phosphate and potassium (N-P-K). This mix varies across different types of fertilizers to meet

crop-specific needs. By combining data on local crop suitability with the international market price of

each fertilizer component, we construct a fertilizer price that varies across locations and over time. More

precisely, we combine three types of data: (i) data on crop suitability from fao’s Global Agro-Ecological

Zones (GAEZ)10; (ii) information on crop-specific nutrients uptakes from the International Plant Nutrient

Institute (ipni), measured in kg/ha (Table A 4, Appendix Section B); and (iii) data on the annual price of

each nutrient from the World Bank Commodities Dataset.11

GAEZ data is constructed from models that use location characteristics such as climate information (as

rainfall and temperature), soil characteristics and crop characteristics to estimate the suitability of crops

by pixels of 0.08°×0.08°. The primary advantage of this data lies in its ability to isolate crop suitability

from deforestation, as it does not rely on actual crop production.

We focus on 27 crops for which data on crop nutrients specific needs and agronomic suitability are

available.12 We compute the cell-specific relative suitability of the crop c in cell i (γic) by dividing the

suitability of the crop (Sic) by the sum of the suitability of the crops in the cell i as follows:

sic = Sic∑27
j=1 Sjc

. (15)

We then compute, for each cell, the international market price of a kilogram of local fertilizer based on the

required N-P-K mix for each crop, weighted by its relative suitability in the cell :

pf
it =

∑
c

sic

(
P N

t qN
c + P P

t qP
c + P K

t qK
c

)
, (16)

where {P N
t , P P

t , and P K
t } represent the real international market prices of nitrogen, phosphate, and

potassium respectively, and {qN
c , qP

c , and qK
c } are the required proportion (%) of the three nutrients for

crop c, with qN
c + qP

c + qK
c = 1. These proportions are computed from the quantities of nutrients that are

removed from the soil at the time of harvest (in kg/ha), which is the quantity of each nutrient (in pounds)

contained in 1 ton the crop. Prompted by our model (equations 11 and 13), we define our main explanatory

variable, the (ln of one plus) fertilizer price growth, as follows: Fert. p. growthit = ln
(

1 + gf
it

)
where

gf
it = (pf

it − pf
it−1)/pf

it−1 is the fertilizer price growth rate.
10GAEZ, FAO data, available http://www.fao.org/nr/gaez/about-data-portal/en/
11Figure A 3 in Appendix B displays nutrient prices growth over time. The three price spikes that occurred between 2008

and 2009 were due to a rise in demand triggered by US biofuel programs and the imposition of a 135% Chinese export tariff on
phosphate (Schröder et al., 2010).

12The 27 crops are: barley, buckwheat, cabbage, chickpea, citrus, cow-pea, dry-pea, flax, maize, oat, millet, pigeon-pea, rape,
reed, rice, rye, sorghum, soybean, sugar-cane, sugar-beet, sunflower, sweet-potato, switch-grass, tobacco, tomato, wheat, and
white-potato.
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Market Potential. For a given cell i, the market potential (MPi) is computed as the sum of the

nightlight intensity in 2000 of the other cells in the same continent weighted by the distance between the

cells:13

MPi =
∑
z ̸=i

nz

diz
, (17)

Complementary data. Output price is a cell-specific price index computed as in Berman et al.

(2023). It is a weighted sum of World Bank international crop prices (P o
ct) with weights being the relative

suitability of each crop (sic) from GAEZ:

po
it =

∑
c

sicP o
ct. (18)

In line with our model, we use the growth rate of this variable as our measure of (the ln of one plus)

output price growth, Output p. growth = ln(1 + go
it) where go

it = (po
it − po

it−1)/po
it−1 is the output price

growth rate.

We also construct two weather variables, average annual temperature (in ◦C) and total annual

precipitation (in mm), to account for local average conditions that might favor or limit deforestation.

Our variables are derived from the interpolated data by Matsuura and Willmott (2015) which has been

extensively used in economics (e.g.: Damania et al., 2020; Dell et al., 2012).

We use the World Database on Protected Areas (Bingham et al., 2019) to identify cells inside and

outside protected areas.14 We consider the year 2000 to avoid endogeneity concerns related to protected

areas (see Amin et al., 2019). We use a dummy variable (Parks) which is set to 1 if any of the land in the

cell is part of a protected area (this is the case for 53% of our sample).

We compute the average distance between the cells’ centroids and the neareast ports and cities using

data from Nelson et al. (2019). We consider cities categorized according to their number of inhabitants

([3k-5k[, [5k-50k[ [50k-100k[, [100k-200k[, [200k-1 million[, [1 million - 5 million] and [5million and +]) and

ports categorized according to their size (very small, small, medium and large).15

Final Sample. Our final sample covers the period 2001-2022 and is composed of 13,695 cells for

which agronomic suitability data is available and forest cover in 2000 was strictly positive, i.e. at least 1

arc-second pixel is forest where the canopy threshold is larger than 25% of the cover. Our dataset is a

balanced panel of 300,694 observations. Table 1 displays summary statistics about the main variables,

including initial forest cover, deforestation and the price indexes.

