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Abstract: Microscopic, photosynthetic prokaryotes and eukaryotes, collectively referred to as microal-
gae, are widely studied to improve our understanding of key metabolic pathways (e.g., photosynthe-
sis) and for the development of biotechnological applications. Omics technologies, which are now
common tools in biological research, have been shown to be critical in microalgal research. In the past
decade, significant technological advancements have allowed omics technologies to become more
affordable and efficient, with huge datasets being generated. In particular, where studies focused on
a single or few proteins decades ago, it is now possible to study the whole proteome of a microalgae.
The development of mass spectrometry-based methods has provided this leap forward with the
high-throughput identification and quantification of proteins. This review specifically provides an
overview of the use of proteomics in fundamental (e.g., photosynthesis) and applied (e.g., lipid
production for biofuel) microalgal research, and presents future research directions in this field.

Keywords: microalgae; biochemical pathways; biotechnology; proteomics; high-throughput;
protein modelling

1. Introduction

Photosynthetic microorganisms can be found in all aquatic ecosystems, in which, as
primary producers, they have important ecological functions, either positive (e.g., biogeo-
chemical cycle [1–3]), or negative (e.g., when they bloom at the wrong time and place [4,5]).
Although they encompass both prokaryotes (cyanobacteria) and eukaryotes (“true” mi-
croalgae), they will be collectively referred to as microalgae in the present review [6].
Microalgae such as the model Chlamydomonas reinhardtii are widely studied to improve
our understanding of key plant functions such as chloroplast-based photosynthesis and
nutrient assimilation, and the structure and function of the eukaryotic flagella [7–10].
In addition, due to their physiology and biochemistry, significant research is focusing
on the development of microalgae-based environmental biotechnologies for food and
high-value molecules production, biofuels generation, wastewater treatment and nutrient
recovery [11–14].

In recent years, the so-called “omics” technologies have been shown to be valuable
tools in microalgal research [15–18]. Omics, which includes genomics, transcriptomics,
proteomics and metabolomics, broadly refers to the comprehensive analyses of classes
of biological molecules, i.e., DNA, RNA, proteins and metabolites, and their interactions
(interactomics, Figure 1). Omics allow us to determine and study the whole makeup of
a cell/biological system at a given time and, therefore, to correlate molecular signatures
with phenotypes [17,19–23]. With a wide range of applications, these technologies have
considerably accelerated the rate of discoveries and provided a leap forward in fundamental
and applied research. For example, the sequencing and study of the C. reinhardtii genome in
2007 unraveled the evolution of the eukaryotic flagellum and plastid [7]. In the past decade,
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technological developments in hardware and software have allowed omics technologies to
become more affordable and more accessible [22,24,25]. Consequently, it is now possible
to study the whole genome, transcriptome, proteome and metabolome of an organism
in a matter of weeks (assuming the proper steps are considered and followed). As clear
evidence, whereas until 2008 the genome of only three microalgae had been sequenced [16],
many omics datasets have now been deposited in public repositories.
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While genomics and transcriptomics deliver significant information about genes and
their expressions, these approaches do not provide an indication of protein levels, pro-
tein turnover and post-translational modifications. Consequently, proteomics, i.e., the
study of proteins (from their structure to their interactions with other molecules in a cell),
corroborates and builds on genomics and transcriptomics and it is, therefore, a comprehen-
sive approach to characterize a biological system. As proteins are effectors of biological
functions, the levels (and forms) of proteins in a cell indeed represent comprehensive
information about cellular function, defining the phenotype of a cell in response to genetic
or environmental changes [13,19,25].

