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A B S T R A C T

Monitoring vine water status is crucial for wine production. However, in Mediterranean regions, a key indicator
for evaluating this information, predawn leaf water potential (Ψpd), is challenging to obtain in terms of logistics
and costs. To address this, the iG-Apex, a plant growth index based on vine shoot growth observations has been
proposed as being both low-cost and easy to collect. It has been found that a strong correlation exists between iG-
Apex and Ψpd. Nonetheless, the relationship between iG-Apex and Ψpd becomes increasingly uncertain as the
growing season progresses. Therefore, while being operationally attempting, modeling Ψpd from iG-Apex ne-
cessitates the consideration of prediction uncertainty. This study presents a modeling approach, named the
Recursive-Duo-Model (RDM), which integrates predictive modeling and Bayesian resampling to estimate Ψpd
with iG-Apex while reducing prediction uncertainty. Using iG-Apex and readily accessible weather data, the RDM
aims to reduce the cost to obtain the key indicator for monitoring vine water status. The study evaluated the
RDM’s performance across four water deficit scenarios: no deficit (-0.3 ≤ observed Ψpd < 0 MPa), mild to
moderate deficit (-0.5 ≤ observed Ψpd < − 0.3 MPa), moderate to severe deficit (-0.8 ≤ observed Ψpd <

− 0.5 MPa), and high deficit (observed Ψpd ≤ − 0.8 MPa). Results showed satisfactory prediction accuracy
(R2=0.61, RMSE=0.14 MPa), with the method effectively detecting the first three water deficit scenarios. In
parallel, the RDM reduced prediction uncertainty (mean width of 80 % confidence interval=0.20 MPa) compared
to a conventional approach based solely on vine shoot growth data (mean width=0.36 MPa).

1. Introduction

Monitoring vine water status is an essential practice in vineyard
management (Deloire et al., 2020). This parameter significantly affects
leaf area hence light interception (Albrizio et al., 2023), fruit yield
(Laurent et al., 2021), and wine quality (Xi et al., 2010). In regions with
hot and dry summer, like the Mediterranean basin (Baeza et al., 2007),
Predawn Leaf Water Potential (Ψpd) is considered as a robust indicator
of vine water status (Choné et al., 2001). This indicator is commonly
used as the reference to calibrate other water status indicators for pre-
cision irrigation (García-Tejera et al., 2021). However, measuring Ψpd
involves major logistical constraints (e.g. nocturnal measurements), and
requires specific materials (e.g. pressure chamber) (Scholander et al.,

1965). Consequently, although this approach is reliable, collecting Ψpd
measurements is therefore challenging in practice.

Multiple studies have investigated alternative approaches for esti-
mating vine water status, for replacing the high-labor Ψpd acquisition
(Rienth and Scholasch, 2019). For example, Acevedo-Opazo et al.
(2010a) suggested estimating Ψpd at multiple sites from the Ψpd
measured at one reference site through a locally calibrated spatially
extrapolation model. However, this approach requires heavy Ψpd data
acquisition for the model calibration. Other authors proposed to esti-
mate Ψpd using a mechanistic model (Celette et al., 2010), which de-
pends on a high number of model parameters. Wallach et al. (2014) have
shown that an accurate parameterization is a prerequisite for these
models to generate meaningful predictions, but obtaining parameters
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necessitates a huge amount of work. In the recent years, many re-
searchers have been trying to model Ψpd using machine learning algo-
rithms from other more accessible data. These data-driven approaches
have been mostly focusing on spectral reflectance data (Romero et al.,
2018; Tosin et al., 2021). Yet, acquiring this data is still costly, since it
requires specific skills, expensive materials, and the data collection may
be influenced by weather condition (Pôças et al., 2015). Despite the
interest of these approaches, their practical limitations make them not
suitable enough for monitoring vine water status in commercial vine-
yards, especially for small-farm holders.

An alternative approach for assessing vine water status was proposed
by Pichon et al. (2021), based on a vine shoot growth index named
iG-Apex. Relying on visual observations of vine shoots, the iG-Apex
measurement is easy to collect in field (less than 5 minutes per mea-
surement). By using a free mobile application (Brunel et al., 2019), the
index can be conveniently obtained using a standardized protocol. More
interestingly, it has been demonstrated that a strong correlation exists
between iG-Apex and Ψpd when the latter varies between − 0.2 and
− 0.8 MPa, showing a quasi-linear relationship (Pichon et al., 2023).
Nevertheless, this index has several limitations that restrict its opera-
tional use. Firstly, as water deficit intensifies, the uncertainty in the
relation between iG-Apex and Ψpd increases (Pichon et al., 2023).
Secondly, beyond a certain level of water deficit, all apexes stop their
vegetative growth, thus, a variation in Ψpd does not lead to any change
in iG-Apex anymore. Lastly, there is a time lag between the plant’s actual
water status and the information provided by iG-Apex (Pellegrino et al.,
2005), which reacts with a latency towards Ψpd variation. Although the
relationship between Ψpd and iG-Apex has been known to be uncertain,
this uncertainty is poorly described in the literature. Additionally, in
general, prediction uncertainty has been overlooked in current Ψpd
modeling projects (Tosin et al., 2022), even though uncertainty infor-
mation has been proven to be important for vinegrowers in water stress
management (Roux et al., 2014).

Bayesian modeling provides a complete toolset to account for un-
certainty (Khanal et al., 2019; Kocian et al., 2020; Chang et al., 2023).
The approach considers the searched quantity as a random variable and
represents it as a distribution (McElreath, 2016). This allows end users to
consider multiple most probable scenarios when no single best estima-
tion could be made. More specifically, Gordon et al. (1993) proposed a
Bayesian recursive algorithm, which modifies a prior distribution in
order to obtain a less uncertain posterior distribution. This process is
called Bayesian resampling (Kuptametee and Aunsri, 2022). For opera-
tional concerns, it should be beneficial not only to provide a realistic
description of the uncertainty associated to Ψpd predictions, but also to
reduce this uncertainty for end-users in order to facilitate their decision,
as shown by Acevedo-Opazo et al. (2010b).

