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Key Points:11

• Improvement of a differentiable 1D Saint-Venant river network model with variational data assimilation of12

SWOT data at basin scale.13

• Simultaneous and physically consistent estimation of large spatio-temporal inflows, bathymetry and friction14

of hydraulic network model.15

• Automatic pre-processing of multi-satellite altimetry and images for basin scale model setup and wavelet-16

based filtering of SWOT L2 RiverSP data at node scale.17

Abstract18

The unprecedented hydraulic visibility of rivers surfaces deformation with SWOT satellite is tremendous information19

for refined hydrological-hydraulic modeling. But the estimation of uncertain or unknown discharge and bathymetry-20

friction in a spatialized hydrodynamic model from water surface elevation (WSE) and width (WSW) observations21

is a difficult high-dimensional inverse problem faced with equifinality. This article newly studies variational data22

assimilation (VDA) of WSE into a 1D Saint-Venant differentiable river network model fed by a semi-distributed23

hydrological model. A pre-processing chain enables (i) building effective hydraulic model geometry from WSE24

altimetry (Sentinel 3, drifting ICESat2) and WSW (Sentinel 1 images), and (ii) filtering noisy SWOT level 2 WSE25

before assimilation. The simultaneous inference of spatially distributed inflow hydrographs, bathymetry-friction26

at network scale, on the large poorly gauged Maroni basin (French Guiana), is done by VDA of nadir and in27

situ WSE or SWOT 1-day WSE only. A systematic improvement obtained for the fit to assimilated WSE and in28

validation of discharge at 5 gauges inside the network: 70% of data-model misfit in [−0.25 ; 0.25m], NRMSE on29

discharge between 0.11 and 0.26 for SWOT only on a large flood given unfavourable hydrological prior. SWOT30
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WSE density enables to infer detailed spatial variability on channel bottom elevation given width from images and31

detailed temporal variabilities of hydrological inflow hydrographs. The approach is transposable to other rivers32

networks worldwide in view to tackle the double regionalization problem of hydrological and hydraulic parameters33

from sparser but increasingly massive and informative data.34

Keywords: Satellite data of SWOT, ICESat2 and Sentinel 3 altimetry, Sentinel 1 images, for hydraulic model-35

ing; Differentiable 1D Saint-Venant river network model, numerical adjoint model and variational data assimilation36

algorithm; Simultaneous inference of spatially distributed river network bathymetry, friction and inflows; High-37

dimension optimization and improved fit to altimetry water heigths and discharge in validation; Poorly gauged38

bassins39

1 Introduction40

Improving the estimation of freshwater stocks and fluxes in surface hydrology is an important scientific question41

that is essential to address regarding major socio-economic issues such as water resource management or forecasting42

of extremes (floods and droughts), especially in the context of climate change and potential intensification of the43

water cycle (Masson-Delmotte et al., 2022). Elaborating detailed and reliable hydrological-hydraulic models, capa-44

ble to translate atmospheric signals into river flows and inundations depths, velocities and extents, while integrating45

the available observations of these flows, for scientific research and decision support, is crucially needed. However,46

the more complex the desired or required modelling, the more information is required to constrain it.47

48

Hydrological-hydraulic modeling generally requires data to describe (1) atmospheric forcings, (2) physical49

properties of the catchment (drainage, topography, land use, composition of the soil and subsoil, etc) and the hy-50

drographic network (bathymetry, hydraulic friction, structures), as well as flow observations (discharge and water51

depth at the very least, flow velocities, slopes, soil moisture, etc) to estimate the model parameters. Discharge data,52

which are crucial to calibrate rainfall-runoff hydrological models, are more or less rare depending on the basins and53

the spatial density of their ground measurement networks, they integrate the signature of the complex combination54

of physical processes occurring in the compartments of the upstream basin (rivers, lakes, biosphere, aquifers and55

unsaturated soils, cf. Milly (1994)) with significant spatio-temporal variabilities (e.g. Flipo et al. (2014); Schuite56

et al. (2019)), and such discharge data contain uncertainty (e.g. Mansanarez et al. (2016); Horner et al. (2018);57

Eggleston et al. (2024)). Bathymetry and friction data are needed to constrain hydraulic modeling and are unvail-58

able in many areas. Dry bahtymetry can be measured accurately with airborne LiDAR while wet bathymetry, i.e.59

below river surface, requires in situ surveys or penetrating LiDAR in clear shallow streams (cf. Lague & Feldmann60

(2020)). The friction of hydraulic models can only be estimated indirectly from flow measurements. In complement61

to in situ data, new generations of earth observation satellites and sensors provide increasingly accurate an spatially62

dense measurements of water surface variabilities of worldwide rivers, especially on remote and hardly measurable63
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ones, in terms of water surface elevation Z, width W and slope S.64

65

This hydraulic visibility yielded by single or multi-satellite measurements, i.e. the potential to depict a hydro-66

logical response and surface hydraulic variabilities within a river section or network via remote sensing (Garambois67

et al. (2017), see also Rodŕıguez et al. (2020)) can provide valuable information for estimating discharge with a68

local discharge law function of flow geometric parameters (rating curves in Z and Z, S (Paris et al., 2016) or in69

W (Pavelsky, 2014) or stage-fall-discharges or Low Froude model in Z, S (Malou et al., 2021)) depending on the70

uncertainties on bathymetry and friction which are key hydraulic parameters that are unobservable from space (cf.71

Larnier et al. (2020); Frasson et al. (2021)), or even for calibration of reach scale or network scale hydraulic models72

(e.g. Paiva et al. (2013); Garambois et al. (2017); Schneider et al. (2017); Garambois et al. (2020); Pujol et al.73

(2020); Malou et al. (2021); Coppo Frias et al. (2022)). Nevertheless, the estimation of hydraulic model parameters74

from water surface (WS) observables can result in more or less difficult and ill-posed inverse problems depending75

on the complexity of the physical system and of the model used, on the nature and amount of observations and76

unknowns.77

78

Discharge Q of gradually varied flows (cf. Chow (1959); S. Dingman (2009)) can be related, locally at a section

or river reach scale, to flow energy slope Sf such that:

Q = κS
1/2
f =

N∏
i=1

pαi
i (1)

with κ the flow debitance which is inversely proportional to a friction parameter ρ such that p1 = 1/ρ and

proportional to the product of the flow parameters pi raised to the corresponding exponent αi (cf. S. Dingman

(2009); Rodŕıguez et al. (2020)). Theoretically, an infinity of friction parametrizations is possible, those of Chézy,

Manning-Strickler or Darcy–Weisbach being commonly used in free surface hydraulics (cf. Chow (1959); S. Ding-

man (2009), e.g. Kirstetter et al. (2016)). Note also the link with the power laws of hydraulic geometries and

with geomorphological variability (Leopold & Maddock, 1953), see application to recent datasets and analysis in

S. L. Dingman & Afshari (2018); Eggleston et al. (2024) and references therein). Given the relatively large scales

of satellite measurements, the flows observed can be considered stationnary and mainly Low Froude, i.e. Fr ≤ 0.3,

the friction slope Sf equals the surface slope S = |∂xZ| > 0, and the low Froude Manning Strickler model writes

(cf. Garambois & Monnier (2015)):

Q = KAR
2/3
h

√
S (2)

Where K is the Strickler friction coefficient, A and Rh are respectivey the wetted flow section and hydraulic radius79

depending on bathymetry b and cross-section (XS) geometrical shape. Discharge estimation from WS observations80

only, with unknown bathymetry b and friction K embedded in the low Froude Manning-Strickler model, is an81

ill-posed inverse problem (cf. Garambois & Monnier (2015); Larnier et al. (2020)) and an accurate mean or a82

reference value of one of the sought parameters (Q,K, b) is required to perform accurate estimates (Larnier et al.,83

2020; Larnier & Monnier, 2023). When reliable discharge data, either given by ground-based measurements or by84
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a river network model, are available for calibration of flow laws, stage-discharge (rating curve, Q = aZb) or stage-85

fall-discharge laws (Q = cZdSe, e.g. Paris et al. (2016); Malou et al. (2021)) or the low Froude Manning Strickler86

model, can provide accurate discharge estimates. The accuracy of satellite-based discharge estimate depends on87

observation errors, flow law parameters error and structural model errors Yoon et al. (2016); Larnier et al. (2020);88