This review aims to give an overview of proteomics technologies and their applications
for microalgal research and focuses on the recent improvements in the use of proteomics
in microalgal research. It also presents the future of proteomics in the post-omics era,
i.e., the development and use of artificial intelligence (AI)-based technologies. Recent
advancements in machine learning, particularly deep learning, have enabled researchers
to accurately predict protein structures and functions from their amino acid sequences,
improving the quality and reliability of analytical workflows in mass spectrometry-based
proteomics [26]. This approach is becoming central to biomarker discovery from proteomics
data, and is beginning to outperform existing assays [27]. Furthermore, AI algorithms
have been instrumental in analyzing large-scale proteomic datasets [27–30], ultimately
enabling the identification of novel protein interactions and pathways that are critical for
microalgal adaptation to environmental stresses [16,31]. It is noteworthy that the potential
of microalgal biotechnology and that of proteomics technologies, along with their re-
spective advantages and disadvantages, have been reviewed elsewhere [11,16,19,21,32,33].
Therefore, these topics are not the primary focus of this review.

2. Proteomics

According to the central dogma of molecular biology, the genetic information encoded
in the nucleotide sequence of DNA is transcribed into messenger RNA (mRNA). This
mRNA is then translated into a polypeptide chain of amino acids. Subsequently, the
polypeptide undergoes folding, often facilitated by chaperone proteins, as well as post-
translational modifications. These processes, along with potential interactions with other
proteins or molecules, lead to the formation of a functional protein [19–21,25,33]. The
proteome is defined as the whole set of proteins of a biological system, and proteomics
refers to methodologies to identify, characterize, structurally study and/or quantify proteins
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(further details in Box 1, and see examples of methods used in microalgal research in the
next section).

Methodological advancements, including the development of mass spectrometry
techniques for precise mass and chemical structure analysis, have revolutionized protein
research. In conjunction with growing peptide and protein sequence databases as well as
advanced bioinformatics tools for handling and analyzing large datasets, they have enabled
rapid and accurate large-scale analyses of proteins [19,21,25,31], a significant shift from the
study of single or a few proteins that characterized the field decades ago.

Proteins are complex molecules that serve structural roles, as well as drive and regulate
metabolic reactions within cells. Studying the proteome is therefore ideal to characterize a
biological system at a particular time or phase [19,21,33]. In addition, as proteins perform
a function and are encoded in the genome, proteomics is considered one of the most
significant methodologies to characterize and understand gene functions [19]. However,
proteomics can be challenging, as proteomes are significantly more complex than genomes
because of the vast range of proteins found at different abundances and in different forms
(i.e., iso/proteoforms) according to post-translational modifications [19,21,23,34]. This
diversity also implies a tremendous number of possible interactions between proteins and
between proteins and other molecules. These interactions are the subject of the more recent
field of interactomics, which attempts to assess as comprehensively as possible this network
of interactions [2,20,35,36] (Figure 1).

The variations in protein turnover time and the influence of post-transcriptional and
post-translational regulations can also contribute to the complexity of proteomes. This can
explain discrepancies between the transcriptome (i.e., the abundance of transcripts) and
the proteome (i.e., the abundance of proteins), as reported for the microalgae Thalassiosira
pseudonana [37] or Chlamydomonas reinhardtii [38]. Indeed, moderate correlations of ~0.4
have been widely reported between the abundance of proteins and their corresponding
mRNAs in both prokaryotes and eukaryotes [34,39]. Conversely, Plouviez et al. [40] recently
showed, by temporal analysis of both datasets, that the transcriptome and the proteome
related to phosphorus metabolism are synchronized in Chlamydomonas. This provided
insight into the turnover and regulation of Vacuolar Transport Chaperone proteins, key
proteins involved in polyphosphate synthesis in microalgae [40–42].

The knowledge provided by proteomic research adds greatly to the genetic information
accumulated from genomics and transcriptomic studies, as the field of proteomics is
broad and encompasses many different interrelated areas of study, including expression
proteomics, functional proteomics and structural proteomics (Box 1).



Proteomes 2024, 12, 13 4 of 20

Box 1. Main field of proteomics.

Expression proteomics: Refers to the measurement and comparison of protein abundance in the
entire proteome (or subproteome) between samples that differ by some parameters. For example,
the proteome of cells cultivated under different conditions can be compared, as was done by
Plouviez et al. [40] with C. reinhardtii cultures grown under phosphorus-depleted and repleted
conditions. The proteome of two different phenotypes can also be compared, as was done by
Sithtisarn et al. [43] with a salt-tolerant mutant and “wildtype” Chlamydomonas strains. Expression
proteomics complements and builds on proteome identification and mining by identifying proteins
that are normally expressed in a cell or organelle at a specific time or phase [44], as in the case of the
eyespot of C. reinhardtii [45].