Nonetheless, the resampling approach has never been integrated in
Ψpd prediction. The main difficulty is that by construction, the algo-
rithm requires a dynamic model which simulates the evolution of Ψpd,
and/or an actually observed Ψpd, both serving to modify prior distri-
butions. In practice, both elements are difficult to obtain. However, an
actual Ψpd observation could be replaced by a value predicted by ma-
chine learning algorithms from relevant information. For instance,
weather data is an easily accessible type of data, which has been used to
model Ψpd with a regression model under non-irrigated conditions
(Taylor et al., 2012). This data quantifies the climatic demand, and have
the advantage to describe short-term Ψpd variations without the latency
observed in iG-Apex (Pellegrino et al., 2006). Additionally, like many
other agronomic variables (e.g. leaf area index, plant height), Ψpd is
auto-correlated over time. That means knowing the level of previous
Ψpd level should help estimating the current one (Pôças et al., 2020).

The objective of this study is to combine machine learning and
Bayesian resampling approach for modeling Ψpd from iG-Apex, while
quantifying and reducing its uncertainty. The proposed approach
deployed time series of vine shoot growth and weather data, as well as
an algorithm that accounts for Ψpd’s auto-correlation over time. The

underlying hypothesis was that the tested method will not only improve
the accuracy of predictions, but also reduce their uncertainty compared
to a more conventional approach of predictingΨpd using iG-Apex alone.

2. Materials and methods

2.1. Experimental sites

Two experimental sites were studied in southern France, Occitanie
region (Fig. 1a) to account for different soil conditions. Both sites were
rainfed. The first site was the vineyard of Tavel, in the southern Rhône
Valley (WGS84: 44.009484◦N, 4.682064◦E) (Fig. 1b). The vineyard
covers over 900 ha. The texture of soil in the studied zone was mainly
sandy-clay. The climate was Mediterranean, characterized by hot and
dry summers (Luterbacher et al., 2012). This site included 33 mea-
surement plots, with each plot consisting of 10 consecutive vines along a
row. The second site was the “Domaine du Chapitre”, 10 km south of
Montpellier and 4 km north of coast (WGS84: 43.532103◦N,
3.863947◦E) (Fig. 1c). The area of this vineyard was 35 ha. The soil
texture was mainly between silty-clay and clay. The climate was also
Mediterranean. There were 12 measurement plots monitored, each
containing 10 consecutive vines evenly distributed across two neigh-
boring rows (5 vines per row). In both sites, vines training method was
characterized by vertical shoot positioning with 3 levels of trellising.
The experiment included two grape cultivars of Vitis vinifera: cv. Gren-
ache for the Tavel site, and cv. Syrah for “Domaine du Chapitre”. In both
sites, the main limiting factor of vine growth was related to water deficit.

2.2. Raw data acquisition

Three types of raw data were collected prior to model training:
predawn leaf water potential (Ψpd), vine shoot growth observations (iG-
Apex), and weather variables.

2.2.1. Predawn leaf water potential
Ψpd was measured between 3 a.m. and 5 a.m. using a pressure

chamber (Scholander et al., 1965). Among 10 vines in each measure-
ment plot, 5 mature, non-senescing vines were identified, registered,
and marked in fields. The choice of vines was made by selecting plants
which were not impacted by diseases or anomalies at the beginning of
the growing season. Each measurement was realized on a fully devel-
oped and healthy leaf located at the middle of a shoot. The same pro-
tocol was repeated on all 5 registered vines in each plot. Ψpd of a given
plot for a given date was calculated by averaging the 5 measurements.
The operator was chosen intentionally to be the same person to limit
operator effect (Levin, 2019). Ψpd was monitored weekly in each
measurement plot (from June 1st to September 5th). Five growing
seasons were studied in the Tavel site (years 2008–2012), and one in
“Domaine du Chapitre” (year 2022).

2.2.2. Vine shoot growth index: iG-Apex
Vine shoot growth was evaluated using the iG-Apex index as pro-

posed by Pichon et al., (2021). Data were collected with the smartphone
application ApeX-Vigne (Brunel et al., 2019). In each measurement plot,
50 vine shoots (5 per vines) were observed and classified by an operator
into three categories: (a) full growth, (b) moderate growth, and (c)
stopped growth. The iG-Apex was calculated as an average of weights
attributed to these 50 observed vine shoots. The weights are 1, 0.5, or 0,
depending on whether each observed vine shoot is classified as category
(a), (b), or (c). In both experimental sites, the operator was chosen
intentionally to be the same person to limit operator effect (Pichon et al.,
2023). The iG-Apex indicator was always measured at the same date and
in the same measurement plots as Ψpd, forming pairs of iG-Apex and
Ψpd observations. These pairs measured at different dates gave iG-Apex
and Ψpd time series, containing at least 3, and in average 7 observations
per site and per year.

Y. Zhang et al.
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2.2.3. Weather data
SAFRAN (translation from French: analysis system providing infor-

mation for avalanche hazard) weather data of the two experimental sites
were provided by Météo-France. They were downloaded via the
SICLIMA platform developed by AgroClim-INRAE. This data source was
the reference for hydrological monitoring throughout the metropolitan
France. According to Taylor et al. (2012), four types of weather data
were extracted at the daily frequency: temperature (including daily
mean, minimum, andmaximum value), relative humidity, precipitation,
and potential evapo-transpiration calculated from the Penman-Monteith
equation (Allen et al., 1989). For all measurement plots of each exper-
imental site, weather conditions were considered as uniform.

2.2.4. Summary of raw datasets
The dataset from Tavel contained 409 pairs of iG-Apex and Ψpd

observations collected from 2008 to 2012, consisting of 70 time series.
The dataset from “Domaine du Chapitre” contained 144 pairs of obser-
vations collected in 2022, containing 12 time series.

2.3. Predictors and training data

Before model training, feature engineering was realized to extract
predictors from raw data. All predictors are presented in Table 1.

2.3.1. Predictors related to iG-Apex observations
In order to account for both iG-Apex observations and temporal

dynamic of iG-Apex, several predictors were derived from time series
data: iG-Apex observations (noted a), variation of iG-Apex between two
observations (da) and number of days between two observations (diff_-
day). By construction, da and diff_day were not available for the first
observation of each time series.

Other predictors were derived to account for the general trend of iG-
Apex time series and change in water deficit experienced by the vines.
This general trend was modeled using a logistic regression (Lebon et al.,
2006).

[iG − Apex]t =
1

1+ e− k(x0− t) + ε (1)

Where t stands for the day of the year, x0 for the inflection point of the
curve, k for the slope at inflexion point, and ε represents the error of the
model.