Durand et al. (2023). Site-specific geomorphic and hydraulic conditions affect both ground-based (e.g. Le Coz et89

al. (2014); Mansanarez et al. (2016)) and satellite-based river flow monitoring (Frasson et al., 2021; Eggleston et90

al., 2024).91

92

The satellite-based hydraulic visibility of river flow signatures through water surfaces deformations can be used93

to calibrate parameters of reach scale or river network scale hydrological-hydraulic models. For example, the MGB94

model (Portugese acronym - Modelo de Grandes Bacias, (Collischon et al., 2007; Pontes et al., 2017)) with simplified95

non inertial 1D hydraulics, yet of sufficient realism to enable ingesting water surface elevation (WSE) data, has96

been calibrated with ENVISAT altimetric data in Getirana (2010); Paiva et al. (2013) and with multi-satellite97

data in Meyer Oliveira et al. (2021), it has been corrected with assimilation of synthetic SWOT WSE, WSE and98

discharge with a Kalman filter at basin scale in Wongchuig-Correa et al. (2020). The friction of a simplified 1D99

hydraulic model of an anastomosed reach, with equivalent 1D XS geometry with low and high flow width from100

satellite images (JERS2) and effective bottom elevation from altimetric rating curves of Paris et al. (2016), fed by101

discharge of the MGB model, has been calibrated with ENVISAT altimetry in Garambois et al. (2017). Triangular102

XSs of a 1D dynamic wave model, fed by discharges of a pre-calibrated semi lumped hydrological model, have103

been calibrated (bottom elevation and shape parameter) with CryoSat-2 drifting altimetry data in Schneider et104

al. (2017). A low-parameterized steady hydraulic model, i.e. with spatially uniform 2 parameters XS shape and105

friction, has been calibrated with a global search algorithm using ICESat-2 altimetry data in Coppo Frias et al.106

(2022).107

These studies investigated low-dimensional calibration problems with classical global search algorithms. More108

advanced estimation algorithms are required for the estimation of high-dimensional spatially distributed parameters109

of river network hydrodynamic models, in view to best approximate the available flow observations while reducing110

modeling errors which are both spatio-temporally varied.111

The Variational Data Assimilation (VDA) approach (cf. Cacuci et al. (2013) and references therein, also112

Monnier (2021)) is well suited to estimate large parameters vectors of full hydraulic models (see Brisset et al.113

(2018); Oubanas et al. (2018); Larnier et al. (2020) with synthetic SWOT data Tuozzolo et al. (2019); Garambois114

et al. (2020); Pujol et al. (2020); Malou et al. (2021) with real data). This method aims to minimize the fit, in the115

sense of a given cost function, between the model response and observed data, by optimizing model parameters.116

Optimization algorithms adapted to high-dimensional inverse problems, such as the LBFGS or Adam algorithms,117

require the computation of the cost gradient to the sought parameters, which can be computed from the numerical118

adjoint model of a differentiable numerical forward model (cf. Monnier (2021)). The simultaneous estimation,119

from WS observables, of spatio-temporal hydraulic parameters, i.e. inflow discharge Q(t) and bathymetry b(x) and120
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friction K(x) is a difficult inverse problem given their correlated influence on simulated WS and regularizations121

are needed for solving it (cf. Larnier et al. (2020); Garambois et al. (2020) and references therein). As before for122

local discharge laws, parameters inversion from WS observables is faced with model structural equifinality (sought123

parameters being embedded into the friction source term) but also to spatial equifinality, i.e. spatial patterns of124

parameters leading to similar model fit to observations (see analysis for hydraulic modeling from WS observations125

in Garambois et al. (2020) in 1D, Pujol et al. (2024) in 2D). The spatial density of WSE measurements brought126

by SWOT, and the visibility of flow lines offer new possibilities to estimate spatially distributed parameters.127

However, satellite altimetry measurements of WS are relatively sparse in time compared to local flow dynamics.128

This important aspect of the inverse problem is investigated in Brisset et al. (2018) with the introduction of the129

identifiability maps which represent in space-time the available information: WS observables, hydraulic waves and130

an estimation of the misfit with the local hydraulic equilibrium. These maps enable to estimate if the sought131

upstream discharge information has been observed or not within the downstream river surface deformations; also132

they help to estimate inferable hydrograph frequencies Brisset et al. (2018) or inferable hydrograph time windows133

Larnier et al. (2020) at reach scale, and have been applied on a long reach of the Negro River with several tributaries134

and synthetic SWOT data Pujol et al. (2020). The variational assimilation of multi-satellite observations into a135

river network scale differentiable hydraulic model has seldom been done and would enable maximizing information136

extraction for estimating large vectors of spatio-temporal model parameters.137

This article newly studies the improvement of integrated hydrological-hydraulic (H&H) models, of a river138

network within its basin, that can be obtained by leveraging the unprecedented hydraulic visibility from the recently139

launched SWOT satellite in complement of altimetry and imagery from other state-of-the-art satellites used to build140

the prior model geometry. It presents the first application of VDA over a differentiable river network 1D Saint-141

Venant hydraulic model fed by a semi-distributed hydrological model over a poorly gauged basin. Moreover, the142

approach builds on a proposed automatic pre-processing chain enabling to build a hydraulic model geometry from143

multi-satellite data, on a hydraulic preserving wavelet-based filtering algorithm for SWOT L2 RiverSP products at144

node scale, on a differentiable hydrodynamic solver and VDA algorithm, with the following original ingredients all145

applicable to open source data and other basins worldwide:146

• A pre-processing algorithm for water surface width (WSW) extraction from optical and radar images, for147

WSE extraction from ICESat2 altimetry, both used to build the a priori river geometry.148

• A fine analysis and filtering of 1D L2 SWOT river products, with a wavelet-based processing algorithm based149

on Montazem et al. (2019) with some upgrades.150

• A network scale differentiable 1D Saint-Venant hydraulic model, DassFlow1D, fed with discharge from the151

pre-calibrated MGB hydrological model for (i) a coherent state-flow modeling over river network at basin152

scale, (ii) while enabling sufficiently complex hydraulic modeling to fit high resolution observations of rivers153

surface deformations.154
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• A variational data assimilation (VDA) algorihtm enabling to ingest multi-source heterogenous data and to155

estimate high-dimensional spatio-temporal model parameters, here spatially distributed bathymetry, friction156

and inflow hydrographs of the hydraulic model.157

The remainder of this article is as follows: section 2 presents the modeling approach and the inverse algorithm,158

section 3 presents the studied case and data, results and discussions are detailed in section 4, conclusion and159

perspectives are given in section 5.160

2 Flow model and data assimilation algorithm formulation161

This section successively presents (1) the forward river network model composed of the differentiable 1D Saint-162

Venant hydraulic network model, DassFlow1D, fed with discharges from the semi-distributed hydrological model163

MGB; (2) the variational data assimilation algorithm (Figure 1); (3) the studied Maroni River basin (MRB) and164

multi-source data (Figure 2), and the automatic chain for data processing (Figure 3 and 4), model meshing and165

coupling (Figure 5), (4) the modeling and data assimilation hypothesis and the numerical experiment design.166

2.1 Forward river network flow model167

2.1.1 Hydrological-hydraulic coupling168

We consider a 2D river basin domain Ωrr, on which is applied a spatialized hydrologic model Mrr, that169

contains a sub-domain Ωhy on which is applied a 1D Mhy hydraulic model of the river network. This hydraulic170

model is fed by the hydrologic model through discharge time series at Nin inflow points, with Nup upstream and171

Nlat lateral inflow points, determined by preprocessing as explained later. This coupling interface between the172

hydrological and hydraulic model is denoted Γin = Γup

⋃
Γlat and is the coupling interface with the hydrological173

model that provides mass flux time series, i.e. inflow hydrographs to the hydraulic model at upstream and lateral174

inflow points.175

The meshing of the hydrological domain Ωrr consists here in a drainage plan composed of topographical sub176

basins. The hydraulic domain Ωhy, Ωhy ⊂ Ωrr ⊂ R2, is a portion of a hydrographic network plus its floodplains,177

described by connected segments s = 1..Nseg defined between upstream inflow points and successive confluences;178

t ∈ ]0, T ] denotes the physical time and x ∈ Ωhy the curvilinear abscissa within a segment s.179

The obtained hydrological-hydraulic model, weakly coupled via hydrological fluxes imposed at upstream bound-

ary conditions and lateral mass source terms, is denoted as:

M = Mhy [K(s, x), b(s, x), Zdown(t), (Qin,1..NBC
, Qlat,1..Nlat

) (t) = Mrr (.)] (3)

WhereK(s, x) and b(s, x) respectively denote the spatially distributed hydraulic friction coefficient and bathymetry,180

Zdown(t) is the water level time series used as downstream boundary condition (BC), and Qin,1..Nup
(t) (resp.181