Functional proteomics: A broad term for many specific, directed proteomics approaches to
identify the biological functions of specific proteins or classes of proteins. Due to their key role in
functional proteomics, significant research is focused on post-translational modifications (PTMs)
of proteins, such as oxidation, phosphorylation or acetylation [20,33,46–49]. Indeed, these modi-
fications regulate protein activity, stability, localization and interactions within the cell [20,33,46].
Specific proteomic studies focused on PTMs in C. reinhardtii have revealed the complexity of the re-
dox protein regulation network in this microalga and the importance of PTMs in protein regulation
and signal transduction during stress responses [46,47,50–53].

Structural proteomics: This area of proteomics focuses on characterizing the structure of proteins
or protein complexes. The information gathered helps determine how a protein works and how it
is regulated, as was done by Gurrieri et al. [54] for C. reinhardtii phosphoribulokinase or by Shen
et al. [55] for the PSII-LHCII supercomplex involved in light-induced oxidation of water during
photosynthesis. Ultimately, structural studies can provide critical information on protein function.
Due to ongoing technological advancements, such as mass spectrometry (MS) analyses, protein–
protein interaction network analyses, and proteome-wide imaging of protein localization [31,56,57],
it is now possible to identify and locate all proteins within a protein complex or organelle [44,57–59].
Additionally, these technologies enable the characterization of protein–protein interactions (how,
which, when and where proteins interact). This field, known as spatial proteomics, allows us to
study the overall architecture of organelles and elucidates the roles that proteins play in cellular
pathways and organellar dynamics [56,60].

3. Overview of Proteomics Techniques Applied in Microalgae Research

Proteomics can be hypothesis-driven or hypothesis-generating depending on if a
proteomic experiment targets certain known proteins of interest (direct approach), or
instead measures all the proteins present in a sample (defined as the indirect or shotgun
approach) [61].

Table 1 presents the main methodologies used to study individuals, groups or the
whole set of proteins in a sample. The choice of methods is highly dependent on the
aim of the study, and often multiple methods are used in parallel, such as in the study
reported by Stauber et al. [62]], which used 2D gel electrophoresis to separate C. reinhardtii
light-harvesting proteins and identify these proteins using mass spectrometry. Data out-
puts can either be qualitative (i.e., is a protein present) or quantitative (i.e., is a protein
found in higher abundance in one particular sample). Notably, there has been significant
development in, and interest toward, quantitative high-throughput methodologies in re-
cent years [18,20,21]. As a result, conventional methods are nowadays primarily used for
specific applications (i.e., protein separation) or for data validation (Figure 2).
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Table 1. Overview of the methodologies available to study proteins/proteome with references to
their use in C. reinhardtii.

Method Description Example(s)

Conventional

Chromatography

Chromatography-based techniques are used for protein
separation and purification. In brief, proteins can be
separated/purified based on charges (IEC: ion-exchange
chromatography), size (SEC: size-exclusion
chromatography) or (bio)chemical affinity with a matrix
(AC: affinity chromatography).

[63–65]

Immuno
assay/blotting

The enzyme-linked immunosorbent assay (ELISA) detects
the presence of a protein by measuring the enzymatic
activity of an enzyme-labeled antigen or antibody binding
to an immobilized target protein (or antibody). ELISA is
widely used for diagnostics.
Western blotting allows the separation of proteins based on
molecular weight through gel electrophoresis and
identification of protein from binding of a labeled antibody
to its target antigen (i.e., protein) on a membrane.

[66,67]

Edman sequencing

The Edman method (or Edman degradation) determines the
amino acid sequence in peptides/proteins by sequentially
identifying and cleaving amino acids from the N-terminal
side of a peptide/protein.