Figure A 4 in Appendix B maps deforestation, fertilizer price growth, and their changes for each grid

cell during the sample period. Panels A and B show yearly average deforestation and our fertilizer price

growth index, respectively. The maps suggest a negative correlation between fertilizer price growth and

deforestation. Panels C and D show annual variations in deforestation and our annual fertilizer price
13Nightlight data from the DMSP-OLS, Nighttime Lights Time Series Version 4 (Average Visible, Stable Lights, & Cloud

Free Coverages), as available in PRIO-GRID, see .
14See https://www.protectedplanet.net/en/thematic-areas/wdpa?tab=WDPA
15Nelson et al. (2019) estimates are based on data for cities from Pesaresi and Freire (2016), and data for 3,700 ports locations

and characteristics from National Geospatial-Intelligence Agency (2017).
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Table 1: Summary Statistics
Variable Mean Std. Dev. N

Deforest (-ln(1-r)) 0.008 0.053 300694
Deforest rate (r) 0.007 0.029 300694
Fert. p. growth (ln(1+gf)) 0.066 0.223 300694
Fert. p. growth (ln(1+go)) 0.097 0.269 300694
Output p. growth (ln(1+go)) 0.025 0.101 300694
Output p. g. rate (go) 0.03 0.105 300694
Fert. p. index (pf) 250.387 95.41 300694
Output p. index (po) 149.553 27.962 300694
Rainfall 1.67 0.887 292972
Temperature 19.714 3.512 292972
Market Pot. 8.478 1.12 300694
Parks 0.538 0.499 300694
Parks, cat 1 or 2 0.172 0.377 300694
Distance to ports (very small, ln) 6.363 1.019 300584
Distance to ports (small, ln) 6.489 0.947 300584
Distance to ports (medium, ln) 6.796 0.993 300584
Distance to ports (large, ln) 7.231 0.889 300584
Distance to cities (> 3k inhab., ln) 6.472 1.232 300628
Distance to cities (> 5k inhab., ln) 5.359 1.25 300628
Distance to cities (> 50k inhab., ln) 5.651 1.192 300628
Distance to cities (> 100k inhab., ln) 5.867 1.23 300628
Distance to cities (> 200k inhab., ln) 6.022 1.168 300628
Nightlights 2000 (ln) 3.687 3.788 300694

Note. Deforest is our index of deforestation computed as minus the log of one minus the deforestation rate (loss over forest cover),
Deforest rate (r) is forest loss over forest cover, Fert. price growth is the log of one plus the current period fertilizer price growth rate,
Fert. p. g. rate (gf ) is the growth rate of the price of fertilizers, Output price growth is the log of one plus the current period fertilizer
price growth rate, and Output p. g. rate (go) is the growth rate of the price of the output. Prices data come from the World Bank
Commodities Dataset, see https://databank.worldbank.org/databases/commodity-price-data. Rainfall and Temperature data come from
the climate research unit from the University of East Anglia, see https://crudata.uea.ac.uk/cru/data/hrg/. Market potential is the log
of night time lights intensity in 2000 weighted by the inverse of the distance between the cells. Dist. to cap. is the geodesic distance
between each centroid grid cells and the capital city of each country. Dist to port. is the geodesic distance between each centroid grid
cell of 0.5×0.5 degree longitude and latitude and the closest port, computed using the World Port Index dataset 18 that provides GPS
location of ports with a depth larger than 11 meters, see https://msi.nga.mil/Publications/WPI. Nightlights 2000 is the log of night
time lights intensity in 2000, data from the DMSP-OLS, Nighttime Lights Time Series Version 4 (Average Visible, Stable Lights, &
Cloud Free Coverages), as available in PRIO-GRID, see . Protected area data come from the World Database on Protected Areas, see
https://www.protectedplanet.net/en/thematic-areas/wdpa?tab=WDPA.
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growth index, respectively. There also appears to be a negative correlation between these two variations,

suggesting that Jevon’s paradox holds true.

3.2 Empirical specification

We denote cells by i and years by t. Our first prediction is that the link between fertilizer price growth

and deforestation is ambiguous. We estimate the following specification:

− ln(1 − rit) = β1 ln
(

1 + gf
it

)
+ X′

itβX + ηi + µSt + εit, (19)

Deforestit = − ln(1−rit) is our index of deforestation and Fert. p. growthit = ln
(

1 + gf
it

)
is our index

of fertilizer price growth, both derived from equations (11) and (13). In some specifications, we include a

vector X′
it that encompasses a set of control variables (the price growth of the agricultural output, average

annual temperature and total annual precipitation). In our baseline estimates, we saturate our model with

cell and country-year fixed effects (ηi and µSt, respectively). The inclusion of cell fixed effects controls

for any time-invariant cell characteristics that may correlate with both the average deforestation rates

and crop prices (such as geography, topography, and soil characteristics). The inclusion of country ×

year fixed effects accounts for any time-variant country characteristics, such as global trends in overall

crop prices, nationwide shocks, or policy changes that may trigger or hamper deforestation. εi,t is the

error term. Standard errors are clustered by the cell in the baseline, and in our sensitivity analysis, we

allow for spatially correlated errors within a larger radius (see Table A 3 in Appendix B). We estimate the

model using an Ordinary Least Square estimator. Finally, to test predictions #2 and #3, we estimate

equation (19) augmented with interaction terms between Fert. price growthi,t and cell-specific character-

istics, e.g. market potential and the share of the cell covered by a protected area (as a proxy of the cost of

clearing land).