Two parameters x0 and k, derived from the logistic regression, were
used as predictors. Along measurements during each season, these two
parameter values were re-estimated at each time when a new iG-Apex
value was available. Given that fitting the logistic regression requires
at least 3 observations, the parameter values were not available for the
first 2 data points in each time series.

2.3.2. Predictors related to weather data
Common daily weather variables were used as predictors, as pro-

posed by Taylor et al. (2012): the minimum and maximum daily tem-
perature (respectively Tmin and Tmax), the relative humidity of the day
(RH), and the daily potential evapotranspiration (ET0). Other
weather-related predictors were also inspired by their work. For
instance, in order to account for effective impact of temperature on vine
growth, Growing Degree Day (GDD) was calculated.

GDD =

{
Tmean − Tbase Tmean − Tbase ≥ 0

0 Tmean − Tbase < 0 (2)

where Tbase = 10 ◦C (Winkler et al., 1974), and Tmean is the daily mean
temperature.

Furthermore, the weighted daily precipitation (Rw) was determined
using the formula proposed by Taylor et al. (2012). This predictor ac-
knowledges that soil can only dry out progressively following a rainfall
event. Therefore, the use of Rw allows for the consideration of the latent
effect of precipitation on soil water status.

Rwt = α×Rt +(1 − α) × Rwt− 1 (3)

where Rt is the measured daily precipitation at day t, Rwt-1 is the
weighted precipitation value for the previous day t-1, α is a weighting

Fig. 1. (a) General location of two experimental sites. Detailed location of monitored plots (red dots) in (b) Tavel and (c) “Domaine du Chapitre”.

Y. Zhang et al.
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factor and was set to 0.3.
In parallel, in order to quantify the degree of soil drying process,

daily climate water balance (WS) was computed.

WS = R − ET0 (4)

where R is daily rainfall, and ET0 is daily potential evapotranspiration.
In order to account for weather variables’ correlation with vine

water status in a previous short period, minimum and maximum
observed values of certain weather variables in the previous 3 or 7 days
were also used as predictors, noted as respectively: Tmin3, Tmax3,
Tmin7, Tmax7, RHmin3, RHmax3, RHmin7, RHmax7, Rwmin3, Rwmax3,
Rwmin7, and Rwmax7.

In order to account for the variation between two Ψpd observations
(details will be given in Section 2.4.3.2), the accumulation of certain
weather variables between two dates of Ψpd measurements were also
calculated, and used as predictors (GDD_cumul, RH_cumul, ET0_cumul,
and Rw_cumul). These predictors were not calculated for the first
observation of each time series.

Variablecumul =
∑date of current Ψpd observation

date of previous Ψpd observation
daily variable value (5)

Given that Ψpd tends to show a global decreasing trend in time
(Lebon et al., 2003), temporal information might be able to explain Ψpd
evolution. Therefore, the Cumulative Growing Degree Day (cGDD) was
derived by summing GDD from April 1st to September 30th, and

calculated at a daily time step.

2.3.3. Datasets for modeling
Predictors presented in Table 1 were associated to all available

measured Ψpd. Measurements which did not have the full set of pre-
dictors (n=30) were omitted. The final dataset contained 516 lines,
derived by merging the datasets from the two experimental sites. In the
final dataset, Ψpd measurements spanned from − 1.4–0 MPa, while
observed iG-Apex ranged from 0 to 1. However, the majority of Ψpd
measurements (about 95 %) were beyond − 0.8 MPa.

2.4. Ψpd models

2.4.1. General approach
Two methods for modeling Ψpd were compared (Fig. 2). Their main

specificities are highlighted here, while detailed explanations will follow
in the next sections. The first method, named the Classical Method (CM)
only depends on iG-Apex observations. It was inspired by the method
proposed by Pichon et al. (2023), and was considered, in this work, as a
reference approach. The second method, named the
Recursive-Duo-Model (RDM), utilized both iG-Apex observations and
weather data to perform Ψpd predictions. In order to account for un-
certainty, both CM and RDM generated distributions of possible Ψpd
values, instead of a single value (McElreath, 2016). By considering both
iG-Apex and weather data, and by modeling Ψpd’s auto-correlation,
RDM aimed at reducing estimation uncertainty.

2.4.2. Classical method (CM)
Following Pichon et al. (2023), ten iG-Apex intervals were associated

to ten average Ψpd values (Fig. 3). The uncertainty of each value was
characterized by observed standard deviation of Ψpd within each in-
terval. Based on this work, the objective of the Classical Method (CM)
was to obtain a realistic Ψpd distribution for each iG-Apex observed at
date t (at).

A Look Up Table (LUT) was built using data from Pichon et al. (2023)
(Fig. 3). It contained means (μp) and standard deviations (σp) of Ψpd
observations for ten intervals of iG-Apex (0–0.1, 0.1–0.2, …, 0.9–1).
Using this LUT, each at could be associated to an iG-Apex class, thereby
to a pair of mean and standard deviation. It was assumed that in each
iG-Apex class, observed Ψpd follow a Normal distribution truncated at
zero, as positive Ψpd are physically uninterpretable. For each at , 1 000
possible Ψpd values were simulated using μp and σp to construct a dis-
tribution at date t (noted as Pt), with positive samples’ values reduced to
0.

All data in the study of Pichon et al. (2023) were used to construct
the LUT. The goal was to compare CM-generated predictions, that were
based on all available historical data, with predictions given by the
proposed Machine-Learning-based method, which was presented in the
next section.

Table 1
Summary of predictors used for modeling.

Source data Predictors Unit Code

iG-Apex iG-Apex no
unit

a

Inflection point day x0
Slope at the inflection point day− 1 k
Variation of iG-Apex between two
observations

no
unit

da

Days between two observations day diff_day
- Last observed Ψpd MPa pm1
Temperature Growing degree day ◦C.

day
GDD

Cumulative growing degree day ◦C.
day

cGDD

Minimum daily temperature ◦C Tmin
Maximum daily temperature ◦C Tmax
Minimum daily temperature in the
previous 3 days

◦C Tmin3

Maximum daily temperature in the
previous 3 days

◦C Tmax3

Minimum daily temperature in the
previous 7 days

◦C Tmin7

Maximum daily temperature in the
previous 7 days

◦C Tmax7

Accumulated GDD between 2 dates of
apex observation

◦C.
day

GDD_cumul

Relative
humidity

Relative humidity of the day % RH
Minimum RH in the previous 3 days % RHmin3
Maximum RH in the previous 3 days % RHmax3
Minimum RH in the previous 7 days % RHmin7
Maximum RH in the previous 7 days % RHmax7
Accumulated RH between 2 dates of
apex observation

% RH_cumul

Precipitation Weighted daily precipitation mm Rw
Minimum Rw in the previous 3 days mm Rwmin3
Maximum Rw in the previous 3 days mm Rwmax3
Minimum Rw in the previous 7 days mm Rwmin7
Maximum Rw in the previous 7 days mm Rwmax7
Accumulated Rw between 2 dates of
apex observation

mm Rw_cumul

Potential evapo-
transpiration

Daily potential evapotranspiration mm ET0
Accumulated ET0 between 2 dates of
apex observation

mm ET0_cumul

Precipitation,
ET0

Daily climate water balance mm WS

Fig. 2. A conceptual diagram of the two methods for Ψpd modeling compared
in this paper.