[68]

Advanced

Gel-based

The conventional polyacrylamide gel-based method used
for protein separation and identification based on proteins’
mass (SDS-PAGE: sodium dodecyl sulfate–polyacrylamide
gel electrophoresis) has evolved into more advanced 2D
methods based on both mass and charge separation
(2D-PAGE: two-dimensional polyacrylamide gel
electrophoresis) or using labels with a fluorescent dye
(2D-DIGE: two-dimensional differential gel electrophoresis).
2D-PAGE and 2D-DIGE can resolve and investigate the
abundance of several thousand proteins in a single sample.

[59,62,69]

Mass spectrometry

MS is one of the most used analytical techniques to identify
and, coupled with (ultra)-high performance
chromatography, quantitatively measure protein levels. MS
of peptides/proteins ionized via matrix-assisted laser
desorption ionization (MALDI), surface-enhanced laser
desorption/ionization (SELDI) or, more classically,
electrospray ionization (ESI), allow the determination,
through deconvolution of the mass spectra obtained, of
their molecular mass. In the context of proteomics and
peptide analysis, multi-stage tandem mass spectrometry
(MSn) is also a powerful technique for obtaining detailed
information on the structure and sequence of peptides and
proteins, particularly with regard to the localization of
post-translational modifications (PTMs). Label-free or
labeled approaches can be used for quantification (ICAT:
isotope-coded affinity tag; iTRAQ: isobaric tagging for
relative and absolute quantification; SILAC: stable isotope
labeling by/with amino acids in cell culture; QconCAT:
quantification concatemer; TMT: Tandem Mass Tag).
MS is often combined with separations and fractionation
techniques to identify target proteins or subproteomes.
Sample fractionation and enrichment are also important
when identifying PTMs (phosphorylation, oxidation,
nitrosylation, glycosylation, methylation, etc.).

ICAT: [46]
iTRAQ and

label-free: [70]
iTRAQ: [71]

QconCAT: [72]
SILAC: [50]
TMT: [40]

PTMs: [46,47,51,53,73]
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Table 1. Cont.

Method Description Example(s)

Advanced

Nuclear Magnetic
Resonance

Protein structural determination in solution or solid phase
by measuring chemical shifts. NMR structural
determination involved several steps, each requiring
significant expertise/techniques.

[74]

X-ray
crystallography

Three-dimensional protein structures are determined by
exposing highly purified crystallized protein samples to
X-rays and measuring diffraction patterns.

[75]

Cryogenic electron
microscopy

Microscopy techniques used to determine 3D structure of
proteins or protein complexes via flash freezing and
electron bombardment of samples in solution.

[55]

In silico modelling Generation and study of protein 3D models using homology
modelling or deep-learning-based predictions. [41]
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3.1. Quantitative High-Throughput Proteomics: Mass Spectrometry

Mass spectrometry is now commonly used to identify and quantitatively measure
protein levels in microalgae samples. MS quantitative proteomics proved useful in funda-
mental and applied microalgae research (Section 5) to compare the physiological state of
different microalgae strains or microalgae grown under different conditions. While top-
down (i.e., intact proteins, [76]) and bottom-up (i.e., digested proteins, [77]) analyses are
alternative strategies for protein identification and characterization by mass spectrometry,
bottom-up approaches have mostly been used for microalgal proteomics.

Label-based and label-free strategies can be used for protein quantification. Label-
based techniques (such as ICAT, iTRAQ, SILAC, QconCAT, TMT; Table 1) incorporate
stable isotope labels into peptides, creating an anticipated change in mass that can be
measured. Conversely, label-free proteomics quantify peptide abundance based on signal
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intensity or spectral counting of peptides [78]. Wang et al. [70], previously compared
the use of a label-based method (iTRAQ) and label-free approach on C. reinhardtii. The
authors found a good overlap of proteins identified with both methods, suggesting both
provide high-quality quantitative and qualitative data. While quantification accuracy and
reproducibility were better when using iTRAQ than the label-free method, more proteins
were identified and quantified with the label-free method. Therefore, the authors suggested
that extra steps (e.g., pre-fractionation) might have been needed for a higher coverage
when using the iTRAQ method, and they recommended considering the experimental
design (i.e., sample numbers, sample complexity, and amount) for selecting a suitable
proteomic approach. Notably, label-free methods have been the most popular approaches
in microalgal proteomics, potentially because label-free methods are cost-effective and do
not require expensive labeling reagents. Independently of the method selected, sample
preparation is critical for proteomics analyses, as further described in Section 4.

