

Efficient models for predicting the non-compliance of food crops with regulation limits for metallic contaminants

Christophe Nguyen, Laurence Denaix, Emma Vivien, Jean-Yves Cornu, Agathe Roucou, Benoît Méléard

▶ To cite this version:

Christophe Nguyen, Laurence Denaix, Emma Vivien, Jean-Yves Cornu, Agathe Roucou, et al.. Efficient models for predicting the non-compliance of food crops with regulation limits for metallic contaminants. ICOBTE / ICHMET, Sep 2023, Wüppertal, Germany. hal-04678184

HAL Id: hal-04678184 https://hal.inrae.fr/hal-04678184v1

Submitted on 26 Aug 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

Efficient models for predicting the non-compliance of food crops with regulation limits for metallic contaminants

Nguyen¹ C., Denaix¹ L., Vivien¹ E., Cornu¹ JY., Roucou² A., Méléard² B.

1: UMR 1391 Ispa, Inrae, Bordeaux France INRA

2: Arvalis Institut, Boigneville France **ARVALiS**

Christophe.nguyen@inrae.fr

Will this future harvest comply with the regulation limits for toxic metals in food products?

Background

- Increasing concerns about the dietary exposure of humans to toxic metals, especially cadmium (Cd)

- Regulation for toxic metals in food products becomes more strict (EC1323/2021)

State of art & Hypothesis

- Bioavailability of contaminants in soils is generally the main factor governing the contamination of a given plant species (McLaughlin *et al.*, 2021)

Methods

- Modelling of the probability of compliance from datasets of paired soil + plant samples (Durum and bread wheat, lettuce, potato) from research projects and from literature

- The rates of non-compliance of harvests become more frequently critical (ex: Cd in Durum wheat, lineseed)

- Prediction of non-compliance of harvests with regulation limits for metals is needed for anticipating corrective actions

- Bioavailability of many cationic metals in soils is strongly governed by the metal content, the pH and by the organic matter (Antoniadis *et al.,* 2017)

Hypothesis

The compliance of a future harvest with regulation limit for toxic metals can be reliably predicted by binary classification models by using the soil metal content, the pH and the organic carbon content - Soil predictors are: the total (pseudo-total) metal content, pH(water), organic carbon content (OC), clay+loam when available

- Use of machine learning classifiers: Logisitic regression, random forest

- Cross-validation (K=5 folds, repetitions=100) for estimating the model performances

Main Results

Proof of concept for Cadmium

Logistic models: Performances

Random Forest models

 $log\left(\frac{p}{(1-p)}\right) = a_0 + a_1.log_{10}(Cd_{soil}) + a_2.log_{10}(H_{soil}^+) + a_3.log_{10}(OC_{soil})$ p: probability of non-compliance

Model Performances estimated by 5-folds cross validation (100 repetitions)

	Durum wheat (n=476)	Bread wheat (n=441)	Lettuce (n=106)	Potato (n=106)
Correct predictions (Accuracy, %)	84.9	85.9	92.5	78.3
Detected non compliance (% of actuals)	75.8	37.3	72.2	75.0
Detected compliance (% of actuals)	87.0	93.5	96.6	79.5
Correct predicted non-compliance (% of predicted)	58.0	46.8	81.2	56.8
Correct predicted compliance (% of predicted)	93.8	90.6	94.4	89.9

0.1 0.3 1.0 3.0 0.1 0.3 1.0 3.0 0.1 0.3 1.0 3.0 Soil total Cd (mg/kg)

Dashed line: median for French cropland soils

- Random Forest models simulate non-realistic discontinuous effects of soil Cd, pH and OC due to over-parameterization

- Logistic models with soil Cd, pH and OC gives good and valuable performances for detecting compliant and non-compliant cases for Durum wheat, Lettuce and Potato. Detection of non compliance for Bread wheat is less good. More predictors are likely required.

- For Durum wheat adding clay or loam did not improve the models

- Models can surestimate the risk of non-compliance (low robustness for predicted non-compliance), which is protective.

Logistic models: Predictions

- Soil Cd and the pH are more influential than the OC content

Ranking of the risk of non-compliance:
 Durum wheat > Bread wheat > Lettuce > Potato

- The effect of soil Cd, pH and soil OC depends on the regulation limit and on the species potential for Cd accumulation

For the 4 crops, simple guidelines would be: Safe conditions :
soil Cd <0.1 mg/kg
Soil Cd<0.3 mg/kg AND soil pH >7

Risky conditions :

- Soil Cd>2 mg/kg AND pH<6
- The Durum wheat model is freely available at: https://ispa.bordeaux.inra.fr/services/blesur/

Dashed line: median for French cropland soils Solid line: Non compliance probability p=0.5 boundary

Conclusions

- The good performances of the models predicting the compliance with Cd limit allow to have tools to anticipate problems with risky soils by choosing varieties with a lower accumulation potential

- The approach could be extended to other crops and other metals such as Ni to anticipate the future regulations

- Open access databases of paired soil+crop analyses are highly desirable to build and test the models

References:

Antoniadis *et al.*, 2017. Earth-Science Reviews 171, 621–645. doi:10.1016/j.earscirev.2017.06.005 McLaughlin *et al.*, 2021. Advances in Agronomy. pp. 1–129. doi:10.1016/bs.agron.2020.10.004

Fundings:

- Arvalis, Cadur CR127518

French National Research Agency (ANR): Cadon, ANR-15-CE21-0001-04, Blésur LabEx COTE ANR-10-LABX-45
 French Ministry of Agriculture: Multicontamination of crops CASDAR n°10054, Quasagro CASDAR n°5423

