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A B S T R A C T

Placental structure is linked to function across morphological scales. In the placenta, changes to gross anatomy,
such as surface area, volume, or blood vessel arrangement, are associated with suboptimal physiological out-
comes. However, quantifying each of these metrics requires different laborious semi-quantitative methods. Here,
we demonstrate how, with minimal sample preparation, whole-organ computed microtomography (microCT)
can be used to calculate gross morphometry of the equine placenta and a range of additional metrics, including
branching morphometry of placental vasculature, non-destructively from a single dataset. Our approach can be
applied to quantify the gross structure of any large mammalian placenta.

1. Introduction

Placental morphometry is linked to physiological outcomes [1]. The
mammalian placenta exhibits remarkable morphological diversity
across structural scales [2–4], the largest of which is ‘gross morphology’
[4]. Gross morphology refers to macroscopic structural characterisation
of the placenta at the whole-organ level. Changes to gross placental
morphology are associated with suboptimal gestational outcomes [5],
such as intrauterine growth retardation [6,7]. Horses exhibit a diffuse
placenta, whereby a villous allantochorion covers the entire endometrial
surface for nutrient exchange with the mother [8–10]. Different metrics
for quantifying equine placentas must currently be measured using
different methodologies. For instance, gross surface area is measured by
placing the placenta beneath a clear acrylic sheet marked with gridlines,
while gross volume is determined through water displacement [8,11].
Blood vessel architecture, which is important for understanding blood
flow and nutrient transport, is often assessed via corrosion casting, a

technique involving resin injection into the vessels followed by tissue
removal [12–14]. Such methodologies are less precise than modern
approaches, and some of them are time-consuming, destructive, and
labour-intensive. Three-dimensional (3D) imaging techniques can
quantify placental tissue architecture and reveal structures not apparent
in two-dimensions [4,15]. Of these, microCT (or X-ray microfocus
Computed Tomography) has emerged as a powerful non-destructive tool
to quantify tissue architecture at the level of both the whole placenta
[16,17] and microanatomy [4,18]. Here, we demonstrate how microCT
can be used to quantify the gross morphometry of the equine placenta.
Although we focus on the equine placenta for its veterinary and
comparative implications, our approach is applicable to quantifying the
structure of any large mammalian placenta.

2. Methods

We scanned an entire equine placenta (New Forest Pony, Equus
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caballus) using microCT (Fig. 1). Following collection, the placenta was
washed in 1 x PBS, fixed in 10 % buffered formalin, and immersed in 10
% Lugol’s iodine solution (Fig. 1A–C) prior to imaging in a walk-in
microCT system (diondo d5; Fig. 1D–F). The resulting volume image
dataset (Fig. 1G and H) was segmented (Fig. 1I), 3D reconstructed, and
quantified within Microscopy Image Browser (MIB) [19] as in Ref. [20].
The full methodology is available in the Supplementary Methods. The full
image dataset and corresponding labels are freely available for down-
load at Bioimage Archive accession S-BIAD1130 under license CC BY 4.0
https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BIAD1130.
Analysis of samples in Southampton was approved locally by the Uni-
versity of Southampton (47770.A1/46381.A2).

3. Results and discussion

With only minimal and reversable sample preparation [21], we
quantified the surface area of the allantochorion, volume of major
components, and branching morphometry of major blood vessels in a
whole equine placenta using this single technique. Whole-organ
microCT imaging of the entire equine placenta permitted quantitative
morphometric analysis (Fig. 2; Video 1). The allantochorionic placenta
had a total volume of 1411 cm3 and an outer chorionic surface area of
9126 cm2 (inner surface of 7561 cm2) (Fig. 2A). The amniotic sac,

umbilical cord, blood vessels (ranging from ~0.2–1.2 cm in diameter)
and allantoic pouches were also reconstructed (Fig. 2B–D) and volu-
metrically quantified (Fig. 2E). Allantoic pouches ranged from 13 to 470
mm3 in volume (mean± SD, 146 ± 144 mm3) and we can visualise their
distribution around the umbilical cord attachment site (Fig. 2D). The
reconstructed blood vessels could be traced and quantified for branching
metrics (Fig. 2F–K), which is not possible using semi-quantitative 2D
techniques. Due to the 3D connectivity of the microCT dataset, indi-
vidual vessels could be traced and separated, delineating arterial and
venous vessels (Fig. 2F). The two umbilical arteries could be further
separated, resolving the three major umbilical vessels and their trajec-
tories (Fig. 2G). This showed that one artery localises to the pregnant
horn and placental body, whereas the other localises to the
non-pregnant horn (Fig. 2G). Skeletonised vessels were then quantified
morphometrically (Fig. 2H–K), showing that the artery in the
non-pregnant horn was notably shorter, less branched, and had a lower
branching angle than either the artery in the pregnant horn or the vein
(Fig. 2J and K). We can also see that the vein covers a much larger area
of the placenta (as quantified by ‘Convex Volume’) than either artery
individually (Fig. 2K). The distribution of these data can be visualised
graphically (Fig. 2J) and could be statistically compared between
treatments.