Y. Zhang et al.
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2.4.3. Recursive–duo-model method (RDM)

2.4.3.1. General idea. The main goal of the RDM was to reduce pre-
diction uncertainty stemmed from the CM. Hence, the RDM was only
activated when CM-generated distributions are considerably uncertain
(evaluation criterion will be presented in Section 2.5.2). In order to
reduce uncertainty, the RDM included three functions: 1) generating a
pseudo-observation of Ψpd using two models, 2) modifying a CM-
generated distribution with the pseudo-observation through resam-
pling, and 3) collecting historical predictions.

2.4.3.2. Generation of the pseudo-observation of Ψpd. The pseudo-
observation was obtained by merging two predicted Ψpd derived from
two different Random Forest (RF) models (Liaw and Wiener, 2002),
giving rise to the term "Duo" in the method’s name. The choice of the RF
algorithm was for its simple implementation and it has been proved to
be robust and able to handle high-dimensional modeling scenario.

The first RF model was trained to directly predict Ψpd at date t,
thereby called “direct model”. It played a classical role in the RDM like
in other regression problems, consisting of generating a large number of
decision trees and output the final prediction by aggregating predictions
given by each tree. This RF model gave the first Ψpd prediction. The
direct model was trained using a set of predictors containing 21 pre-
dictors: a, GDD, cGDD, Tmin, Tmax, RH, Rw, ET0, WS, Tmin3, Tmax3,
Tmin7, Tmax7, RHmin3, RHmax3, RHmin7, RHmax7, Rwmin3, Rwmax3,
Rwmin7, Rwmax7 (Table 1).

The second RF model aimed at modeling Ψpd’s temporal autocor-
relation. Instead of directly predicting Ψpd at date t (like the direct
model), the second model predicted the variation of Ψpd between two
measurement dates. A Ψpd prediction at date t was obtained by accu-
mulating a certain number of predicted Ψpd variations based on a pre-
viously predicted Ψpd. The number of variations was set to be 2 in this
study. Hence, the second RF model is referred to as the cumulative
model. The cumulative model was trained using another set of pre-
dictors containing 9 predictors: pm1, da, diff_day, x0, k, GDD_cumul,
RH_cumul, ET0_cumul, Rw_cumul (Table 1). The predictor pm1 stands for
previous Ψpd measurements, which was proposed by Pôças et al. (2020)
for considering the temporal dynamic of Ψpd. Observed previous Ψpd
measurements were used as pm1 for model training.

The pseudo-observation was computed as the average of the two
predictions, noted as ppseudo obs

t . This value was then used in resampling.
For training both direct and cumulative models, the randomForest()

function was utilized with the following parameter settings: the number
of trees was set to 500, and the number of variables randomly sampled
was set to 7 for the direct model and 3 for the cumulative model.

In order to obtain the optimum data proportion for training the RDM,
learning curves for both the training and testing phases were generated
by varying the percentage of time series included in the training set. The
examined percentages were 40 %, 45 %, 50 %, 55 %, up to 90 %. For
each percentage, training and testing sets were randomly created 100

times. Root Mean Square Error (RMSE) was used as the performance
metric (Kuhn and Johnson, 2013). The results are shown in Appendix A.
After analysing the learning curves and considering practical implica-
tions related to the training set size, 70 % of the dataset (52 time series)
were chosen for the RDM training.

2.4.3.3. Resampling. The resampling method was adapted from the
Particle Filter algorithm presented by Arulampalam et al. (2002) and
Montzka et al. (2011). It was used tomodify a CM-generated distribution
considered too dispersive, by using the pseudo-observation. For the re-
cord, a CM distribution is represented by 1 000 possible values of Ψpd.
These values are referred to as “samples”. The goal of resampling was to
reduce the diversity of these samples (Fig. 4). This was realized through
three steps: firstly, initialize an equivalent probability for all samples;
secondly, assess the numerical discrepancy between each sample and
the pseudo-observation, and attribute a new probability to each sample
given that discrepancy information; and thirdly, generate 1 000 samples
from the initial set based on the new probabilities (details of the algo-
rithm were given in Appendix B). This procedure allowed that samples
exhibiting larger discrepancies towards the pseudo-observation are less
likely to be selected in the third step, thereby reducing the diversity of
the initial set of samples. The resulting new set of samples was output as
the RDM-generated Ψpd distribution at current date t (still noted as Pt).

2.4.3.4. Collection of historical predictions. After resampling, the median
of a RDM-generated distribution was memorized as a historical predic-
tion of Ψpd. The same operation was realized for CM-generated distri-
butions. Historical predictions were crucial for the functioning of the
cumulative model. On the one hand, the cumulative must accumulate
predicted Ψpd variations on a historical value. On the other hand, since
the predictor pm1 (last observed Ψpd, required by the cumulative
model) should not be available in practice, historical predictions were
thus used as pm1. This mechanism enabled previous Ψpd predictions to
directly impact the current prediction at date t, while the latter could
further impact predictions in future, giving rise to the term "Recursive"
in the method’s name. This process was repeated until the lastΨpd value
in the time series had been predicted. The overall workflow in the RDM
is summarized in Fig. 5.