4 Results

4.1 Agricultural productivity and deforestation in the tropics

Table 2 displays our baseline results. Across tropical regions, we find that cell-specific changes in

fertilizer prices and the rate of deforestation are negatively correlated: a decrease in the growth of fertilizer

prices corresponds to an increase in tree cover loss. This finding holds when accounting for country×year

fixed effects (column 2). Our model (equation 11) highlights that the growth of agricultural output prices

is also a significant driver of deforestation. In column 3, where we include the growth of the agricultural

output prices, several key results emerge. Firstly, the coefficient of our variable of interest remains largely

unchanged. Secondly, we find a positive correlation between the growth of agricultural output prices

and deforestation, albeit with a much weaker magnitude compared to fertilizer price growth. Lastly, the

magnitude of the effect of fertilizer price growth is sizeable: a one standard deviation decrease in (ln)
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fertilizer price growth is associated with a 0.26 standard deviation increase in deforestation. This effect

is more than ten times larger than the effect of a one standard deviation increase in the (ln) growth of

output prices, which results in a 0.02 standard deviation increase in deforestation.

Between 2001 and 2022, fertilizer and output prices increased respectively by an average of 9.7% and

3%, respectively (Table 1). Our estimates in Table 2 indicate that this increase in fertilizer prices resulted

in less deforestation, whereas the increase in output prices led to more deforestation over the period.

Indeed, in a scenario without any variations in fertilizer prices, deforestation would have been 57% higher

(with an annual deforestation rate of 1.1% instead of 0.7%), amounting to an additional 146 millions

hectares of deforestation over our study period, or 6.6 millions hectares per year. Conversely, without any

change in output prices, deforestation would have been only 3% lower (with an annual deforestation rate

of 0.68% instead of 0.7%), representing a reduction of 7.6 million hectares of tree cover loss over the study

period.

Interpreting this result through the lens of our model, it suggests that farmers’ production is typically

not constrained by their market potential. Therefore, a decrease in fertilizer prices generally incentives

farmers to expand their farmland by clearing more forested land. In other words, this finding supports the

Jevons’ paradox in the context of fertilizer price growth and deforestation dynamics in the tropics since

2000, while it does not support Borlaug’s hypothesis.

From columns 4 to 7, we conduct several sensitivity tests. First, deforestation in Brazil is predominantly

driven by cattle farming, whereas crop farming is more prevalent in other countries (Assunção et al., 2020;

Branthomme et al., 2023; Souza-Rodrigues, 2019). Consequently, deforestation in Brazil is expected to be

less less sensitive to changes in fertilizer prices than most other countries. When excluding Brazil from our

sample (which constitutes 20% of all observations), our main effect remains robust and the magnitude of

the effect slightly increases. Second, we address concerns that our findings may be driven solely by countries

that are major fertilizer producers. To test this, we exclude cells in the tropics belonging to the largest

fertilizer-producing countries (China, India, Indonesia, and USA).16 The effect size remains unchanged

(column 5). Regarding the granularity of the analysis, we exclude outliers, which are defined using the

estimates from column (2). We exclude all observations with residuals greater than one quarter of the

standard error (7.5% of our sample), yet our results remain consistent (column 6). Finally, including both

cell-specific average annual temperature and total annual precipitation does not alter the magnitude of our

observed effect (column 7). Additional sensitivity tests are presented in Section 4.4 and in Appendix B.

4.2 The role of market potential

The second prediction of our theoretical model posits that the effect of fertilizer price growth on

deforestation varies with the the market potential of the cell. To test this, we augment equation (19) with

an interaction between cell-specific fertilizer price growth and our measure of market potential (Table 3).

Although not explicitly reported, output price growth is also interacted with our market potential measure.