Qlat,1..Nlat
(t)) the Nin = Nup + Nlat inflow hydrographs used as upstream BC (resp. lateral source term) of the182

hydraulic model written after.183
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2.1.2 1D Saint-Venant hydraulic model184

The hydraulic model is written here for a given segment s composing the river network domain Ωhy.185

Let A (x, t)
[
m2

]
be the XSal area of flow and Q (x, t)

[
m3/s

]
the flow rate such that Q = UA with U (x, t) the186

mean velocity [m/s] over a XSal area of flow. The Froude number for any XS is defined as Fr = U/c =
√

Q2W/gA3,187

where W is the top width, and compares the flow velocity U with the wave velocity c; Fr2 compares the kinetic188

energy of the moving fluid with the potential energy of gravity.189

The 1D Saint-Venant equations taking into account a variable XS A with lateral fluxes of exchange ql, write190

as follows:191

Mhy : ∂tU+ ∂xF(U) = S(U)

U =

A
Q

 , F(U) =

 Q

βQ2

A

 , S(U) =


ql

−gA
(
∂Z
∂x − Sf

)
+ Uδlqlat


(4)

where Z(x, t) is the WSE [m] and Z = (zb+h) with zb(x) the river bed level [m] and h(x, t) the water depth [m],192

Rh(x, t) = A/Ph the hydraulic radius [m], Ph(x, t) the wetted perimeter [m], g is the gravity magnitude
[
m.s−2

]
,193

qlat(x, t) is the lineic lateral discharge
[
m2.s−1

]
and δl is a lateral discharge coefficient chosen equal to one here194

since we consider inflows only. Let us recall the Froude number definition Fr = U/c comparing the average flow195

velocity U to pressure wave celerity c =
√

gA
W where W is the flow top width [m]. β is a dimensionless coefficient196

accounting for velocity non-uniformity and set to 1 by default.197

2.1.3 Friction parameterization198

The friction term Sf is classically parameterized with the empirical Manning-Strickler law established for

uniform flows

Sf =
|Q|Q

K2A2R
4/3
h

(5)

where K(x)
[
m1/3.s−1

]
is the Strickler coefficient that can be spatially distributed. A richer formulation is used

here:

K(x, h) = α(x)hβ(x) (6)

More complex friction parameterization, such as the classical two-bed formulation Nicollet & Uan (1979) is199

available in DassFlow1D, and will be investigated in further research in case where more complex modeling is200

relevant (regarding flow complexity, bathymetry and flow data availibility).201

2.1.4 Observation dataset and XS geometry parameterization.202

The XS geometry can be defined classically from river channel and floodplain bathymetric data if available or203

from satellite observations of rivers surfaces for ungauged reaches. In this last case, with WS observations only,204
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a part of the bathymetry remains unobservable below the lowest WS elevation measurement and an equivalent205

representation is generally used (cf. Durand et al. (2014); Garambois et al. (2017); Larnier et al. (2020) with206

SWOT-like data).207

We denote by Y ∗ the set of multi-source observations of hydraulic responses over the river network domain208

Ωhy that we aim to integrate into the flow model. This set consists in altimetric WSE and flow top width, unevenly209

spaced but rather densely covering the whole spatial domain (imagery, drifting or wide swath altimetry in addition210

to multi-mission nadir altimetry).211

In the general case, a multi-satellite dataset, composed of WS elevation and width observations can be written

as:

Y ∗ :=
{
(Z∗((s, x)vs=1..Nz

, tpz=1..Pz(oz));W
∗((s, x)ws=1..Nw

, tpw=1..Pw(ow))
}

(7)

with (s, x)□ denoting the spatial location of WSE or WSW measurements sorted in ascending order of magnitude212

with t□ the observation times at this location; Nz (resp. Nw) being the number of WSE (resp. WSW) observation213

points accross the river network domain Ωhy, and Noz (resp. Now) the number of observation times for each WSE214

measurement location xoz=1..Nz (resp. WSW location xow=1..Nw). Similarly, t□ denotes measurements times.215

In the case of SWOT, Z and W measurements are synchronous in time and space, and the dataset reduces to:

Y ∗ := (Z∗,W ∗)(xo=1..No
, tp=1..p(o)) (8)

In this work, SWOT width is not used but dynamic water masks are extracted from Sentinel radar data as216

explained after. This enables to define XSs geometries consisting in a rectangle for the unobserved lower part of217

the main channel, plus a superimposition of trapeziums above (cf. Larnier et al. (2020)). Over the studied basin218

are simple rectangular XS shape is used, which is justifiable by the low variability found in dynamic water masks219

a reasonable hypothesis (same hypothesis in the ”neighbouring” Rio Negro basin on the other side of the Guiana220

shield in Pujol et al. (2020); Malou et al. (2021)) as shown by results accuracy after.221

More complex parameterisation of XS shape, as the power law hydraulic geometry of S. L. Dingman & Afshari222

(2018) (e.g. used at reach scale in a SWOT discharge algorithm in Andreadis et al. (2020)) and a superimposition223

of dissymmetric trapeziums constrained from dynamic water masks (e.g. Brisset et al. (2018); Larnier et al. (2020))224

available in DassFlow1D, could be investigated in further research in case more complex modeling is pertinent225

(again regarding flow complexity and data availibility).226

2.1.5 Hydrological-hydraulic model and numerical resolution227

First, consider a distributed or semi-distributed hydrological model Mrr providing spatio-temporal discharges228

estimates Qrr(x
′, t), ∀x′ ∈ Ωrr,∀t ∈ [0, T ] that are used to inflow the hydraulic model at Nin inflow points, either229

upstream boundary conditions and lateral inflows, at the border of the hydraulic domain Ωhy.230

The 1D Saint-Venant equations are solved on each segment of the river network and the continuity of the231

flow between segments is ensured by applying an equality constrain on water levels and mass conservation at the232
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confluence between two segments.233

Boundary conditions (BCs) are classically imposed (subcritical flows here) at boundary nodes (main hydrological234

inflows here) with inflow discharges Qin,i=1..NBC
(t) at NBC upstream nodes and WSE Zavl(t) at the downstream235

node; lateral hydrographs qlat,i=1..Nlat
(t) at Nlat lateral inflow nodes (such that Nin = NBC + Nlat). The initial236

condition is set as the steady state backwater curve profile Z0 (x) = Z (Qin (t0) , qlat,1..L (t0)) for hot-start. This237

1D Saint-Venant model is discretized using the classical implicit Preissmann scheme (see e.g. Cunge et al. (1980);238

Roux (2004)) on a regular grid of spacing ∆x using a double sweep method enabling to deal with flow regimes239

changes; hourly time step ∆t here. This is implemented into the computational software DassFlow1D. See DassFlow240

documentation (https://dasshydro.github.io/doc/); accurate finite volume scheme are also available; source code241

on GitHub (https://github.com/DassHydro/dassflow1d).242

2.2 Variational data assimilation algorithm243

The estimation of spatially and temporally distributed controls (bathymetry, friction, inflow discharges) of the244

river network hydraulic model is performed from WS observables using the variational data assimilation (VDA)245

algorithm presented in Larnier et al. (2020), with bathymetry-friction patches as in Garambois et al. (2020),246

following large scale applications with inflows from MGB hydrologic model in Pujol et al. (2020); Malou et al.247

(2021), to a large and vector of heterogeneous parameters over a complete river network. The principle of this248

inverse method is to minimize the discrepancy between simulation and observations of river network state dynamics,249

by adjusting the unknown parameter vector θ of the hydrodynamic model described in Section 2.1).250

2.2.1 Parameter Vector251

The parameter vector is composed of spatially distributed parameters of the hydraulic network model, i.e.

friction and bathymetry coefficients over the river network and inflow hydrographs at inflow points, and writes as:

θ =

[(
Q0

in,u, ..., Q
T (u)
in,u

)
u=1..NBC

;
(
b1,s, ..., bNb(s),s

)
s=1..Nseg

; (αs, βs)s=1..Nseg
;

]T
(9)

where Q
t=1..T (u)
in,u is the upstream discharge hydrograph imposed at NBC main inflow points (upstream BCs) with252

T (u) discharge values in time (evenly or unevenly discrete hydrograph). The spatialized bathymetry-friction over253

the river network is as follows: b□ (resp. α□ and β□) is the channel bottom elevation (resp. coefficient and exponent254

of the friction law Eq. 6) with Nb(s) (resp. NK(s)) being the number of bathymetry points (resp. friction patches).255