3.2. Protein–Protein Interaction Techniques

Proteins generally drive cellular processes by interacting with other molecules (e.g.,
metabolites), including other proteins. Protein–protein interactions (PPIs), defined as
the physical contacts between two or more proteins, are therefore critical as PPIs can
activate or deactivate a specific protein, alter kinetic properties and regulate biological
processes. Another key benefit of studying PPIs (or PPI networks) is that it is possible
to determine putative functions of uncharacterized proteins. Several methods exist to
study PPIs either in vitro or in vivo [79,80]. While X-ray crystallography and NMR are two
methods commonly used for in vitro study (see references in Table 1), the yeast two-hybrid
assay is widely used in vivo. With this method, the detection of interacting proteins is
detected in yeast cells when fused “bait and prey” proteins from a target organism activate
reporter genes that enable growth on specific media or a specific reaction leading to color
change. This method was successfully applied to characterize the Intraflagellar Transport
Complex A Proteins subunit interactions in C. reinhardtii [81] or the interaction between the
small subunit of Rubisco and the essential pyrenoid component 1, a linker protein required
for Rubisco aggregation in algae [82]. The latter improved the understanding of the specific
algal CO2-concentrating mechanism (CCM). Alternatively, Mackinder et al. [83] used
affinity purification–mass spectrometry to measure the interaction of proteins involved
in the CCM and the pyrenoid in C. reinhardtii. Finally, PPIs (and PPI networks) based
on known and predicted interactions can also be studied in silico (further discussed in
Section 6).

Critically, studying PPIs could prove instrumental for strain improvement. For ex-
ample, using in silico protein modelling and activity-based chemical crosslinking, Blatti
et al. [84] evidenced the critical role of the interaction between a fatty acid acyl carrier
protein and thioesterase in governing fatty acid metabolism in C. reinhardtii, providing
an alternative to manipulating fatty acid biosynthesis for algae biofuel. Considering
the tremendous potential of microalgae, further research on PPIs of protein involved in
metabolic pathways of use for biotechnology would be valuable.

4. Key Considerations for Successful Proteomics

As seen in Table 1, a wide range of methods are available to study proteins/proteomes.
While each of these methods has its own advantages and limitations [19,33], their success
is strongly dependent on protein sample preparation [33,85–87]. In addition, especially
for high-throughput techniques, huge datasets are being generated and, therefore, require
the use of bioinformatics tools and pipelines to acquire and analyze data [24,31,88–90].
The following sections, therefore, focus on the importance of sample preparation and
bioinformatics in proteomics.
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4.1. Protein Sample Preparation

Sample preparation generally involves multiple steps (e.g., cell disruption, extraction,
fractionation, chemical modifications and purification, e.g., [86,87,91]) that are susceptible
to losses and contaminations [77,91–93]. Considering the complexity of proteins, their
heterogeneity and the cell characteristics, sample preparation can therefore be a time-
consuming, limiting step [13,31]. Method optimization is generally required and adds to
the labor of sample preparation. Critically, the steps (and options) involved in sample
preparation need to be carefully considered to generate quality protein extracts and to
prevent failure of downstream analyses. The two sub-sections below focus on protein
extraction methods that can be a limiting step in microalgal proteomics and, considering
the importance of MS-based techniques in the field, protein sample preparation for high-
throughput proteomics.