Consistent with prediction 2, our findings suggest that the effect of fertilizer price changes depends on
16see Hernandez and Torero (2013).
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Table 2: Baseline Estimates

(1) (2) (3) (4) (5) (6) (7)
Dep. Var.: Deforest

Sample full full full w/o w/o w/o full
Brazil Top fert. prod. outliers

Fert. price growth –0.068∗∗∗ –0.065∗∗∗ –0.061∗∗∗ –0.073∗∗∗ –0.069∗∗∗ –0.009∗∗∗ –0.063∗∗∗

(0.016) (0.015) (0.015) (0.019) (0.017) (0.001) (0.015)
Output price growth 0.008∗∗∗ 0.012∗∗∗ 0.009∗∗∗ 0.001∗∗∗ 0.008∗∗∗

(0.002) (0.003) (0.002) (0.000) (0.002)
Rainfall –0.001∗∗∗

(0.000)
Temperature 0.002∗∗∗

(0.001)

Obs. 300694 300694 300694 240612 260280 267515 292950
Mean Defor. 0.008 0.008 0.008 0.008 0.008 0.004 0.008
Cell FE yes yes yes yes yes yes yes
Country×Year FE no yes yes yes yes yes yes
Year FE yes no no no no no no
Effect of +1 S.D.
Fert. price growth -0.015 -0.014 -0.014 -0.016 -0.015 -0.002 -0.014
Output price growth 0.001 0.001 0.001 0.000 0.001

Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. Standard errors clustered by cell in parentheses. Deforest is our
index of deforestation computed as minus the log of one minus the deforestation rate (loss over forest cover), Fert. price growth is the log of
one plus the current period fertilizer price growth, and Output price growth is the log of one plus the current period fertilizer price growth.
In column (4) we exclude Brazil from our sample. In column (5), top 5 producer countries of the main fertilizer types (Hernandez & Torero,
2013) are dropped: China, India, Indonesia, and USA belong to these countries and contain cells in the tropics. In column (6), we exclude
from our sample all the observations with a residual greater than one quarter the standard error (using the estimates from column (2)). ∗

significant at 10%, ∗∗ significant at 5%, ∗∗∗ significant at 1%. Standard errors clustered at the cell level
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the level of (time-invariant) market potential of the cell. Specifically, higher market potential strengthens

the impact of fertilizer prices. To rule out the alternative explanation that market potential effects are

driven solely by the cell’s level of development, we interact changes in fertilizer prices with the cell-specific

average nighttime light intensity in 2000. Our results are barely unchanged (column 2). Furthermore,

considering the varying proximity of cells to ports and cities, we compute the average distance from

each cell to large, medium, and small ports, and interact these distances with changes in fertilizer prices.

For cities, we interact with the cell-specific changes in fertilizer prices with different distances to cities,

according to their number of inhabitants ([3k-5k[, [5k-50k[, [50k-100k[, [100k-200k[, [200k- 1 million[, [1

million - 5 million[ and [5million and +]). Note that the output price growth is also interacted with these

distances. Even with these controls, the interaction effect between cell-specific changes in fertilizer prices

and market potential remains negative and statistically significant (column 3). In terms of magnitude, the

effects are not negligible. For cells with a low market potential (25th percentile, 7.59), a one standard

deviation decrease in fertilizer prices is associated with a 0.24 standard deviation increase in deforestation.

Conversely, for cells with a high market potential (seventy fifth percentile, 9.32), a one standard deviation

decrease in fertilizer prices leads to a 0.28 standard deviation increase in deforestation, indicating that the

effect is 16% larger for cells with high market potential compared to those with low market potential.

Table 3: The role of market potential

Deforestation
(1) (2) (3)

Fert. price growth –0.016 –0.019 –0.005
(0.022) (0.026) (0.041)

× Market potential –0.005∗∗∗ –0.005∗∗ –0.007∗

(0.002) (0.002) (0.003)
Output price growth 0.008∗∗∗ 0.006∗∗∗ 0.031∗

(0.002) (0.002) (0.017)

Obs. 300694 300694 300540
Mean Defor. 0.008 0.008 0.008
Cell FE yes yes yes
Country×year FE yes yes yes
Nighttime light no yes yes
Distance to cities no no yes
Distance to ports no no yes

Note. * significant at 10%; ** significant at 5%; *** significant at 1%. Standard errors clustered by cell in parentheses. Output price
growth and corresponding interaction var. included but coef not reported. Deforest is our index of deforestation computed as minus the
log of one minus the deforestation rate (loss over forest cover), Fert. price growth is the log of one plus the current period fertilizer price
growth, and Output price growth is the log of one plus the current period fertilizer price growth. Market potential is the log of night time
lights intensity in 2000 weighted by the inverse of the distance between the cells. ∗ significant at 10%, ∗∗ significant at 5%, ∗∗∗ significant
at 1%. Standard errors clustered at the cell
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4.3 Protected areas

Prediction 3 from our theoretical model stipulates that an increase in the cost of converting land does

not affect the relationship between agricultural productivity and deforestation. Protected areas mean

higher total clearing costs for those who violate them, due to the fines imposed (Robinson et al., 2010).

Consequently, we replicate the specifications displayed in Table 3 by adding an interaction term between

the cell-specific changes in fertilizer prices and the presence of protected areas. From columns (1) to

(3), our measure encompasses all protected areas included in WDPA dataset. We do not identify any

significant effect of protected areas on the relationship between fertilizers price growth and deforestation.

The literature explicitly mentions that enforcement of protected areas is an important determinant of

their effectiveness. This is why, from columns 4 to 6, we focus only on the least permissive protected

areas, corresponding to those with a IUCN classification I and II.17 Once again, our empirical estimate

is consistent with prediction 3, since we do not identify a different effect of agricultural productivity

growth on deforestation according to this measure of strength of protected area enforcement (which should

theoretically increase the cost of forest clearing).