2.5. Evaluation

2.5.1. Scenarios of evaluation
Performances of the CM and RDM were evaluated in four scenarios

corresponding to different levels of water deficit. Each scenario was
defined according to a water deficit class for grapevines, as proposed by
Deloire et al. (2020). The first scenario corresponded to no water deficit
(-0.3 ≤ observed Ψpd< 0 MPa), the second one corresponded to mild to
moderate water deficit (-0.5≤ observedΨpd< − 0.3 MPa), the third one
corresponded to moderate to severe water deficit (-0.8 ≤ observed Ψpd
< − 0.5 MPa), and the last scenario corresponded to severe to high water

Fig. 3. A graphical illustration of the Classical Method for predicting Ψpd.
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deficit (presence of water stress) (observed Ψpd < − 0.8 MPa).
In the training dataset, these four scenarios contained respectively

258, 131, 101, and 26 lines of data (containing Ψpd and predictors).

2.5.2. Prediction performance scores
Accuracy of predictions of CM and RDM approaches was assessed by

Mean Absolute Error of Median (MAEM). MAEM was calculated by
measuring absolute errors between medians of predicted distributions
and actual observations of Ψpd. The lower was this value, the better was
a method in predicting water deficit.

Uncertainty of predictions of CM and RDM was evaluated by 80 %
Interval of Confidence (noted IC80). It was estimated by calculating the
difference between the limits of 90 % and 10 % percentiles of a pre-
dicted distribution. Therefore, IC80 corresponded to the width of the
interval that covers 80 % of the most probable prediction values. IC80
was also used to evaluate the level of uncertainty of a predicted distri-
bution, which permits running the RDM. If IC80 ≤ 0.1 MPa, the un-
certainty of predicted distribution was considered acceptably low
(Section 2.4.3).

2.5.3. Cross-validation and statistical test
The full dataset contained 82 time series ofΨpd, each consisting of at

least three observations. According to Appendix A, 70 % of time series
were randomly selected from the original dataset for model training,

while the remaining 25 time series (30 % of the dataset) were used for
testing. Ψpd values were predicted using the CM and RDM approach,
and these predictions were compared with observed values in the testing
dataset using R2 and RMSE. The two performance scores, MAEM and
IC80 (see Section 2.5.2), were calculated based on this comparison. A
Cross-Validation (CV) procedure was conducted by randomly generating
the training set 100 times, resulting in 100 MAEM and IC80 values. The
t-test was used to detect significant differences between the performance
scores produced by the two methods during CV in each of the four water
deficit scenarios.

2.6. Software

All sample generations and statistical analyses were performed using
R (R Core Team, 2021). For modeling the logistic regression of iG-Apex
(Section 2.3.1), the sum of squared ε in the logistic regression was
minimized by adjusting values of x0 and k, using the R function optim()
(with initial condition: [x0= 180; k= 0.5]).

3. Results

Focusing on predictions obtained from one of the 100 testing data-
sets, observed Ψpd varied between − 1.1 and − 0.05 MPa (Fig. 6). Ψpd
predicted by the CM varied between − 0.6 and − 0.1 MPa (Fig. 6a), while
those predicted by the RDM varied between − 1 and − 0.1 MPa (Fig. 6b).
CM predictions were around the reference line for observedΨpd ranging
from − 0.5 and − 0.1 MPa, but far from it for observed Ψpd between − 1
and − 0.5 MPa (Fig. 6a). The predictions given by the CM seemed to
saturate above − 0.5 MPa with no prediction lower than − 0.6 MPa and
many predictions close to − 0.58 MPa. Conversely, RDM predictions
were closer to observed Ψpd (R2 = 0.608 vs 0.58), and showed a better
global coherence with observations (RMSE = 0.139 vs 0.144) than CM
predictions. For strong water constraint (observed Ψpd between − 1 and
− 0.5 MPa), RDM predictions were closer to the reference line than CM
predictions. Notably, very negative Ψpd were predicted by RDM (down
to − 0.9 MPa) (Fig. 6b), which were missing among CM predictions.

In terms of prediction uncertainty, the average 80 % Interval of
Confidence (IC80) generated by the CM was 0.363 MPa, while that of
the RDM was 0.202 MPa: globally, prediction intervals of RDM were
much narrower. The uncertainty also varied according to observed
values of Ψpd. For CM, IC80 increased drastically when predicted values
decreased, raising from about 0.2 MPa to more than 0.6 MPa in width.
When observed water deficit was high, CM distributions extended from
about − 0.25 MPa to − 0.9 MPa (Fig. 6a). While for the RDM, wide
prediction intervals still appeared for lower predicted values, but were
much less frequent than the CM. Indeed, under high water deficit,
RDM’s IC80 was around 0.3 or 0.4 MPa, and was seldom greater than
0.6 MPa. Consequently, the upper bounds of RDM distributions were
generally below − 0.4 MPa (Fig. 6b).

Focusing on all 100 testing datasets, 15 600 predicted distributions
Ψpd (for both CM and RDM) were obtained, providing more generalized
descriptions on method performance. The Mean Absolute Error of

Fig. 4. A graphical illustration of the Bayesian resampling mechanism.

Fig. 5. A graphical illustration of the Recursive-Duo-Model method for pre-
dicting Ψpd. “IC80” stands for the 80 % interval of confidence.
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Median (MAEM) was generally low for the first three water deficit sce-
narios (Fig. 7), while showed significant degradation in the fourth sce-
nario. No significant difference in MAEM (p = 0.2) was observed
between CM and RDM when there was no water deficit (Fig. 7a – sce-
nario 1). When there was mild to moderate water deficit (scenario 2),
the RDM produced slightly smaller MAEM than the CM, with a signifi-
cant reduction of 0.01 MPa (p < 0.001) (Fig. 7b). When water deficit is
moderate to severe (scenario 3), RDM method did not significantly
improveMAEM compared to CM (p= 0.31) (Fig. 7c). Whenwater deficit
was high and stress was present (the fourth water deficit scenario), RDM
reduced significantly MAEM by − 0.1 MPa compared to CM (p < 0.001)
(Fig. 7d).

In addition to prediction accuracy, uncertainty of predicted Ψpd was
equally compared (Fig. 8). The RDM brought net reductions of 80 %

Interval of Confidence (IC80) in all four water deficit scenarios. When
predicting the first water deficit scenario (no deficit), the RDM reduced
significantly IC80 by 0.07 MPa compared to the CM (p < 0.001)
(Fig. 8a). When predicting the second water deficit scenario (mild to
moderate deficit), the RDM method reduced significantly IC80 by
0.21 MPa in comparison with the CM (p < 0.001) (Fig. 8b). For mod-
erate to severe water deficit (scenario 3), the RDM reduced IC80
significantly by 0.27 MPa (p < 0.001) compared to the CM (Fig. 8c).
With high water deficit (water stress), RDM’s IC80 was always signifi-
cantly smaller than the CM, by 0.29 MPa (p < 0.001). In this case,
average IC80 of RDMwas still high (0.33 MPa) but significantly reduced
when compared to that of CM which was up to 0.62 MPa (Fig. 8d –
scenario 4).