4.1.1. Protein Extraction

Extraction efficiency varies greatly with the microalgal species considered, due to
biochemical and structural differences in membranes [94]. Significant research has been
conducted to develop efficient and reproducible sample preparation methods, especially
for proteomic analyses of tissues and cells of animals and higher plants [31,86,95,96]. While
these protocols have not necessarily been attempted on microalgal biomass, similar cell dis-
ruption techniques (i.e., sonication, beading, lysis buffer) and solvents (e.g., trichloroacetic
acid, chloroform, methanol) are used for cell lysis and protein solubilization/precipitation,
respectively. While proteins can be extracted from wet or dry biomass, lyophilization is
generally recommended for sample stability. Anjos et al. [91] recently described a protocol
for protein extraction suitable for analyzing the proteome of Tetraselmis chuii. However,
according to the authors, this protocol effectively generated protein extracts with high
yields for larger proteins but was not efficient for proteins with low molecular mass. Im-
portantly, the authors also noted that protein extraction techniques must be specifically
selected for each microalgae species. This was also evidenced by Toyoshima et al. [87], who
showed that, while sonication in KCl buffer was the most effective method to extract total
proteins from C. reinhardtii, beads disruption in PTS buffer was better for Synechocystis.
However, with Chlamydomonas, a better detection of individual subunits of the photosyn-
thetic apparatus and other large protein complexes was obtained by the PTS and sonication
methods rather than when using the KCl method. Together with the results from Anjos
et al. [91], this suggests that, in addition to the species studied, the protocol used for
sample preparation must also be selected according to the downstream analyses to be
performed. Because of the inherent limitation due to the multiple steps involved for pro-
teomics analyses, as well as the known variability between biological samples, it is highly
recommended to conduct preliminary testing and use more than three biological replicates.
While there is currently no “standard” protocol for proteomics sample preparation in
microalgae, the authors recommend the following literature focusing on microalgal sample
preparation: [48,49,85,87,91,93,97].

4.1.2. Sample Preparation for MS-Based Analysis

Bottom-up approaches have mostly been used for microalgal proteomics. For these
approaches, extracted proteins are first reduced and alkylated before being digested using
proteases to generate peptides that will ultimately be analyzed using MS techniques. While
different proteases can be used to broaden proteome coverage, trypsin is the most widely
used in proteomics, including in microalgal proteomics [13]. While several proteolytic
digestion methods are in development, in-solution digestion is mostly used for microal-
gae [13]. During in-solution digestion, proteins are digested while remaining in a buffer.
Peptide purification/desalting is then applied to remove excess salts and detergents that
could interfere with the MS analysis (e.g., [40]). Alternatively to in-solution digestion,
in-gel digestion can be performed. In this approach, proteins are separated with gel elec-
trophoresis, and bands or groups of bands of interest are excised and then digested [62].
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This allows the analysis of specific groups of proteins, simplify sample complexity and
increase the depth of the analysis. However, this process can be time-consuming and prone
to error, possibly explaining why in-solution digestion is preferred. Technical progress
toward shotgun proteomic analyses, where mixtures of proteins, digested by multiple
proteases of different specificities, are simultaneously analyzed by high-resolution MS/MS,
has nevertheless modified these practices [98], and the current iterations of this approach
have led to the capacity for analyzing and quantitating thousands of proteins per hour from
whole-proteome digestions [99,100]. Critically, further investigation of the efficiency and
suitability of novel digestion methods and proteases is needed for microalgal proteomics.

4.2. Bioinformatics

Bioinformatics encompasses algorithms and software developed to analyze and inter-
pret biological data. For proteomics, bioinformatics can be used for protein–protein search
(i.e., classical BLAST), for in silico analyses (e.g., structure modeling and protein-protein
interactions as further discussed in Section 6), and to analyze data from, for example, 2D gel
electrophoresis [101]. High-throughput proteomics also critically relies on bioinformatics
to acquire and analyze the large datasets generated by mass spectrometry [18,23,61,88,90].