Table 4: The role of protected areas

Deforestation
(1) (2) (3) (4) (5) (6)

Fert. price growth –0.016 –0.019 –0.005 –0.016 –0.018 –0.004
(0.022) (0.026) (0.041) (0.022) (0.026) (0.041)

× Market potential –0.005∗∗∗ –0.005∗∗ –0.007∗ –0.005∗∗∗ –0.005∗∗ –0.007∗

(0.002) (0.002) (0.003) (0.002) (0.002) (0.003)
× Parks 0.001 0.001 0.001

(0.001) (0.001) (0.001)
× Parks, cat 1 or 2 0.001 0.001 0.001

(0.001) (0.001) (0.001)
Output price growth 0.008∗∗∗ 0.006∗∗ 0.031∗ 0.008∗∗∗ 0.006∗∗∗ 0.031∗

(0.002) (0.002) (0.017) (0.002) (0.002) (0.017)

Obs. 300694 300694 300540 300694 300694 300540
Mean Defor. 0.008 0.008 0.008 0.008 0.008 0.008
Cell FE yes yes yes yes yes yes
Country×year FE yes yes yes yes yes yes
Nighttime light no yes yes no yes yes
Distance to cities no no yes no no yes
Distance to ports no no yes no no yes

Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. Standard errors clustered by cell in parentheses. Deforest is our
index of deforestation computed as minus the log of one minus the deforestation rate (loss over forest cover), Fert. price growth is the log
of one plus the current period fertilizer price growth. Output price growth and corresponding interactive variables are included but the
coefficients are not reported. ∗ significant at 10%, ∗∗ significant at 5%, ∗∗∗ significant at 1%. Standard errors clustered at the cell

17Protected Areas of IUCN category I aims at preserving ecosystems in a pristine, undisturbed state with minimal human
intervention. In IUCN category II, some sustainable human activities such as recreation and tourism are permitted but they are
still prioritizing conservation efforts. In comparison, IUCN categories III to VI represent a spectrum of protected areas with
varying management objectives. They emphasize more the promotion of sustainable resource use.
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4.4 Sensitivity Analysis

Heterogeneity We found no strong heterogeneity in the main effect between cells with different levels

of market potential (see Table 3), part of a protected area or not (Table 4), or geographical location

(Tables 3 and 4). In addition, to rule out the possibility of specific years or countries driving our main

result, we remove years and countries one by one, and our main point estimate remains remarkably stable

(Figures A 1 and A 2).

Dynamic Effects Most of our results suggest little spatial and temporal heterogeneity (see above).

Moreover, our theoretical model shows that contemporaneous fertilizer price growth affects deforestation

without impacting future deforestation, indicating that there are theoretically no dynamic effects. To

confirm that heterogeneous or dynamic effects are not a threat to our conclusions, we use a recent approach

that is robust to heterogeneity.

In our baseline specification, our “treatment” refers to the fluctuation in fertilizer price growth, which

is a continuous variable. To test whether there are dynamic effects, we compute the estimator proposed

by de Chaisemartin and D’Haultfœuille (2024). For this, we slightly modify the definition of our price

index. The design requires that at least two groups of cells share the same treatment during the initial

period (2001) but diverge in subsequent years of treatment. Specifically, fertilizer price growth in certain

cells must become non-null at different points in time. Analysis of the trends in nitrogen, phosphorus, and

potassium prices on the international market (Figure A 3 in Appendix B) indicates relative stability in

2001 and 2002, with growth rates of less than 5%. Nitrogen prices experienced an initial spike in 2003,

followed by spikes in potassium and phosphorus prices in subsequent years. We leverage these (three)

staggered spikes to estimate the dynamic impact of fertilizer price growth on deforestation.

Doing so, we disregard fertilizer price growth rates below 5% by setting them to zero. Additionally, we

only consider the most suitable crop in each cell and omit less critical nutrients for this crop. Specifically,

we exclude nitrogen, phosphorus, or potassium when their respective shares in Table A 4 are less than one

third, recalculating the shares accordingly. With these assumptions, we can employ the dynamic estimator

as design restriction 1 in de Chaisemartin and D’Haultfœuille (2024) holds true in our dataset. Using this

modified measure of fertilizer price growth (the natural logarithm of one plus the growth rate, in line with

theory), we estimate the following equation:

− ln(1 − riτ ) =
2∑

t=−1,t̸=0
βt−1

1 ln
(

1 + g̃f
iτ+t−1

)
+ X′

iτ βX + ηi + µτ + εiτ , (20)

where g̃f
iτ+t−1 represents the fertilizer price growth at time τ + t − 1 for the main nutrients of the most

suitable crop in cell i. We assess the impact of fertilizer price growth up to two years following changes in

price growth, as well as a placebo effect two years prior to the treatment (with t = 0, the year before the

treatment, as the reference point). To discern between the effects attributed to changes in the fertilizer

price index and those resulting from modifications to the estimator, we also re-estimate our baseline model

using the adjusted fertilizer price index.

