

Revealing the cost of environmental services in dairy farms

Kofivi Dzegle, Aude Ridier

► To cite this version:

Kofivi Dzegle, Aude Ridier. Revealing the cost of environmental services in dairy farms. XVII EAAE Congress, European Association of Agricultural Economics, Aug 2023, Rennes, France. hal-04679354

HAL Id: hal-04679354 https://hal.inrae.fr/hal-04679354v1

Submitted on 27 Aug 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Revealing the cost of environmental services in dairy farms

Kofivi Dzegle¹, Aude Ridier²

(1) INRAe, UMR SMART, 35000 Rennes(2) Institut Agro, UMR SMART, 35000 Rennes

XVII EAAE Congress – Rennes, August 31, 2023

> Motivation

- Increasing awareness of environmental concerns in agriculture
- Possible trade-off between climate change and biodiversity impact
- Important role of the agricultural sector through public policies and private initiatives
- Understanding the real cost of environmental services provided by farms
 - Make improved decisions about agricultural sustainability
 - Encourage to take account of efforts to preserve and protect the environment in trade negotiations

> Literature

- Relationship between environmental services and their production costs
 - High production costs for label and organic farms (Uematsu et al; Froehlich et al.)
 - Studies rarely carried out for conventional farms (Rosa-Schleich et al.)

> Our aim

- Evaluating the real cost of environmental performance in conventional dairy farms
 - Method 1: Mixed-effects panel model
 - Method 2: Generalized propensity score model
 - GHG emission and crop diversity index
 - Controling for unobserved heterogeneity in production conditions (Wolf et al.)
 - Also consider the effect of structural factors (Jan et al.)
- Individual accounting data for Bretagne

- Economic indicator or variable of interest
 - Milk production cost (€ /1000 liters)
- Environmental performance indicators
 - Greenhouse gas emissions (Kg CO2 eq /hectare)
 - q_i quantity produced per crop
 - *cc_i* unit emissions indicator per kg of crop produced
 - q_h quantity produced by animal category
 - cc_h unit emissions indicator per kg of animals produced
 - Crop diversity index (Shannon index)

H' = – Σ pi *log(pi)

• pi the proportion of each crop in the farm's total area

$$cctot_i = \sum_j q_j * cc_j + \sum_h q_h * cc_h$$

Results

> Building environmental performance classes

Farm classification according to GHG emission

Farm classification according to Shannon index

Farm number	GHG score	Environmental Performance	Farm number	Shannon index	Environmental Performance
1	7	High	1	<1	Unfavorable
2	5	Average			
3	9	Very high	2	Between 1 and 1.8	Neutral
4	0	Low			
5	3	Very low	3	>1.8	Favorable

> Data

- Individual accounting data for specialized conventional dairy farms in Bretagne
 - Share of dairy product over total product exceeds 70%

- Unbalanced panel of 1,747 farms over 3 years (2020 2022)
 - 2,092 observations (1.2 observations per farm)
 - 697 observations per year

> Sample characteristics

Variables	Mean	sd	Min	Мах
Total UTH	1.85	0.79	1	6.1
UAA <i>(ha)</i>	94	42	25	461
Number of dairy cows	79	34	20	313
% area Corn/ forage area	44	13	0	110
Livestock density (Bovine unit/ha)	1.69	0.40	0.77	7.51
Milk produced (liters)	618,600	311,300	113,900	2,409,200
Milk (liters /dairy cows)	7,600	1,300	2,900	11,700
GHG emissions (Kg/ha)	9,100	2,200	3,100	14,900
GHG emissions (Kg/liter)	1.39	0.15	1.07	2.48
Shannon index	1.1	0.5	0.0	2.7
Production cost (€/1000I)	502	82	308	1,121

> Milk production costs by emission (GHG) class

	Very low	Low	Average	Strong	Very strong
Production cost (€/1000I)	466	480	491	511	560
Feeding	112	108	106	107	100
Workshop management	52	52	53	55	54
Mechanization	73	75	80	81	93
Building	65	66	62	63	63
Miscellaneous management expenses	25	27	28	30	36
Land	18	20	21	23	30
Working capital	13	13	13	13	14
Labor	109	118	128	137	169
Productivity (litres/Total labour)	411,300	375,100	346,100	325,900	271,900

> Milk production costs by Shannon class

	Unfavorable	Neutral	Favorable
Production cost (€/1000I)	504	501	497
Feeding	108	106	108
Workshop management	53	54	54
Mechanization	81	80	78
Building	66	63	62
Miscellaneous management expenses	29	30	29
Land	22	23	22
Working capital	14	13	12
Labor	131	133	132
Productivity (liters/Total labour)	350,700	344,400	335,200

- > Identification strategy
- Method 1: Mixed-effects model

$$y_{it} = \alpha_0 + Z'_{it}\alpha + \gamma_t + \mu_i + \varepsilon_{it}$$

- y_t production cost in year t for individual i
- γ_t temporal effects
- μ random individual effects
- Z'_t explanatory variables vector
- ε_t residual
- Method 2: Generalized propensity score model

$$y_i = \beta_0 + \sum_{c=2}^5 \beta_c T_{c,i} + \varepsilon_i$$

- *y* production cost
- T_c environmental performance class
- β_c effect of environmental performance compared with the reference class
 - ε residual

> The effect of GHG emission/ha on production costs

- 77% of production cost variability is due to inter-farm variability
- Higher environmental performance significantly increases costs
- The service cost curve has a quadratic shape
- Same trend with the two methods (form of validation and robustness of results)

	Mixed effects model		IPTW method	
	Coefficients	Standard errors	Coefficients	Standard errors
Constant	460.85	(4.17)***	515.67	(9.8)***
Performance_ghgLow	18.60	(5.69)***	14.27	(4.68)***
Performance_ghgAverage	33.35	(5.59)***	26.46	(5.17)***
Performance_ghgHigh	58.96	(5.50)***	50.21	(5.73)***
Performance_ghgVery high	40.25	(5.15)***	89.76	(6.56)***
Number of observations		2,092		2,092
R2		35%		10%

> The effect of Shannon index on production costs

- 77% of production cost variability is due to inter-farm variability
- Higher environmental performance significantly decreases costs
- The service cost curve has a quadratic shape
- Same trend with the two methods (form of validation and robustness of results)

	IPTW* method		Mixed effects model		
	Coefficients	Standard errors	Coefficients	Standard errors	
Constant	508.51	(3.11)***	495.80	(10.71)***	
Performance_shannonNeutral	-8.34	(4.44)***	-7.75	(3.10)**	
Performance_shannonFavorable	-15.41	(4.42)***	-11.98	(6.53)*	

*** 1%

Conclusion

- Existing environmental efforts in conventional dairy farms with large individual heterogenity
- The mixed effects model fits better than propensity score method (individual effects)
- Milk marginal production cost
 - increases with GHG/ha performance class (+58.96 €/1000l from very low to high)
 - Decreases with Shannon index performance class (-8.34 €/1000l from unfavorable to neutral)
- Possible trade-off between GHG/ha performance and biodiversity performance at farm scale
- Choice of indicators and ranking method debatable

Thanks for your attention!

XVII EAAE Congress – Rennes, August 31, 2023