In order to fully compare water deficit classifications made by both

Fig. 6. Observed Ψpd in a representative testing dataset and their predictions with prediction intervals generated by (a) Classical Method, and (b) Recursive-Duo-
Model Method. Points, upper bounds, and lower bounds represent respectively, medians, 90 % percentiles, and 10 % percentiles of predicted distributions.

Fig. 7. Distributions of Mean Absolute Error of Median (MAEM) of Ψpd predictions according to four water deficit scenarios (a-d) when accounting for all 100
randomly generated testing datasets.
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methods, two confusion matrices were built (Fig. 9). Both methods were
strong in detecting the absence of water deficit, given that more than
70 % of CM and RDM predictions predicted the correct class when no
water deficit was observed. Regarding the mild to moderate water
deficit scenario (observed class=2), in average, the RDM produced
54.21 % predictions in the correct class, while CM produced only
39.14 %. Moreover, the CM tended to predict the class-2 water deficit as
“no water deficit”, while wrongly placing 29.32 % of predictions in
latter class (Fig. 9a). In the case of moderate to severe water deficit
(observed class=3), 53.72 % of RDM predictions were correct, with
35.34 % of predictions in class 2 and very few (about 5 %) of predictions

were in class 1. In contrast, only 38.72 % of CM predictions were in class
3, close to the percentage observed in class 2 (34.72 %), and there was
up to 16 % of CM predictions which were still in class 1 (Fig. 9a). Lastly,
when predicting severe to high water deficit (observation=class 4), both
methods placed the majority of their predictions in class 3 instead of
class 4, while less than 20 % of predictions were located in the correct
class. However, the RDM generated more predictions in class 4 and 3
(18.36 + 60.29 = 78.65 %) than the CM (42.01 + 16.57 = 58.59 %),
showing more coherence in predicting higher water deficit (Fig. 9b).

Fig. 8. Distributions of 80 % Interval of Confidence (IC80) of Ψpd predictions according to the four water deficit scenarios (a-d) when accounting for all 100
randomly generated testing datasets.

Fig. 9. The confusion matrices showing the four observed water deficit classes and mean percentage of predictions in each class produced by (a) Classical Method
(CM) and (b) Recursive-Duo-Model Method (RDM). Numbers in matrix cells correspond to the mean percentages calculated from all predictions in 100
testing datasets.

Y. Zhang et al.



Agricultural Water Management 302 (2024) 108998

9

4. Discussion

4.1. The improvement of prediction accuracy: comparison and
interpretation

The Recursive-Duo-Model (RDM) was introduced for estimating
Predawn Leaf Water Potential (Ψpd), by using time series of vine shoot
growth observations (iG-Apex), weather data, and a mechanism ac-
counting for prior Ψpd information. This approach was compared with
the Classical Method (CM) that relies solely on vine shoot observations.
This comparison revealed several noteworthy improvements achieved
by the RDM.

For the second and third water deficit scenario (Ψpd from − 0.8 to
− 0.3 MPa), both CM and RDM achieved a low level of error, with Mean
Absolute Error of Median (MAEM) globally ranging from 0.05 to
0.15 MPa (Fig. 7b-c). This could be explained by the strong correlation
between iG-Apex and Ψpd when the latter varies between − 0.8 and
− 0.2 MPa (Pichon et al., 2023).

However, Fig. 6 showed that the RDM had better RMSE and R2 than
the CM, while aligning closely with metrics from certain Ψpd predictive
models based on multi/hyper-spectral data in some previous studies
(Giovenzana et al., 2018; Pôças et al., 2020). Several factors could have
contributed to the prediction accuracy of the RDM: i) the utilization of
multiple sources of information, iG-Apex and weather data, as recom-
mended by Diago et al. (2022), was found to be relevant in assessing
vine water status; ii) the incorporation of Ψpd temporal dynamic in the
modeling process, following the practice suggested by Pôças et al.
(2020), could have also improved the performance.

Concerning the class with the strongest water deficit (for Ψpd <

− 0.8 MPa), where iG-Apex becomes uninformative due to stopped vine
shoot growth, the RDM exhibited the MAEM level around 0.35 MPa.
This limitation arises from the uninformative iG-Apex/Ψpd relationship
when iG-Apex approaches to zero (Pichon et al., 2023). The low amount
of training data belonging to this deficit scenario could be an important
factor responsible to the poor performance of the model. Indeed, such
observations were not frequent, because high water deficit might only
be observed on soils with a weak water holding capacity, and when a dry
period lasted for a long duration, which was a rare situation in the
studied area.

Nevertheless, the RDM outperformed the CM, as evidenced by a
significant reduction in MAEM in cross-validation results (Fig. 7d). This
positive impact can be attributed to the cumulative model in the RDM,
which is stronger in obtaining lower Ψpd values. The inclusion of
weather data might further contribute to model low-value Ψpd.

Regarding the scenario without water deficit (Ψpd > − 0.3 MPa), the
similarity in predictions between the CM and RDM (Fig. 7a) can be
explained by the RDM’s activation mechanism. Indeed, the RDM was
only triggered when a CM-generated Ψpd distribution is considerably
uncertain, which was not prevalent in the majority of cases in the first
water deficit scenario (Pichon et al., 2023).

In general, the RDM well predicted Ψpd between − 0.8 MPa to
0 MPa, a range comparable to many Ψpd predictive models reviewed by
Tosin et al. (2022). However, such prediction accuracy is inferior to
spectral-data-based models reported in the studies of Tosin et al. (2021)
and Tosin et al. (2022), where distinct data sources, predictors, and
learning algorithms were employed, alongside differences in Ψpd mea-
surement protocol. Besides, the RDM provides uncertainty information
(Section 4.2), and has certain important operational advantages in data
collection over spectral-based models (Section 4.3). Moreover, the RDM
proposed a modeling structure that combines machine learning and
Bayesian resampling, which could be adapted to model other temporally
auto-correlated variables.