Note that for this study, with the above definition, the friction is assumed spatially uniform by segment of256

the river network, i.e. a lower spatial density of this control compared to bathymetry ones. This is a consistent257

hypothesis regarding (i) the rather large meaningful scale of friction parameter in the 1D Manning-Strickler pa-258

rameterization (ii), and also regarding calibration on nadir altimetry data that are heterogeneous and sparser than259

model resolution (cf. Garambois et al. (2020); Pujol et al. (2020); Malou et al. (2021)).260

The same hypothesis will be used for a parameter estimation experiment with the dense SWOT data in space and261

time.262
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2.2.2 Cost function and optimization algorithm263

The principle of the VDA algorithm Larnier et al. (2020) is to estimate (discrete) controls of the river network

model that minimize the discrepancy between the simulated flow and the available observations. The cost function

to be minimized writes:

j(θ) = jobs(θ) + γjreg(θ) (10)

In this study, flow observations consist in multi-source altimetric data, and the term jobs measures the discrepancy

between modelled and observed WS elevations over the hydraulic domain Ωhy such that:

jobs(θ) =
1

2
∥Z(θ)− Z∗∥2O (11)

The weighted Euclidean norm is defined as ∥x∥2O = xTOx, with O an a priori observation covariance operator,264

simply a diagonal matrix of constant variance σo here. The cost function and the regularization (detailed after),265

both depend on the control parameter θ through the response of the hydraulic model Mhy (Eq. 4) inflowed by the266

hydrological model Mrr, hence of the full hydrological-hydraulic model M (Eq. 3) and so j(θ) := j (M□ (θ)).267

The data assimilation problem reads as the following optimization problem:

θ̂ = argmin
θ

j (θ) (12)

where θ̂ denotes the analysis we expect to approximate the true control vector θt as closely as possible. This opti-268

mization problem, of high-dimension with the composite discharge-bathymetry-friction spatio-temporal parameter269

vector θ (Eq. 9) of the hydraulic model Mhy, is solved numerically with the L-BFGS algorithm. This quasi-Newton270

descent algorithm requires, at each step of its iterative process, the gradient of the cost function with respect to271

the sought parameters, ∇θj, that is computed with the adjoint model obtained by automatic differentiation of the272

forward numerical hydraulic code with Tapenade engine Hascoet & Pascual (2013). Note that hydrological model273

optimization from hydraulic observables is a very interesting research topic but is not the scope of the present re-274

search, see information feedback with adjoint of a differentiable hydrological-hydraulic model in Pujol et al. (2022)275

or composed adjoint in Huynh et al. (2023, 2024). See VDA concepts in Monnier (2021) and references therein.276

277

The control vector θ sought from WS observables only contains parameters of different nature that trigger278

indiscernible signatures in the simulated WS, hence the inverse problem is ill-posed (see analysis in Garambois et279

al. (2020); Larnier et al. (2020) on model structural and spatial equifinality). Therefore it is regularized as detailed280

in C1.281

The background θ(0) on the sought parameters is simply obtained in this study by inverting the hydraulic282

model in steady state assuming a geometry shape and friction value, given inflows provided by a precalibrated283

hydrological model, which is detailed in numerical experiment design and discussed later.284

The VDA algorithm is schematized in Figure 1 with its main components and data fluxes.285
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Figure 1. Diagram of the adjoint-based variational data assimilation (VDA) algorithm (inspired from principle in Monnier

(2021)).

3 Case, data and processing algorithms286

This study focuses on the Maroni basin (Figure 2), in French Guiana, under the influence of a tropical climate287

with marked rainy and dryer seasons, and is based on a diverse and rich dataset feeding the different components288

of the forward hydrological-hydraulic model and the VDA algorithm as follows:289

• Hydrological modeling (MGB): physical basin descriptors for semi-distributed mesh of the basin and a290

priori parameters constrains and hydrometeorological data from worldwide open databases for model setup,291

discharge at in situ gauges for its calibration (seedetail in subsection 3.3.1).292

• Hydraulic modeling (DassFlow1D): A priori river network database and multi-satellite dataset of WSE293

(ICESat2) and WSW (Sentinel) profiles for model geometry construction, inflow discharge from the hydro-294

logical model for a priori bathymetry estimation (see section 3.3).295

• Variational Data Assimilation: WSE data from Multi-satellites (Sentinel 3, ICESat2, SWOT) an in situ296

(georeferenced gauges).297

This section details the automatic processing algorithms taking as input open databases and multi-satellite298

data for:299

• Extracting WS elevations Z∗ and width W ∗ respectively from altimetric data, drifting (ICESat-2) or not300

(Sentinel 3) and water masks (either optical or radar),301

• Hydraulic model meshing,302
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Figure 2. The Maroni River basin in French Guiana with (top) multi-satellite and in situ flow observability, (Bottom)

main river water surface profile from drifting nadir altimetry (ICESat-2).

• Coupling to hydrological model.303

• Wavelet-based filtering algorithm for SWOT 1D river surface elevation product.304

3.1 WSE and WSW processing from nadir altimetry and radar images305

Water surface elevation (WSE) data are obtained from already processed Sentinel 3 data at virtual station306

(VS) but originally here also from drifting ICESat-2 ATL13 data with a proposed processing chain. This chain307

uses an a priori water mask, and aims to provide hydraulically consistent WSE on XS lines over the vectorial river308

network shapefile, and is summarized in Figure 3 and detailed in appendix B3.309
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Figure 3. Flowchart of the processing chain for water masks and ICESat2 data, 1D hydraulic model meshing (Top and

middle). Example of obtained WS elavation and width time series (Bottom).

Water surface width (WSW) data are obtained from dynamic water masks, i.e. varying water masks at different310

times and flow conditions, using the ExtractEO tool from ICube-SERTIT applied to Sentinel-1 radar images which311

are accurate and freely available worldwide (verifier/corriger) (cf. Appendix C). These widths are also usable312

for non rectangular XS parameterization but a simple rectangular XS is sufficient for this study on the Maroni as313

explained after. Complex XSs have been determined on the Niger basin and a fairly satisfying model setup (not314

presented here and left for further research). Note that the vertical referencing of those dynamic water extents315

in time can be performed with altimetric measurements around image acquisition date - simultaneous WSE and316

WSW measurement with SWOT.317

This multi-satellite data preprocessing chain is used to provide inputs to an automatic pre-processing algorithm318

for building coupled hydrological-hydraulic model setup and adapted to MGB and DassFlow1D in particular.319

The obtained hydraulic mesh granularity is visible on Figure 2 and XS width represented on the Maroni main320

stream in Figure 5 (bottom, in yellow). Note the choice made for WSW, which is a crucial quantity to determine a321

hydraulic model geometry in absence of reliable bathymetry data, to use Sentinel data which are relatively accurate.322

This should benefit to information extraction from the unprecedented WSE data from SWOT. Detailed steps of323

this algorithm are given in Section A.324
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3.2 Dedicated SWOT data filtering-segmentation algorithm325

The very new and unprecedented SWOT data provides astonishing hydraulic visibility over worldwide rivers326

from our first analysis yet contains, as expected, some measurement errors that can locally be quite large. Dealing327

with the SWOT L2 RiverSP product in this article, i.e. WSE along river centerlines at a fine spatial resolution328

of 200m (node scale), we apply a wavelet-based filtering/segmentation algorithm based on our previous work with329

synthetic data Montazem et al. (2019).330

The wavelet-based filtering and segmentation algorithm, that is adapted to process WSE longitudinal profiles331

such as those provided by SWOT or by in situ GNSS while preserving the WS signatures of hydraulic controls332

(HCs), is based on the approach and Matlab codes of Montazem et al. (2019). The idea, since hydraulic variability333

appears in the WS signal of interest at multiple spatial scales, is to use wavelet processing to isolate the signatures334

of local hydraulic controls (HCs). The use of a wavelet basis makes it possible to decompose profiles of free-surface335

spatial WSE signals, with very good accuracy, while retaining localised frequency information. One original feature336

is the use of wavelets to both denoise and segment signals in a consistent space-frequency localized way. This337

approach introduces very few oscillations into the reconstructed filtered signal and is suitable for unsteady signals338

and the detection of strong curvature signals. This algorithm is called pyrscwt (Python River Segmentation with339