17



Table 5: Dynamics effects vs TWFE

(1) (2) (3) (4)
Dep. Var.: Deforest

Estimator TWFE dCDH TWFE dCDH
(2024) (2024)

Fert. price growthτ .000 -.003∗∗∗ .000 -.003∗∗∗

[-.000,.001] [-.005,-.002] [-.000,.001] [-.005,-.002]
Fert. price growthτ−2 .000 .000

[-.001,.002] [-.001,.001]
Fert. price growthτ+1 .000 .000

[-.001,.002] [-.001,.002]
Cell FE yes yes yes yes
Year FE yes yes yes yes
Weather controls no no yes yes
Effect of +1 S.D.
Fert. price growthτ .000 -.001 .000 -.001

Notes: 95% confidence intervals in brackets. Deforest is our index of deforestation computed as minus the log of one minus the deforestation
rate (loss over forest cover), Fert. price growth is the log of one plus the current period fertilizer price growth. Weather controls include
rainfall and temperature. All regressions include Output price growth as a control variable.

Our estimates are presented in Table 5. In columns (1) and (2), we solely incorporate growth in

output prices as control variables. Employing the Two-Way-Fixed Effects (TWFE) estimator akin to our

baseline, we observe a minimal and statistically insignificant impact of the adjusted fertilizer price growth

measure. This outcome is somewhat expected, considering that the modified measure is significantly

simpler compared to our original approach. Notably, it only considers the most suitable crop in each cell

and the primary nutrients for that particular crop, whereas our original measure encompasses all suitable

crops and their corresponding nutrient requirements. Using the dynamic DID estimator proposed by

de Chaisemartin and D’Haultfœuille (2024) to estimate the impact of continuous treatments, we detect a

negative effect of the adjusted fertilizer price growth measure on deforestation (column 2). However, this

effect appears considerably weaker than in our baseline estimates, presumably due to the coarse nature of

our modified measure. In columns (3) and (4), we re-estimate the same specifications as in columns (1)

and (2), augmented with weather controls. The inclusion of these additional controls does not alter our

findings. Figure 1 depicts the findings derived from column (4), revealing that the impact of fertilizer

price growth is negative one year following the fertilizer price growth shock but the effect does not persist.

Importantly, there is no anticipation of the effect, and there are no discernible differences between the

treated and control cells prior to the fertilizer price shock.

These results largely validate our qualitative observations. Firstly, they indicate that the effect of

fertilizer price growth is contemporaneous, aligning with the predictions of our theoretical model. Secondly,

the negative impact of fertilizer price growth on deforestation suggests the presence of Jevons’s paradox

rather than Borlaug’s hypothesis.

Other sensitivity tests. We show that our estimates are robust when changing the canopy threshold

to defined forest from 25% to 10% or 50% (Table A 2). Secondly, recognizing the spatial correlation
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DID, from last period before treatment changes (t=0) to t

Figure 1: Dynamic effects (de Chaisemartin & D’Haultfœuille, 2024)

Note. Point estimate and confidence interval from Table 5 column (4).

between crop suitability and the autocorrelation of fertilizer prices, we allow the error terms to exhibit

infinite autocorrelation and spatial correlation up to various distances (ranging from 100km to 500km).

We implement this by computing Conley (1999) standard errors (see Table A 3 in the Appendix). Notably,

our estimates of the fertilizer price growth effect remain highly precise. However, we observe a loss of

precision in our estimates of the output price growth effect as we increase the spatial radius.
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5 Concluding Remarks

Deforestation has significant global social welfare implications, often driven by rational economic

decisions made by farmers facing trade-offs. In this paper, we contribute to understanding these decisions,

focusing particularly on the debated relationship between agricultural productivity and deforestation,

which has yielded mixed empirical findings.

We develop a dynamic model of agricultural production that incorporates deforestation and derive

predictions regarding how farmers respond to changes in input and output prices, considering factors

such as market potential and forest protection policies. Our model reveals theoretical ambiguity in how

deforestation reacts to price growth changes and highlights mispecifications in previous empirical studies

concerning this relationship. Empirically, we test our predictions on a large scale across the entire tropical

band. We find that decreases in agricultural productivity, represented by exogenous fertilizer price growth

between 2000 and 2022, led to lower deforestation rates compared to scenarios without this fertilizer price

growth. This elasticity varies with the farmers’ market potential but is unaffected by the presence of

protected areas.