4.2.1. MS Data Processing

While bioinformatics is critical for both top-down and bottom-up approaches, this
review focuses on the bottom-up approach that is commonly used in microalgal proteomics
(see Section 3.1). Briefly, a standard bottom-up MS proteomics workflow involves several
steps [61,77]:

1. Protein samples are prepared for MS, i.e., solubilized proteins are enzymatically
digested (usually using trypsin), chemically modified (alkylation) and purified (de-
salting) to obtain short MS-accessible peptides;

2. Peptides are separated using an LC setup that is coupled to a mass spectrometer
(LC-MS);

3. Intact peptide masses and the corresponding masses of fragmented peptide ions
are measured by mass spectrometry (i.e., tandem LC-MS/MS or MSn setups). As
mentioned in Section 3.1, label-based and label-free strategies can be used for protein
quantification, and different techniques are available (Table 1). Notably, different data
acquisition modes can also be used (e.g., label-free data-dependent acquisition and
data-independent acquisition); refer to Schessner et al. [90] for further details;

4. Based on a reference proteome, the resulting peptide and fragment ion spectra are
used to identify the peptides present in the sample;

5. Identified peptide sequences are quantified and assembled to measure protein levels
by protein inference. Data from MS analyses are susceptible to systematic, depen-
dent or independent biases (e.g., different handling, equipment calibration) on the
measured peptide/protein abundances [102]. Therefore, a key step is to normal-
ize the data to take the bias into account, allowing the data to be comparable and
downstream analyses reliable [103–105]. Advanced analysis pipeline frameworks
are therefore needed for data normalization but also for protein inference and data
analysis [88,89,103,104,106]. The latter has been extensively reviewed by Schessner
et al. [90] in their guide to interpreting and generate visual representation of bottom-up
proteomics data.

4.2.2. MS Data Interpretation

Interpreting the large amount of data available from high-throughput datasets such as
those for quantitative proteomics can be overwhelming. Based on MS data, thousands of
peptides and proteins can be identified and quantified. This allows for the determination
of absolute levels within a sample and relative levels across different samples [90]. For the
latter, statistical analyses (i.e., Student’s t-test) and fold change calculations (i.e., relative
abundance) are used to identify proteins found in higher or lower abundance between
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treatments and/or phenotypes. For instance, a p-value < 0.05 and a fold change of −1.20 to
1.20 could be criteria for significance [40]. Several methodologies can then be followed to
gather knowledge from the list of identified proteins [90]. As hundreds of proteins can be
statistically found at higher/lower abundance, a common approach is to perform functional
enrichment analyses [90,107–109]. This bioinformatics method is based on a statistical
comparison of a sample dataset against a reference dataset. This allows us to identify
classes of proteins (or genes) that are over-represented in a large dataset and may have an
association with different phenotypes and/or physiological states. For example, a functional
enrichment analysis showed that ribosome synthesis and protein translation are a strong
response to the transition from P-depleted to P-repleted conditions in C. reinhardtii [40].

During functional enrichment analyses, proteins (or genes) are annotated and classi-
fied from manually curated libraries on the basis of their function. Gene Ontology (GO) is
the most renowned library that provides terms classified under biological processes, molec-
ular functions and cellular components, providing critical information about the location
and function of specific proteins [110]. Other libraries also provide alternative classification,
such as the KEGG pathway database, allowing the understanding of metabolic pathways
influenced by a specific condition [111]. Functional enrichment analyses can be performed
using several online software tools (e.g., MapMan [112]; Panther: [40]; see [90,109] for fur-
ther examples). Notably, because each software tool uses specific algorithms and statistical
tests, performing enrichment analyses with several software applications is recommended
for data cross-validation [90].

When groups of proteins have been identified in response to specific conditions, further
studies such as protein–protein interactions network analyses can provide a critical under-
standing of how proteins work together and which proteins play key functions. For exam-
ple, a PPI network analysis suggested that proteins involved in protein metabolism, energy
supply, and photosynthesis act in synergy to reconstitute cellular homeostasis under salt
stress in Dunaliella salina [113]. PPI networks can be generated from the STRING software
v12 (STRING: functional protein association networks (https://string-db.org/; accessed on
1 April 2024) from its wide database of known and predicted protein–protein interactions.