Continuous Wavelet Transform) and is based on a custom implementation in Python of a continuous wavelet340

transform leading to accurate 1D signal projections and reconstructions.341

SWOT 1-day orbit data filtering with the wavelet based algorithm are presented in Figure 4. This algorithm342

enables to efficiently retain the main outliers (red points) as evidenced on the graph, while perceiving hydraulic343

information.344

3.3 Maroni model construction345

3.3.1 Meshing and hydrological-hydraulic coupling346

First, the hydraulic domain Ωrr is determined using the river centerlines from SWORD database. It stops347

downstream at Apatou, at a point that is disconnected from tidal influence because of a sharp river channel bottom348

variation. Upstream limits are set as rivers draining more than 1500km2 using drainage area obtained from DEM349

processing. Thus the hydraulic model covers a long portion of the Maroni main course and a significant number of350

tributaries.351

Once the hydraulic river network domain Ωhy is determined, we can straightforwardly identify the upstream352

inflow points, here NBC = 12, where hydrological model discharge applies as BC for the 1D hydraulic model353

resolution. The lateral inflow points are determined such that Nlat = 181 here.354

The hydrological model Mrr is the MGB semi-distributed model well adapted for this tropical basin. Classical355

preprocessing was applied to obtain flow directions and accumulations based on MERIT-Hydro DEM (Yamazaki356

et al. (2019)), following Pontes et al. (2017) steps. Spatial hydrological response unit (HRU) descriptors on soil357

and vegetation were taken from FAO HWSD (Nachtergaele et al. (2023)) and ESA WorldCover (Zanaga et al.358
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Figure 4. Hydraulic filtering of SWOT L2-RiverSP products at node scale on the main stem for cycle 569 with pyrscwt

algorithm (Python River Segmentation with Continuous Wavelet Transform). (Top) Complete main stem, (bottom) zoom

on upstream segment of the main stem which shows the filtered profile in blue solid line.
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(2021)), respectively, converted into 12 HRUs of distinct flow-generation potential. Hydro-meteorological forcings359

(climate, rainfall) are taken from ECMWF ERA5 dataset and GSMAP-RT real-time product (Kubota et al. (2020)).360

MGB is calibrated by hand on in situ discharge data with low parameters spatialization: the Maroni River basin361

is divided into 10 sub-basins corresponding to the main tributaries, namely the Litani, Tampok, Grand Inini,362

Lawa, Gonini, Upper Tapanahoni, Palumeu, Tapanahoni, Abounami and Maroni. Calibration is performed using363

observed discharge from SCHAPI https://www.hydro.eaufrance.fr/ (last access on 2024-05-25) at 5 gauges (namely364

Lawa at Taluen, Tampok at Degrad-Roche, Lawa at Maripasoula, Maroni at Grand-Santi and Maroni at Langa-365

Tabiki, see Figure 2) on the period going from 2016 to 2023. Calibration is carried from upstream to downstream,366

and ungauged basins are calibrated using the nearest downstream gauge. The discharge simulated by the semi-367

distributed hydrological model are used to feed the hydraulic model at its upstream and lateral inflow boundaries368

defined above.369

The hydraulic mesh and coupling points are represented in Figure 5 along with the longitudinal bathymetry370

profile of the hydraulic model and a simulated flow line on the main stream of the Maroni River - over which371

1-day orbit SWOT data will be assimilated after - highlighting succession of marked riffles/jumps corresponding372

to hard rock outcrops. This results in a complex longitudinal bathymetry gradient, in a addition to complex373

width variability and anastomosed reaches, that translate in complex WS variabilities representing a challenging374

measurement case for SWOT.375

3.3.2 Hydraulic model geometry376

The geometry of modeled reaches of the river network is automatically determined from the multi-satellite377

dataset composed of spatio-temporal water extents and flow lines: Sentinel WSW and a subset of ICESat2 WSE378

profiles, the remaining part of ICESat2 and SWOT WSE data being kept for DA experiments.379

The XS geometry of the hydraulic model is simply defined as rectangular, using the median WSW over the dynamic380

water masks available in our dataset that have been extracted from Sentinel radar images with ExtractEO algorithm.381

Using a rectangular hydraulic XS on the Maroni is a reasonable hypothesis for this river showing relatively reduced382

extent variations as done for the ”nearby” also anastomosed Negro River in Pujol et al. (2020); Malou et al. (2021)383

(cf. Subsection 2.1.4), and also as shown by the satisfying hydraulic modeling results obtained in what follows.384

The background (a priori) river bed elevation b(0)(s, x) of the hydraulic model Mhy is determined as follows:385

• Constant in time WSW W ∗ are obtained from images processing (median water mask over the period 2019-386

2021 from Sentinel-based water masks).387

• XS shape is assumed rectangular and friction is assumed to be spatially uniform with K(0) = 30
[
m1/3.s−1

]
,388

• Inflows (Qin,i=1..NBC
and qlat,i=1..Nlat

(t)) are assumed to be the median discharge over the studied period389

(Q∗,50
in and q∗,50lat ) provided by the pre-calibrated hydrological model.390
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Then, the hydraulic model is run in steady state and the background bathymetry b(0)(s, x) is obtained by inverting391

from a modeled median flow line Z∗,50 using altimetric data. The hydrological-hydraulic model mesh is schematized392

in Figure 5.393

Note that our modelling chain enables using a more complex geometry, with a rectangle for wet bathymetry394

plus a superimposition of trapeziums from dynamic water masks, is possible with our algorithm and will be studied395

in further research along with wet bathymetry parameterizations from S. L. Dingman (2007); S. L. Dingman &396

Afshari (2018) as used at reach scale in Andreadis et al. (2020).397

3.4 Numerical experiments design398

The Multi-satellite data assimilation experiments, with the VDA algorithm applied to the coupled hydrological-399

hydraulic model M (cf. section 2), aims to show the potential of estimation at river network scale of inflow400

discharges, bathymetry and friction of the hydraulic model. The sought parameter vector θ of the hydraulic401

model Mhy is composed of Q
t=1..T (u)
in,u=1..NBC

hydrographs at NBC = 12 inflows, bathymetry b at Nb = 2572 points402

and friction coefficients α and β at NK = 24 friction patches (i.e. spatially uniform segments). For each DA403

experiment, the same median WS width W ∗ is used to define section geometry over the river network, but the first404

guess on bathymetry b(0) are different since they are computed for different periods from different median inflow405

discharges and median altimetric flow lines Z∗,50 with the method explained before. The numerical experiment406

plan, consisting in assimilating more or less sparse data cocktails to infer the above defined parameter vector, is as407

follows:408

1. ”NadAlti.4limni”: Nadir altimetry, drifting IceSat2 and fixed S3 VS, plus 4 in situ WS elevation time409

series at Maripasoula, Papaichton, Grand Santi and Apatou gauges (with a WGS84 vertical reference in410

coherence with altimetry), over the period 2019/01/01 - 2019/03/31; (hence b is optimized at those in situ411

gauges locations); prior bathymetry is b
(0)
N4l.412

2. ”SWOT only”: 1-day SWOT orbit data only assimilated over the period 2023/05/15 to 2023/07/10 (Num-413

ber of WSE space-time points: Altimetry (ICESat2+S3): 284, in situ: 8644, total(ALTI+in-situ): 8928);414

prior bathymetry is b
(0)
SWOT .415

These VDA experiments, started from a prior θ(0) =
(
Q

∗,t=1..T (u)
in,u=1..NBC

, b
(0)
□ ,K∗ = 30

)
with inflows from MGB416

hydrological model, will study the constraining power of classical nadir or wide swath SWOT altimetry to constrain417

a hydraulic model of a poorly gauged basin built from remote sensing data. Particular attention will be paid to418

the potential of estimation of spatialized channel parameters and inflow hydrographs.419

Note that all those inference scenarios correspond to a quasi-ungauged setup for the inversions over the hy-420

draulic network, i.e. without considering in situ discharge information within the studied hydraulic domain Ωhy,421

and only indirectly at its boundaries. Indeed, discharge data at in situ gauges within Ωhy were only used for the422

pre-calibration of the hydrological model that provides a priori hydrographs at inflow BCs and median discharge423

in time is used to determine a priori hydraulic bathymetry.424
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Figure 5. Hydrological-hydraulic mesh with inflow points (Top) and simulated flow line profile on the Maroni main

stream after assimilation of SWOT 1 day data (VDA experiment ”SWOT only”), calibrated bathymetry and friction profiles

b̂(s, x) and K̂(s, x, h) = α̂h
β̂
(s, x) for successive connected segments s = (1, 3, 5, 9, 12, 16, 18, 22, 23) with h(s, x) the average

flow line on the studied SWOT time window (Bottom).