Importantly, our analysis shows that fertilizer price growth exerts a larger impact on deforestation

than output price growth. This finding underscores the policy implications: demand-side policies, such as

those affecting food demand, have limited potential to mitigate deforestation compared to supply-side

policies. Moreover, global agricultural subsidies, exceeding $635 billion annually, making agriculture the

world’s most distorted sector (Panagariya, 2005), significantly influence fertilizer prices and usage, thereby

impacting deforestation trends. Decreasing these subsidies, at least in areas with high market potential,

could yield beneficial outcomes for forest conservation.
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Appendix

A Theory

Since our deforestation data (Hansen et al., 2013) focuses on forest loss rather than forest cover or

reforestation, our analysis predominantly centers on deforestation rather than changes in forest cover in

both theory and empiric. Our model also allows us to explore the relationship between fertilizer prices and

forest cover. As discussed in the theory section, this relationship hinges on whether the constraint imposed

by market potential is binding. When the market potential constraint is not binding, using equation (10)

and Ft = 1
ϵ A−ϵ

t , we find that the optimal forest cover level F ∗
t is characterized by:

ln(F ∗
t ) = βF

1 ln(pf
t ) + βF

2 ln(po
t ) + ηt, (21)

where βF
1 = ϵγ

1−α−γ > 0, βF
2 = − ϵ

1−α−γ < 0, and ηt = −ln(ϵ) − ϵΨt.

In this case, a decrease in fertilizer prices or an increase in output prices lead to a decrease in forest

cover.

When the market potential constraint is binding, we obtain, using equation 12:

ln(F ∗
t ) = βF

0 + βF
1 ln(pf

t ), (22)

where βF
1 = − ϵγ

α+γ < 0 and βF
0 = 1

α+γ ln(ȳ) + γ
α+γ ln( α

γcl
).

Here, the expectation of the parameter of interest is E
[
βF

1
]

= G(ȳ) ϵγ
1−α−γ − (1 − G(ȳ)) ϵγ

α+γ . The sign

of the relationship between fertilizer prices and forest cover is thus ambiguous. Intuitively, one would

expect tha that it is opposite to the sign of the effect of fertilizer price growth on deforestation, E [β1].

But it is not necessarily the case since E [β1] ≥ 0 ≡ G(ȳ) ≤ 1
2 while E

[
βF

1
]

≥ 0 ≡ G(ȳ) ≥ 1 − α − γ. As

previously mentioned, the Hansen data are not well-suited for studying forest cover. However, it is feasible

to build an annual measure of forest cover by subtracting cumulative forest losses from the forest cover in

2000. Using this measure and our data, our estimates again suggest a trend aligned with Jevon’s paradox:

higher fertilizer prices are associated with higher level of forest cover (see Appendix B).
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B Figures and Tables

Table A 1: Forest cover

(1) (2) (3) (4) (5) (6) (6)
Dep. Var.: Forest cover

Sample full full full w/o w/o w/o full
Brazil Top fert. prod. outliers

(log-) Fert. Price 44.102∗∗∗ 34.836∗∗∗ 20.496∗∗∗ 19.765∗∗∗ 28.255∗∗∗ 18.683∗∗∗ 21.626∗∗∗

(1.571) (2.133) (2.088) (2.124) (2.274) (0.608) (2.185)
(log-) Output Price –14.566∗∗∗ –17.930∗∗∗ –11.993∗∗∗ –0.629∗∗∗ –15.304∗∗∗

(0.802) (0.903) (0.813) (0.111) (0.816)
Rainfall 0.137

(0.130)
Temperature 0.489∗∗∗

(0.160)

Obs. 300694 300694 300694 240612 260280 146264 292950
Mean Forest cover 139.601 139.601 139.601 130.096 145.202 116.488 143.090
Cell FE yes yes yes yes yes yes yes
Country×Year FE no yes yes yes yes yes yes
Year FE yes no no no no no no
Effect of +1 S.D.
Fert. price 16.318 12.889 7.584 7.313 10.454 6.913 8.002
Output price -2.841 -3.496 -2.339 -0.123 -2.984

Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. Standard errors clustered by cell in parentheses. Forest cover is our
measure of forest cover (in thousands of hectares) computed as the initial forest cover in 2000 minus the sum of the past forest losses, (log-)
Fert. price is the log of the current period fertilizer price, and (log-) Output price is the log of the current period fertilizer price. In column
(4) we exclude Brazil from our sample. In column (5), top 5 producer countries of the main fertilizer types (Hernandez & Torero, 2013) are
dropped: China, India, Indonesia, and USA belong to these countries and contain cells in the tropics. In column (6), we exclude from our
sample all the observations with a residual greater than one quarter the standard error (using the estimates from column (2)).
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Appendix 2.1 Dropping each year one by one
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Figure A 1: Dropping years

Note. Each point estimate and confidence interval come from a regression using the same specification as in Table 2 column (2)
and the same sample, but without the year shown on the x-axis.

As shown in Figure A 1 , the results are not sensitive to the exclusion of each year one by one, except

for 2009 and 2010. Not surprisingly, 2009 is the year in which fertilizer prices soared. 2010 is the year just

after the peak, when fertilizer prices returned to more normal levels. Excluding the years 2009 and 2010,

our estimate is very close to our estimates in Table 2, equal to -.067 and significant at the 99% confidence

level.
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Appendix 2.2 Dropping countries
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Figure A 2: Dropping each country one by one

Note. Each point estimate and confidence interval come from a regression using the same specification as in Table 2 column (2)
and the same sample, but without the country whose iso3 code is shown on the x-axis.
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Figure A 3: Evolution of real international prices growth of nitrogen, phosphorus, and potassium
(2001-2022).