4.2. Prediction uncertainty: quantification and reduction

The uncertainty of CM and RDM predictions was evaluated by 80 %

Interval of Confidence (noted IC80). Such uncertainty stems from
various factors in field, like plant variety, soil type, weather conditions,
and/or the transpiration capacity of vines (García-Tejera et al., 2021).
The uncertainty information also indicated an upward trend for both
methods as water deficit increased (Fig. 8). The increasing uncertainty
in CM predictions aligned with the observed relationship between Ψpd
and iG-Apex. Over time, Ψpd is continually influenced by various field
factors, as mentioned earlier, while iG-Apex tends to approach 0. Pro-
gressively, similar iG-Apex values could be associated with significantly
different Ψpd values. Relied on CM-generated distributions, the
RDM-generated ones were equally impacted by this mechanism.

When comparing IC80 results derived from the CM and RDM, the
reduction of IC80 achieved through resampling was evident across all
water deficit scenarios (on average, a reduction of 0.07–0.29 MPa in
IC80). The result for the scenario with no water deficit might be sur-
prising, because readers may wonder that the RDM might not be acti-
vated in that scenario. Yet, high Ψpd values (between − 0.3 and 0 MPa)
could be observed when iG-Apex was low because of rainfall, thereby
allowing the activation of the RDM. Otherwise, the RDM well reshaped
CM-generated distributions, notably for the second and third water
deficit scenarios, where RDM-generated distributions were much less
dispersive (Fig. 9). These results highlighted the relevance of the
resampling algorithm, as the observed uncertainty reduction ran in
parallel with the maintenance and even improvement of Ψpd prediction
accuracy. This could be attributed not only to the incorporation of
weather data in predictive models, but also to the mechanism of ac-
counting for temporal auto-correlation of Ψpd, which both allowed the
generation of relevant pseudo-observations.

4.3. Operational implications of the RDM

The RDM demonstrated a strong ability to detect the first three water
deficit scenarios with high certainty (Fig. 9b). Operationalizing the RDM
in this context could hold significance, especially for situations where
proactive practices are crucial. In Mediterranean vineyards, soil and
canopy managements are most effective before berries begin to ripen
(Keller, 2005), in other words, when vines can still draw water from the
soil and use that water to aliment berries. These operations should be
done before the presence of a significant water stress.

Therefore, as suggested by Pichon et al. (2023), vinegrowers can
make regular iG-Apex in the beginning of summer (e.g. after flowering
and before véraison), while the RDM allows to transform these obser-
vations intoΨpd predictions with a higher level of confidence. Predicted
Ψpd could be used to fine-tune vine water status of a given parcel ac-
cording to its production objective (Leeuwen et al., 2009). Under spe-
cific conditions, these predictions could also be used to launch urgent
irrigation.

In terms of data requirement, the RDM relies on two easily accessible
data sources: vine shoot observations and weather data. Although the
RDM requires more than twenty weather-related predictors, only four
types of weather information are actually required (temperature, rela-
tive humidity, precipitation, and potential evapo-transpiration), which
are easy to obtain. In contrast to spectral-based models commonly re-
ported in the literature, iG-Apex measurements can be acquired when-
ever in the day using a smartphone (Brunel et al., 2019), without specific
weather or light conditions, or the need for handheld/airborne spec-
trometers (Pôças et al., 2015). In parallel, while the RDM models Ψpd
temporal dynamic, it doesn’t necessitate actual previously observed
water potential readings like what was suggested by Pôças et al. (2020)
and Tosin et al. (2021), reducing further operational constraints.

The RDM requires time series of iG-Apex longer than two observa-
tions (collected from approximatively three weeks) to be fully opera-
tional. Such practice of regular field visiting should not impose a
substantial addition to vinegrowers’ weekly responsibilities (Aceve-
do-Opazo et al., 2010b). In some wine regions in Southern France,
monitoring Ψpd has been part of professionals’ routine, and such
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measurement could be required at a large number of locations (Baralon
et al., 2012). The proposed model could reduce significantly their
operational charges and facilitate spatial vine water status monitoring.
Nevertheless, the collection of iG-Apex could be interrupted by canopy
operations like shoot trimming (Pellegrino et al., 2005; Pichon et al.,
2023). Therefore, it is recommended to place the iG-Apex measurement
before shoot thinning, or at least a week after each operation.

The uncertainty information provided by the RDM could be an in-
dicator of the reliability of model predictions (Linde et al., 2017). For
instance, in scenarios with no water deficit (the first scenario), both the
CM and RDM yield small prediction errors and low IC80, signifying
"reliable" predictions for decision-making. Conversely, in the scenario
with high water deficit, generally high IC80 values signal to users the
need for careful consideration when using those predictions, and
perhaps the integration of actual Ψpd measurements, and/or additional
vine water status data (e.g. sap flow measurements, stem water poten-
tial) (Tuccio et al., 2019) to confirm the presence of water stress. In cases
where vinegrowers derive actual Ψpd observations, these observed
values could be integrated into the RDM (to be coupled with the cu-
mulative model), in order to improve the prediction accuracy for future
vine water status. Moreover, uncertainty information itself may convey
critical messages to vinegrowers, a perspective seldom explored by
modelers. As shown in Fig. 8, a high IC80 of a predicted Ψpd should
serve as an alarming sign to vinegrowers about the potentially severe
water deficit in their vines; vice versa. Although not quantitative, this
message might still be a valuable input for decision-making.

4.4. Limitations of the study and future improvements

While the prediction uncertainty of the RDM has been reduced, the
method showed poor performance in detecting high water deficit (the
fourth deficit class, Ψpd < − 0.8 MPa). A key factor limiting the RDM’s
accuracy in this scenario was the training data. A notable issue was the
imbalance in the training dataset, where only 5 % of Ψpd observations
were lower than − 0.8 MPa. This imbalance presents a challenge for
conventional classifier algorithms, as discussed by Sun et al. (2007).
Adopting cost-sensitive algorithms (Benkendorf et al., 2023) could
improve prediction performance.

In parallel, as pointed out by García-Tejera et al. (2021), water po-
tential is not just an indicator of soil water depletion, but the result of
interactions between plant roots and various environmental factors,
notably soil. No soil information was used in the RDM. To tackle down
this issue, as shown by Roux et al. (2019), the Total Transpirable Soil
Water (TTSW) is an important driver of Ψpd variation: the lower the
TTSW, the more sensitive Ψpd is to weather conditions. Hence, it might
be interesting to incorporate open-access soil data, like TTSW estimation
(Román Dobarco et al., 2019), into the RDM.