–18–



For every experiments, the parameters of the background error covariance matrix are set as follows:
(
σQin,i = 0.01Q̄

(0)
in,i

)
i=1,NBC

,425

LQ = 10days, σb = 0.1m, Lb = 200m, σα = 0.5m1/3.s−1 and σβ = 0.01.426

4 Results and discussions427

The overall performances, in terms of fit to the WSE data used in calibration, and also of reproduction of428

discharge at gauging stations inside the hydraulic domain Ωhy (not used in assimilation) is very satisfying for both429

VDA experiments. A very significant fit improvement to observed WSE over the spatio-temporal domain, below430

0.5m (improvement of fit to WSE from prior is of 54% for ”NadAlti.4limni” and 69% for ”SWOT only” which is431

far denser). Very satisfying performances in terms of simulated discharges at validation gauges within the river432

network is obtained: significant improvement of discharge of 43% for ”NadAlti.4limni” (Figure 4.1) and 37% for433

SWOT (Figure 10) from prior. Note that those experiments are performed on different time periods, hence for434

different hydrological responses and prior θ
(0)
□ .435

In the following, the results of DA experiments ”NadAlti.4limni” and ”SWOT only” are analyzed into more436

details, in terms of fit to the observations, of validation on discharge gauges and also in terms of correction on the437

hydraulic parameters inferred.438

4.1 Multimission nadir altimetry and in situ WSE assimilation (NadAlti.4limni)439

The assimilation experiment ”NadAlti.4limni”, of S3 and ICESat2 nadir altimetry along with in situ WSE at440

the 4 in situ gauges is analyzed here.441

The cost function minimization and its gradients to the sought spatialized parameters are presented in Figure442

6 along with the fit to WSE data of the model before calibration M(θ
(0)
N4l) and after M(θ̂) . The fit of WSE is443

significantly improved from background prior parameters θ(0)
N4l

to the control θ̂ estimated by VDA of WSE, with a444

simulation error on WSE at 87% in [-0.5, 0.5]m, at 64% in [-0.25, 0.25]m, error for 5− th (resp. 95− th) quantile445

ϵQ5 = −0.6m, (resp. ϵQ95 = 0.48m). This represents a significant improvement of the fit to the spatio-temporally446

heterogeneous WSE used in calibration. Interestingly, this also results in a significant improvement of the discharge447

simulated at gauging stations (discharge not used in this calibration but only WSE of four out five gauges, gauge448

section bathymetry is inferred) within the hydraulic domain Ωhy as evidenced by Figure 4.1 (final NRMSE between449

0.08 and 0.19), which were not used in calibration but only WSE at those gauges in addition to nadir altimetry450

data over the network (see VS locations on Figure 2). Indeed, the data assimilated in ”NadAlti.4limni” consist451

in relatively sparse WSE over the spatio-temporal domain (295 satellite altimetry points over the network) with452

some temporal density provided by WSE at the four gauges (2161 WSE values per gauge hence 8644), compared453

to the size of the sought spatio-temporal controls. Internal discharge prediction is improved after assimilation of454

WSE, compared to the prior hydraulic model, at all gauges which are located along the Maroni main stream.455

This improvement results from the correction of hydraulic model controls which pertain to spatialized channel456

bathymetry-friction and hydrographs at NBC = 12 upstream inflow BCs.457
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Figure 6. ”NadAlti.4limni” data assimilation experiment convergence. (Left) Convergence curve with cost J and its

gradients ∇□ w.r.t to the sought spatially distributed inflows discharges Qin, friction parameters α and β, bathymetry b.

(Right) cumulative distribution function (CDF) of absolute misfit of simulated WSE to altimetry data in meters, ”prior” is

with background parameters θ
(0)
N4l and ”estimate” is with the calibrated θ̂. Over 295 space time points at nadir altimetry

VS and in situ gauges model misfit values are as follows: 87% in [-0.5, 0.5]m, 64% in [-0.25, 0.25]m, error for 5 − th (resp.

95− th) quantile ϵQ5 = −0.6m, (resp. ϵQ95 = 0.48m). RMSE on Z is 0.36m (prior:0.8m).

Those satellite-based estimates of mass fluxes and river network bathymetry-friction parameters θ̂N4l, at the458

upstream boundaries Γup and over the river network hydraulic domain Ωhy are summarized in Figure 11. For459

most segments of the river network, significant corrections of bathymetry-friction are obtained, that along with460

upstream inflow corrections (see inferred inflows hydrographs and bathymetry profiles in appendix D), enable the461

improvement of the fit of simulated flow line to local altimetry and in situ WSE data. Note that the contribution of462

those hydraulic parameters to the simulated flow line is complex because of (i) upstream to downstream propagation463

and aggregation of the inflow discharges along the river network, only upstream BCs on Γup are corrected here464

(representing 50% of basin area as shown by Figure 5), (ii) of local competition between bathymetry and friction465

embedded into the friction source term Sf of the 1D Saint-Venant model (cf. Equation 4) and (iii) of the complex466

correlated influence of those hydraulic controls towards upstream on so called backwater length under the fluvial467

regime studied (see Samuels (1989); Montazem et al. (2019)). In other words, the studied inverse problem, that is468

estimating most flow controls (except lateral inflows) of the 1D Saint Venant model, is very difficult and faced with469

local equifinality and spatial equifinality and it has been possible to find a satisfying solution thanks to a realistic470

prior on the sought parameters and thanks to the regularizations introduced via covariances matrices (cf. section471

2.2.2). A finer hydraulic analysis of local hydraulic controls inferred is made after, along with a discussion on the472

controllability of hydrological inflows.473
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Figure 7. Validation of simulated discharge at the available gauges along the Maroni main stream after assimilation

(”NadAlti.4limni”) of nadir altimetry (Sentinel 3 and ICESat-2) and in situ WSE at those gauges except Taluen. Multi-

gauge RMSE on Q is 143.4m3/s (prior: 252.6m3/s).
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Figure 8. Model parameters θ̂ inferred by VDA in the ”NadAlti.4limni” experiment from background (prior) parameters

θ
(0)
N4l represented by segment of the river network ”S00” to ”S23”: boxplots of spatially distributed corrections (top) of

bathymetry b(s, x) at Nb = 2572 hydraulic cross sections and of (second) inflow discharge hydrographs Q
t=1..T (u)
in,u=1..NBC

at

NBC = 12 inflows,(third and fourth) friction parameters α̂ and β̂ over the 24 segments composing the simulated river

network.
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4.2 SWOT 1-day only data assimilation474

The assimilation experiment of ”SWOT only” wide swath altimetry data, track #007 during fast sampling (cal-475

val) orbit covering a large area of the Maroni basin including the main stream ”along track” with 1 day repetitivity,476

is analyzed here. This time period from may to august 2023, covered by SWOT 1 day data, corresponds to peak477

and declining limb of a relatively strong flood: the estimated peak flow in May 2023 at Apatou downstream of the478

basin is above 4500 m3/s. Note that the wavelet-based filtering algorithm is systematically used to remove outliers479

(cf. Figure 4) before VDA.480

The cost function minimization and its gradients to the sought spatialized parameters are presented in Figure481

9 along with the fit to WSE data of the model before calibration M(θ
(0)
SWOT ) and after M(θ̂) . The fit of WSE is482

significantly improved from background prior parameters θ
(0)
SWOT to the control θ̂ estimated by VDA of WSE, this483

time over much more space-time points of WSE (179,192 with ”SWOT only” over a shorter period compared to 295484

points in ”NadAlti.4limni”!), with a simulation error on WSE at 86% in [-0.5, 0.5]m, at 63% in [-0.25, 0.25]m, error485

for 5− th (resp. 95− th) quantile ϵQ5 = −0.6m, (resp. ϵQ95 = 0.48m). This represents a significant improvement486

of the fit to SWOT WSE used in calibration, that are 600 times denser in space and time than nadir altimetry and487

in situ data previously used.488

Interestingly, over the shorter time window studied here and this assimilation of SWOT data only results in an489

improvement of the discharge simulated at gauging stations (unseen data) within the hydraulic domain Ωhy (cf.490

Figure 10). The nrmse on discharge at those internal gauges range between 0.11 and 0.26 which is a fairly good491

result, especially for this inference in the declining limb of a strong flood not reproduced by the hydrological model492