Our whole-organ microCT imaging of the equine placenta achieved a

Fig. 1. – Whole-organ microCT imaging of an entire equine placenta. (A–B) Photographs of the fixed and stained New Forest Pony (Equus caballus) placenta used
in this study arranged in the classic ‘F’ configuration, shown with the chorionic surface facing both out (A) and in (B). Labelled are the amniotic sac (as), the placental
body (pb), the pregnant horn (ph), the non-pregnant horn (nph), the umbilical cord (uc), and major vessels (v). Inset in B shows examples of allantoic pouches
typically found around the umbilical cord attachment site. (C) Prior to scanning, the placenta was adhered to a polystyrene board (b) with wooden toothpicks (t). The
amniotic sac and umbilical cord were inserted inside the internal cavity of the pregnant horn, and the placenta imaged chorionic side out. (D) Exterior of the diondo
d5 walk-in microCT system used in this study, located at the μ-VIS X-ray Imaging Centre (www.muvis.org) at the University of Southampton, UK. (E-F) Photographic
(E) and diagrammatic (F) representation of the scanning setup inside the d5 system used in this study. A plastic container was used to capture any liquid leaks and
prevent damage to the equipment. (G) Volumetric render of the microCT dataset illustrating the approximate orientation of the placenta during scanning. A small
pool of fluid accumulated at the bottom of the box (asterisk). (H-I) Virtual slice through the microCT dataset (H) and corresponding label segmentation (I) of the
imaged equine placenta. Labelled are the allantoic pouches (yellow), amniotic sac (green), umbilical cord (purple) and non-umbilical blood vessels (red). The
orientation of the sample is as in (C), such that the pool of fluid is now located at the top of the image (asterisk).
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holistic quantification of its anatomy using diverse morphometric pa-
rameters, all with a single non-disruptive technique, accommodating
subsequent analysis including classical histology. As microCT images
tissue ridges and folds in 3D, it is not necessary to stretch the placenta
into a 2D approximation to get an accurate surface area quantification,
as in traditional methods. It should be noted that our data provide only
the calculation of gross anatomy and quantification of finer surface
structures, such as chorionic villi and capillaries, would require addi-
tional higher resolution imaging techniques. This could involve sam-
pling small ~0.5 cm subregions of the chorionic surface prior to
microCT imaging for downstream correlative microCT-volume electron
microscopy (CXEM) or 3D X-ray histology using higher resolution
microCT scanners [22] and other modalities to generate multiscale
structural data, as we have described previously [4,18,20]. Segmenta-
tion of the microCT datasets can also be a limitation to this methodol-
ogy, as labelling structures in serial 2D is time-consuming, however
segmentation using AI [23] can speed up this process and has shown to
be useful in segmenting placental microCT datasets [17].

Here, we demonstrate the application of whole-organ microCT im-
aging as a powerful tool for quantifying gross placental morphometry.
Our central approach of sample preparation and image reconstruction

can also be translated to imaging placentas with more widely available
MRI or CT scanners in medical or veterinary settings. As such, we are
confident the scope of our workflow can be widely applied. Recon-
structed placentas using this technique can be used to investigate
changes in gross morphometry in cases of pathology, in interspecies
evolutionary comparisons, and as 3D architectures in which to compu-
tationally model physiological processes. We therefore propose whole-
organ microCT as a tool with great potential to shed light on placental
structure and function.
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Fig. 2. – Quantification of equine placental morphometry by whole-organ microCT. (A) 3D pseudocoloured reconstruction of the chorionic surface of the
scanned equine placenta. Labelled are the placental body (pb), pregnant horn (ph), and nonpregnant horn (nph). (B) Internal components of the imaged placenta.
Labelled are the allantoic pouches (yellow), amniotic sac (green), umbilical cord (purple) and non-umbilical blood vessels (red). The allantochorion is shown in low-
opacity for context (white). (C-D) Allantoic pouches (C) were identified around the umbilical cord insertion site and coloured by volume (D). (E) Volumetric
quantification of labelled structures in the equine placenta. (F-K) Filament tracing, visualisation, and quantification of vessel morphometrics of individual vessels
from the equine placenta. (F–G) Vessels coloured as arterial or venous in flow (F) and as individual vessels (G). (H–I) Traced vessels showing branching bifurcations
and tips (H) and coloured by vessel diameter (I). (J) Distribution of individual branching angles for individual vessel branches (single points). Large circles represent
mean values per vessel. (K) Comparison of major vessel morphometrics for the three labelled individual vessels.
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