Note. Data on the real international market prices of each nutrient come from the World Bank Commodities Dataset, see
https://databank.worldbank.org/databases/commodity-price-data.

Table A 2: Various canopy thresholds

(1) (2) (3)
Dep. Var.: Deforest
Canopy threshold 25% 10% 50%

Fert. price growth –0.061∗∗∗ –0.007∗∗∗ –0.075∗∗∗

(0.015) (0.002) (0.022)
Output price growth 0.008∗∗∗ 0.001 0.021∗∗∗

(0.002) (0.001) (0.003)

Obs. 300694 300683 290137
Mean defor. rate 0.007 0.005 0.010
Cell FE yes yes yes
Country×Year FE yes yes yes

Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. Standard errors clustered by cell in parentheses. Deforest is our
index of deforestation computed as minus the log of one minus the deforestation rate (loss over forest cover), Fert. price growth is the log of
one plus the current period fertilizer price growth, and Output price growth is the log of one plus the current period fertilizer price growth.
We reproduce Table 2 column (3) estimates in column (1). In columns (2) and (3), we use alternative canopy thresholds. The canopy
threshold is the minimal percentage of forest cover in 2000 so that a pixel is considered as forested in 2000.
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Table A 3: Conley standard errors

(1) (2) (3) (4) (5)
Dep. Var.: Deforest
Radius 100km 200km 300km 400km 500km

Fert. price growth –0.061∗∗∗ –0.061∗∗∗ –0.061∗∗∗ –0.061∗∗ –0.061∗∗

(0.020) (0.022) (0.022) (0.025) (0.028)
Output price growth 0.008∗∗∗ 0.008∗∗ 0.008∗∗ 0.008∗∗ 0.008∗

(0.003) (0.003) (0.004) (0.004) (0.004)

Obs. 300694 300694 300694 300694 300694
Mean Deforest. 0.009 0.009 0.009 0.009 0.009
Cell FE yes yes yes yes yes
Country×Year FE yes yes yes yes yes

Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. Conley (1999) standard errors in parentheses. Deforest is our index
of deforestation computed as minus the log of one minus the deforestation rate (loss over forest cover), Fert. price growth is the log of one
plus the current period fertilizer price growth, and Output price growth is the log of one plus the current period fertilizer price growth. We
use the specification from Table 2 column (3). We compute Conley (1999) standard errors allowing for infinite temporal and a radius of
100km to 500km.
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Figure A 4: Descriptive statistics maps

Note. Panel A shows the average of our main outcome deforestation variable for each 0.5° cell (Deforest, see Table 1). Panel B shows
the average of fertilizer price growth for each 0.5° cell (Fert. price growth, see Table 1). Panel C and Panel D show the year to year
variations of the variables shown in Panel A and B for each 0.5° cell, respectively. Forest loss data come from Hansen et al. (2013), see
https://www.globalforestwatch.org. The fertilizer price index is computed as explained in Section 3.1.
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Table A 4: Nutrients shares by crop

Crop name N P K
Alfalfa .46 .11 .44
Barley .58 .23 .19
Buckwheat .64 .19 .17
Cabbage .46 .11 .43
Chickpea .56 .28 .16
Citrus .41 .08 .51
Cotton .49 .22 .29
Cowpea .64 .17 .19
Dryland rice .56 .29 .15
Drypea .64 .17 .19
Flax .65 .19 .16
Green gram .64 .17 .19
Ground nut .71 .11 .17
Maize .48 .16 .36
Millet .64 .18 .18
Oat .62 .23 .15
Pigeon pea .56 .28 .16
Rapeseed .57 .29 .14
Reed grass .43 .19 .38
Rice .56 .29 .15
Rye .65 .21 .14
Sorghum .5 .3 .21
Soybean .63 .14 .23
Sugarcane .29 .2 .51
Sugarbeet .28 .16 .55
Sunflower .59 .21 .2
Sweet potato .3 .13 .57
Switchgrass .24 .13 .63
Tobacco .35 .09 .56
Tomato .28 .11 .62
Wheat .58 .26 .15
White potato .27 .14 .59

Note: This table shows nutrients uptake share for each crop, computed thanks to the quantity of nutrient removed from the field at crop
harvest, in kg/ha. For instance, the third raw second column value is qN

Barley = xN
Barley/(xN

Barley + xP
Barley + xK

Barley) = 0.11, where
xN

Barley , xP
Barley and xK

Barley are the quantities of N, P205 and K20 removed from the field when barley is harvested, in kg/ha. The data
comes from the International Plant Nutrition Institute(IPNI). These represent what IPNI scientists believe to be the best estimates of typical
values to date of nutrient uptake for different crops grown in different countries of the world. See http://www.ipni.net/article/IPNI-3296.
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