(grey dashed hydrographs) hence providing unfavourable prior inflows for VDA (blue dashed hydrographs simulated493

by M
(
θ
(0)
SWOT

)
).494

The optimized parameter θ̂SWOT , i.e. inflow discharge hydrographs, spatialized bathymetry and friction over495

the river network hydraulic domain are summarized in Figure 11. Again, for most segments of the river network,496

substantial corrections of bathymetry-friction are obtained, that along with upstream inflow corrections, enable the497

improvement of the fit of simulated flow to local altimetry and in situ WSE data. Recall that the inference fromWSE498

of those parameters, i.e. all controls of a 1D Saint-Venant hydraulic model, that have a correlated influence on WS499

remains faced to local structural equifinality (due to parameters embedded into friction term Sf ) but also to spatial500

equifinality (, see analysis in Garambois & Monnier (2015); Garambois et al. (2020); Larnier et al. (2020); Pujol501

et al. (2024)). That is why covariance matrices are used in the VDA algorithm (as for previous ”NadAlti.4limni”502

esperiment) to obtain a regularizing effect of this ill-posed inverse problem, through a preconditioning effect and a503

spatial or temporal regularization effect (smoothing of estimated spatial or temporal quantities when denser than504

observations). The inferred hydrographs and bathymetry profiles of each segments of the network are shown in505

appendix D. Detailed spatial parameters variabilities can be inferred thanks to the spatial density of SWOT data506

which analyzed after compared to the inference with the nadir altimetry WSE.507
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Figure 9. ”SWOT only” data assimilation experiment convergence. (Left) Convergence curve with cost J and its

gradients ∇□ w.r.t the sought spatially distributed inflows discharges Q, friction parameters α and β, bathymetry b. (Right)

cumulative distribution function (CDF) of absolute misfit of simulated WSE to altimetry data in meters, ”prior” is with

background parameters θ
(0)
SWOT and ”estimate” is with the calibrated θ̂. Over 179192 space time points at SWOT L2

RiverSP product at node scale over the river observed part of the river network, model misfit values are as follows: 86% in

[-0.5, 0.5]m, 63% in [-0.25, 0.25]m, error for 5− th (resp. 95− th) quantile ϵQ5 = −0.7m, (resp. ϵQ95 = 0.55m).

4.3 Detailed analysis of inferred parameters508

The inferences of spatio-temporal parameters of the river network hydraulic model have been performed from509

2 datasets with significantly different spatio-temporal density, SWOT one being much denser in space and time.510

The bathymetry-friction profiles inferred over the Maroni main stream, i.e. the river network segments s =511

(1, 3, 5, 9, 12, 16, 18, 22, 23) in Fig.5, with WSE from nadir altimetry and gauges or SWOT only are compared in512

Figure 12.513

Both assimilation experiments ”NadAlti.4limni” and ”SWOT only” lead to the inference of spatially distributed514

bathymetry-friction over the network, along with upstream inflows correction. Recall that those estimations are515

performed from different priors, either θ
(0)
N4l or θ

(0)
SWOT , in terms of median discharge used to infer prior bathymetry516

as explained before. Both experiments are performed with identical setup for covariance matrices, for weights σ□517

and correlation length L□. Those inferred parameters of the hydraulic model are optimal solutions of the inverse518

problem (Equation 12) given the WSE data considered, i.e. effective bathymetry-friction-inflows enabling the best519

fit to the WSE data considered.520

The calibrated hydraulic models obtained can be used to derive stage-fall-discharge laws for operational dis-521

charge forecasting using SWOT WSE and WS slopes (cf. Malou et al. (2021)). Such a network scale hydrological-522

hydraulic model is also relevant for studying potential upgrades of ”reach scale” SWOT discharge algorithms, such523

as HiVDI Larnier et al. (2020), that would benefit for a better constraint of the double regionalization problem of524

uncertain or unknown spatio-temporal hydrological and hydraulic parameters from sparse data.525
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Figure 10. Validation of simulated discharge at the four available gauges along the Maroni main stream after assimilation

of SWOT 1day altimetry over the Maroni Network. Multi-gauge RMSE on discharge is 312.5m3/s (prior: 497.55m3/s).
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Figure 11. Model parameters θ̂ inferred by VDA in the ”SWOT only” experiment from background (prior) parameters

θ
(0)
SWOT represented by segment of the river network ”S00” to ”S23”: boxplots of spatially distributed corrections (top)

of bathymetry b(s, x) at Nb = 2572 hydraulic cross sections and of (second) inflow discharge hydrographs Q
t=1..T (u)
in,u=1..NBC

at NBC = 12 inflows,(third and fourth) friction parameters α̂ and β̂ over the 24 segments composing the simulated river

network.
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Figure 12. Longitudinal profiles along the Maroni main stream, segments s = (1, 3, 5, 9, 12, 16, 18, 22, 23), of innovation

after VDA on bathymetry and friction parameters along with channel width.

Both assimilation experiments, given the same channel width data W ∗, lead to infer non-trivial channel526

hydraulic controls (cf. definition in Montazem et al. (2019)) as depicted by Figure 12 and on flow profiles by527

segment in appendix D), that enable to produce more realistic WS signatures w.r.t the assimilated WSE in the528

sense of the observation cost function. More spatial variations are obtained on the bathymetry inferred with the529

denser SWOT data.530

Regarding inflow correction, only upstream inflows, that correspond to 50% of the basin drainage area, were531

considered in this study. The inference of the remaining numerous lateral flows, of various magnitudes depending532

on their corresponding drainage area, is a difficult issue (cf. Pujol et al. (2020) with analysis of frequential iden-533

tifiability of inflows, see also Brisset et al. (2018)) and should be studied in further research. The transposability534

of the hydraulic parameters obtained with our VDA approach would be possible and coherent if they were cali-535

brated simultaneously with hydrological model parameters - that could be used in temporal extrapolation. More536

generally, this pertains to the difficult issue of joint optimization of spatio-temporally distributed parameters of a537

hydrological-hydraulic model. This would be feasible with the present VDA approach applied to a differentiable538

hydrological-hydraulic solver as proposed in Pujol et al. (2022). Such approaches would also benefit from differen-539

tiable regionalization schemes included into the forward model to map physical descriptors onto model parameters540

as done with a regionalization neural network in Huynh et al. (2023) or even a learnable spatially distributed541

hydrological model on top of a differentiable hydraulic model (Huynh et al., 2024).542
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5 Conclusion543

This article newly studied the improvement of integrated hydrological-hydraulic (H&H) models, of a river544

network within its basin, by leveraging the unprecedented hydraulic visibility from the recently launched SWOT545

satellite in complement of altimetry and imagery from other state-of-the-art satellites used to build the prior546

model geometry. It is the first application of VDA over a differentiable river network hydraulic model fed by a547

semi-distributed hydrological model over a poorly gauged basin. From the obtained results and from the analysis548

performed, the following conclusions can be raised:549

• The proposed processing chain enables to build consistent prior hydraulic model geometry from multi-satellite550

data, including accurate images for dynamic water extents, and a hydrological model. It is applicable to551

other basins from the worlwide available data used in this study either for hydrological or hydraulic modeling.552

• The VDA algorithm enables to simultaneously optimize high-dimensional spatio-temporal parameters of a553

river network 1D Saint-Venant hydraulic model, inflow hydrographs-bathymetry-friction, and significantly554

improve the fit to heterogeneous satellite WSE while providing hydrologically and hydraulicaly meaningfull555

estimates.556

• The proposed approach represents a powerful optimization and diagnostic tool for hydrology-hydraulics557

from multi-source data. For example VDA can help detect data or modeling errors as done during our558

successive numerical experiments. Moreover, since the hydraulic model is differentiable, one can obtain559

spatially distributed sensitivity maps of cost function or simulated quantities w.r.t sought parameters and560

even build Sobol indices from them with derivative based approaches (Sobol’ & Kucherenko (2009) applied561

in lumped hydrology in Chelil et al. (2022) or in 2D differentiable hydraulic modeling in Pujol et al. (2024)).562

This work paves the way for further research and immediate to mid-term work perspectives are as follows.563

• Assimilation of SWOT science orbit data, sparser in time and with nearly full spatial coverage at basin564

scale alone and in combination with the maximum of data to investigate finely their informative power and565

frequential inferrability issues.566

• Application of the approach to gauged basins, using massive datasets including in situ and drone data in567

addition to satellite observations.568

• Study of SWOT discharge approaches based on integrated basin scale hydrological-hydraulic network models.569

• Advanced data-model error accounting in Bayesian framework.570

• Fully differentiable hydrological-hydraulic models Pujol et al. (2022), with learnable parts Huynh et al.571

(2023), enabling simultaneous optimization of hydrological and hydraulic parameters from SWOT and other572

data, which pertains to tackling a double regionalization problem from data that are always sparser than573

model parameters and rarely fully informative/constraining. For example a lumped conceptual hydrological574

model already suffers from equifinality issues when calibrated from a discharge time series.575
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Note that DassFlow platform used in this work is open source (https://github.com/DassHydro/dassflow1d)576

and has recently been interfaced in Python enabling to use powerful libraries such as for signal processing and577

machine learning for building hybrid deterministic-ML methods in the powerful VDA framework.578