The generation of pseudo-observations could be improved. In this
study, the pseudo-observation was considered as a single value, while it
could be considered as a distribution. Instead of using Random Forest
algorithm for model training, Quantile Regression Forest (Meinshausen,
2006) could be applied to generate the pseudo-observation. Moreover,
preliminary results (not shown) have indicated that the direct model
generally performs better at the beginning of summer, or under low
water deficit conditions. Conversely, the cumulative model may be more
informative when there is high water deficit. Therefore, it might be
relevant to assign varying weights to the direct and cumulative models
based on specific criteria (e.g. cumulative GDD, observed iG-Apex).

Pichon et al. (2023) demonstrated that the relationship between
iG-Apex and Ψpd can be sensitive to vine cultivar. In this study, two red
cultivars, cv. Grenache and cv. Syrah, were selected because they are
both widely grown under Mediterranean climate and they display
similar phenology and leaf growth responses to soil water deficit (Lebon
et al., 2006; Destrac-Irvine and Van Leeuwen, 2018). This suggests that
practitioners may need to recalibrate the model for cultivars that differ
significantly from those studied, in terms of vegetative growth under

water deficit. However, the objective of this paper is not to propose a
universally applicable model for diverse vine cultivars, but rather to
demonstrate the utility of iG-Apex and the proposed modeling structure.

In its current form, the RDM model has been developed using data
exclusively collected from rainfed vineyards, limiting its applicability to
similar cultural systems. Although dry farming systems are common in
the Mediterranean wine-making region, facing climate change, research
efforts could focus on adjusting and retraining the RDM using data
gathered from irrigated vineyards. This would allow for the consider-
ation of the impact of irrigation on Ψpd modeling.

5. Conclusion

The Recursive-Duo-Model (RDM) offers a novel approach for pre-
dicting predawn leaf water potential (Ψpd). By deploying time series of
two easily accessible information: vine shoot growth and weather data,
the RDM showed particular strengths in accurately predicting Ψpd for
absent to severe water deficit scenarios (-0.8≤ observed Ψpd≤ 0 MPa).
It proposed a mechanism that accounts for prior vine water status in
current predictions, hence improved Ψpd predictions when there is high
water deficit (observed Ψpd ≤ − 0.8 MPa). By combining machine
learning and Bayesian resampling, the RDM quantified and reduced
significantly prediction uncertainty compared to an approach which
depends uniquely on vine shoot growth data. Practically, the RDM en-
courages practitioners to make regular iG-Apex measurements at the
beginning of summer, and to evaluate the predicted Ψpd by considering
the associated prediction uncertainty. This latter helps practitioners to
identify periods where iG-Apex and weather data could not accurately
predict Ψpd, while optimizing the timing for acquiring reference vine
water status data. However, further advancements are needed to
improve the RDM, especially on its ability to accurately detect high
water deficit. Soil and/or other ancillary information should be incor-
porated into the predictive model to further improve prediction accu-
racy. A more balanced training dataset should also improve the model’s
performance in detecting the presence of high water deficit.
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Albrizio, R., Puig-Sirera, À., Sellami, M.H., Guida, G., Basile, A., Bonfante, A.,
Gambuti, A., Giorio, P., 2023. Water stress, yield, and grape quality in a hilly rainfed
“Aglianico” vineyard grown in two different soils along a slope. Agric. Water Manag.
279, 108183 https://doi.org/10.1016/j.agwat.2023.108183.

Allen, R.G., Jensen, M.E., Wright, J.L., Burman, R.D., 1989. Operational estimates of
reference evapotranspiration. Agron. J. 81, 650–662. https://doi.org/10.2134/
agronj1989.00021962008100040019x.

Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T., 2002. A tutorial on particle filters
for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50,
174–188. https://doi.org/10.1109/78.978374.

Baeza, P., Sánchez-de-Miguel, P., Centeno, A., Junquera, P., Linares, R., Lissarrague, J.R.,
2007. Water relations between leaf water potential, photosynthesis and agronomic
vine response as a tool for establishing thresholds in irrigation scheduling. Sci.
Hortic. 114, 151–158. https://doi.org/10.1016/j.scienta.2007.06.012.

Baralon, K., Payan, J.-C., Salançon, E., Tisseyre, B., 2012. Spider: spatial extrapolation of
the vine water status at the whole denomination scale from a reference site. OENO
One 46, 167–175. https://doi.org/10.20870/oeno-one.2012.46.3.1517.

Benkendorf, D.J., Schwartz, S.D., Cutler, D.R., Hawkins, C.P., 2023. Correcting for the
effects of class imbalance improves the performance of machine-learning based
species distribution models. Ecological Modelling 483, 110414. https://doi.org/
10.1016/j.ecolmodel.2023.110414.

Brunel, G., Pichon, L., Taylor, J., Tisseyre, B., 2019. Easy water stress detection system
for vineyard irrigation management. in: Precision Agriculture ?19. Wageningen
Academic Publishers, pp. 935–942. https://doi.org/10.3920/978-90-8686-888-9_
115.

Celette, F., Ripoche, A., Gary, C., 2010. WaLIS—A simple model to simulate water
partitioning in a crop association: The example of an intercropped vineyard. Agric.
Water Manag. 97, 1749–1759. https://doi.org/10.1016/j.agwat.2010.06.008.

Chang, J., Bai, Y., Xue, J., Gong, L., Zeng, F., Sun, H., Hu, Y., Huang, H., Ma, Y., 2023.
Dynamic Bayesian networks with application in environmental modeling and
management: a review. Environ. Model. Softw. 170, 105835 https://doi.org/
10.1016/j.envsoft.2023.105835.
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Pôças, I., Rodrigues, A., Gonçalves, S., Costa, P.M., Gonçalves, I., Pereira, L.S., Cunha, M.,
2015. Predicting grapevine water status based on hyperspectral reflectance
vegetation indices. Remote Sens. 7, 16460–16479. https://doi.org/10.3390/
rs71215835.
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Tosin, R., Martins, R., Pôças, I., Cunha, M., 2022. Canopy VIS-NIR spectroscopy and self-
learning artificial intelligence for a generalised model of predawn leaf water
potential in Vitis vinifera. Biosyst. Eng. 219, 235–258. https://doi.org/10.1016/j.
biosystemseng.2022.05.007.
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