A SWOT L2 wavelet based filtering and segmentation algorithm579

The proposed algorithm aims to (i) efficiently denoise L2 SWOT-type river node-scale data (RiverObs product580

at spatial resolution dx ∼ 200m), (ii) perform a segmentation of a river portion into reaches, at user defined scale,581

that best preserves hydraulic signals and ultimately contributes to the quality of flow modeling and its coherence582

with multi-mission altimetry data. In the present article only denoising of SWOT RiverObs WSE Z(x) data is583

performed with pyrscwt before their assimilation into the hydraulic model at local XS scale.584

The proposed algorithm taking as input a spatial signal of WSE Z(x) signals, sampled at a constant spatial585

step, consists in the following steps:586

• Signal resampling and symetrization (prolongation of the signal on its spatial borders).587

• Automated choice of the wavelet projection basis (7 mother wavelets and 10 orders for each) such that the588

reconstruction error ϵẐ is minimal.589

• Filtering and segmentation of the original signal Z(x) obtained by a low-pass filtering of wavelet coefficients590

corresponding to spatial variations below a user defined cutoff length scale λc. An additional physical criterion591

is used to filter wavelet coefficients: at the scale of measurements a counter slope in the WS is unphysical,592

that is ∂xZ > 0. For a zone of length ld with a counter slope we consider a centered window of length 3ld,593

since we do not know whether this unphysical counterslope stems from over-understimations upstream or594

downstream, on which wavelet coefficients are iteratively filtered until ∂xẐ ≤ 0595

• Hydraulic control sections (HCs) detection with the reconstructed signal Ẑ(x) that is ”error free” via maxi-596

mum of WS curvature ∂2
xẐ(x).597

B Processing algorithm for ICESat-2 ATL13 data to extract WSE598

ATL13 data is positionned along 6 beams (organized by pairs gt1r/gt1l, gt2r/gt2l, gt3r/gt3l) and presented599

as a set of beam-points (referenced by their longitude and latitude) above inland water bodies such as rivers and600

lakes only. Our purpose is to aggregate this data to build WSE timeseries at virtual station over the Maroni river.601

For this purpose, we need a set a line geometry representing the river network centerline and a polygon geometry602

delineating the a priori watermask where ATL13 data will be extracted and processed.603

B1 Delineating the study domain watermask604

The watermask is taken from the Pekel’s global Surface Water Dataset, considering water pixels with an605

occurence of at least 50%, which is an adequate hypothesis given the relatively low variability of top width found606

on the Maroni (Sentinel 1-derived WSW of dynamic water masks, obtained with ExtractEO chain, were analysed607

and confirmed this).608

–29–



For the studied Maroni basin, we considered and applied the following steps:609

1. Polygonize Pekel watermask,610

2. Application of a buffer with distance 0.0003 degree (as Pekel mask resolution is of 0.00025 degree): buffer611

function extends the boundaries of a given geometry and rounds its egde by the input distance.612

3. Manual correction to fill missing river branches based on expert knowledge. Also, it was chosen to fully613

include under the watermask braided zone without distinguishing the individual river branches.614

4. Cascaded union to merge individual polygons that intersect together615

5. Small tributaries not represented by the Pekel product are added by building a polygon from a buffer around616

the riverline of those small tributaries and merging them to the rest of the domain (for the Maroni domain617

only).618

B2 WSE data extraction619

ICESat-2 products are organized by granule containing data below a full orbit, each orbit being divided in620

6 beams (gt1l/gt1r/gt2l/gt2r/gt3l/gt3r). A individual ICESat-2 is a beam point caracterized by its coordinates621

(lon, lat) and an elevation wse (above the WGS84 ellipsoid). ICESat-2 have to be extracted and aggregated under622

virtual stations to derive elevation timeseries and XSs for the effective hydraulic model.623

For each granule, the following processing is applied:624

1. Extraction of all beam points within the study domain polygon625

2. Each beam point is ”projected” along the river centerline. From this linear referencing, a curvilinear abscissa626

xs [m] (distance along the centerline from the upstream edge) and a distance-to-the-river dr [m] (distance627

between the original beam point and its projection) are associated to each beam point.628

3. Then, each beam point is associated to the closest virtual station according to their xs. A distance ds629

(=xs,V S − xs) and an angle (=arctan dr

ds
) are derived accordingly.630

4. Once all beam points are extracted, potential outliers have to be detected and flagged out for further631

processing (see appendix B3)632

5. For each virtual station, time-aggregation is easily done by gathering beam points that comes from the same633

granule and the same cycle.634

6. subsequently, beam points gathered in the same time index are spatially-aggregated into a single elevation635

measurements (see appendix B3)636

B3 More details on the processing of ATL13 data637

B31 Outlier detection638

Each river segment is divided into sub-segments of 5 km. Over each sub-segment, monthly subset of beam639

points which xs fall on this sub-segment, are inspected. A linear regression of the elevation with respect to xs from640
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the ICESat-2 beam points subset is estimated with the standard deviation σ of the gap between the measured641

elevation and the corresponding (with respect to xs) elevation from the linear regression. All points that are above642

3σ are flagged out as outliers.643

B32 Space aggregation644

B322 Version 1645

Every beam point attributes (ie. wse, lon, lat, xs, ds, dr, angle, dt as seconds from Jan 1st, 2028) are simply646

averaged with a classical mean647

B322 Version 2648

Weighted averaged where each beam point weight w is defined by

w = 1.−
∥∥∥∥ ds
dsmax

∥∥∥∥
B322 Draw XSs649

For each segment and its associated subdomain polygon650

1. the domain polygon is split into voronoi regions centered around the virtual stations of the polygon. Each651

region delineates any beam point which the closest virtual station is the region’s associated virtual station.652

2. The XSs is draw following the constraint below:653

• The section is contained within the associated voronoi region654

• The section contains the virtual station655

• The section should cross the river with an angle close to normal to the river centerline656

• The section have to cross any region boundaries that are common with the overall polygon exterior657

boundaries658

If one can not draw a XS that respects the constraints above, a section normal to the river centerline is659

drawn with a width equal to the largest dr660

C Processing of watermasks images to extract river width661

River widths were extracted from a collection of 121 watermasks computed using the ExtractEO algorithm662

(Maxant et al. (2022)) on available Sentinel 1 images for the period 2021-01-01 - 2022-12-31. The river widths663

were computed using the dedicated BAS algorithm (https://github.com/CS-SI/BAS). The methodology is fully664

applicable on other zone of interest, even with watermask computed from other water classification algorithm665

(provided as binary classification where water is 1 and land,etc. is 0).666
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C1 Regularization for the Variational data assimilation algorithm667

The ill-posed hydraulic inverse problem is regularized with the introduction of covariance operators and a

change of control variable (Larnier et al. (2020) following Haben et al. (2011b)) as:

k = B−1/2
(
θ − θ(0)

)
(C1)

The background θ(0) (first guess, or prior in statistics) on the sought parameter (from which optimization is

started), and the background error covariance matrix B, both depend on the information available and a priori

physical knowledge of the system and of the unknowns. With this change of control variable we are interested in

the minimization ot the following cost function:

j (k) =
1

2

∥∥∥M(θ(0) +B1/2k)− Y ∗
∥∥∥2
O

(C2)

The choice of B, that can be seen as a preconditionning (cf. Haben et al. (2011a,b)), is crucial for the optimization668

and influences the inferred solution.669

Assuming uncorrelated unknowns, the matrix B is block diagonal:

B =


BQ 0 0

0 Bb 0

0 0 BK

 (C3)

each block B□ is defined with decreasing exponential kernels and physical scales (cf. Larnier et al. (2020),Malou

& Monnier (2022) and cited references):

(BQ)i,j = (σQ)
2
exp

(
−|tj − ti|

LQ

)
; and (Bb)i,j = (σb)

2
exp

(
−|xj − xi|

Lb

)
; and BK = diag

(
σ2
α, σ

2
β

)
(C4)

with LQ and Lb acting as correlation scales defined a priori from empirical physical knowledge. The scalar values670

σ□ can be seen as variances and have a weighting effect in parameters optimization.671

D Detail on inferred parameters672
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Figure D1. Inferred inflow hydrographs NadAlti.4limni

Figure D2. Inferred bathymetry NadAlti.4limni
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Figure D3. Inferred inflow hydrographs SWOT only

Figure D4. Inferred bathymetry SWOT only
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