The continuous effort and use of proteomics profit from the increased number of
databases, the availability of data and software, and vice versa. Significant protein informa-
tion is now collated in databases such as UniProt (https://www.uniprot.org/; accessed
on the 1 April 2024), a freely accessible database of protein sequences and functional
information. Specific to microalgal research, Predalgo is dedicated to the prediction of
protein subcellular localization in green algae [83], and the Algal Protein Annotation Suite
(Alga-PrAS: Alga-PrAS (riken.jp)) [114] provides protein databases to enable the interpre-
tation of algal proteome features. The increasing availability of software and databases
promises a wide range of discoveries for fundamental research but also for applied microal-
gal research. Based on these, network-based strategies, while primarily discussed in the
context of metabolomics, have also been applied to proteomics [115,116]. These strategies
encompass association networks based on quantitative information, mass spectra similarity
networks to assist metabolite annotation, and biochemical networks for systematic data
interpretation.

4.2.3. Functional Characterization

Bioinformatics tools have also proved useful to determine the biotechnological poten-
tial of proteins identified during high-throughput proteomics. Peptide Ranker, a server for
the prediction of bioactive peptides (PeptideRanker (ucd.ie); accessed on 1 April 2024), was
used to predict the bioactivity of 500 peptides in the microalga Tetradesmus obliquus [117].
Twenty-five peptides with potential antioxidant and angiotensin-converting–enzyme-
inhibitory activities were found, allowing the authors to select four of these peptides
for further in vitro testing. In another study, Carrasco-Renado et al. [118] identified 488 pro-
teins with potential industrial applications from the proteome of Nannochloropsis gaditana

https://string-db.org/
https://www.uniprot.org/
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from a search of the EMBL’s European Bioinformatics Institute patented proteins database
NRPL2 (Non-redundant Patent Sequences < Patent Data Resources < EMBL-EBI, [32,118]).

5. The Benefit of Proteomics in Microalgal Research

As in other fields of research, proteomics has been instrumental to many discoveries in
algal research [15–17]. Most of the proteomics methodologies currently available have been
successfully applied to study proteins/proteomes in microalgae, such as Chlamydomonas
(see references in Table 1). This is not surprising, as C. reinhardtii is a model organism
not only in phycology but also in plant sciences for key metabolic pathways [8,62,75].
Proteomics approaches are also now widely applied to microalgae species with commercial
potential (e.g., Chlorella vulgaris, Nannochloropsis oculata, D. salina), an important step for
the development and improvement of microalgal biotechnology. The following sections
provide some examples in fundamental and applied microalgae research.

5.1. Fundamental Research

C. reinhardtii is the first microalga to have been sequenced [7]. Consequently, the avail-
ability of extensive resources, such as genetic and proteomic databases, mutant collections
and the development of protocols for genetic modifications, make it an organism of choice
for fundamental research [8]. Significant research has especially focused on C. reinhardtii
to study oxygenic eukaryotic photosynthesis [9,38,55,72,119]. Thus, many structural and
mechanistic understandings about photosynthesis were discovered in Chlamydomonas. As
the overall architecture of the photosynthetic core complexes are very similar between C.
reinhardtii and vascular plants [62,120], findings obtained with C. reinhardtii have broad
implications in plant biology.

Proteomics has been widely used to identify and study the proteins involved in
photosynthesis in C. reinhardtii. For example, the first crystal structure of Rubisco (ribulose-
1,5-bisphosphate carboxylase/oxygenase, EC 4.1.1.39: the enzyme binding CO2 during
photosynthesis) in green algae was generated by X-ray crystallography in Chlamydomonas
in 2001 [75]. Later, by combining 2D gel electrophoresis and mass spectrometry, Stauber
et al. [62] generated a detailed map of C. reinhardtii light-harvesting proteins (Lhcas and
Lhcbs proteins) and provided a first hint about structural differences in the light-harvesting
complexes between green microalgae and vascular plants. The structures of light-harvesting
complexes are now available. Particularly, the study of the C. reinhardtii PSII-LHCII super-
complex (the light-harvesting complex involved in light-induced oxidation of water during
photosynthesis) from cryo-electron microscopy data unraveled protein–protein interactions
and key features that explain how microalgae harvest energy efficiently at low light intensi-
ties [55]. In the last decade, significant research efforts have focused on characterizing the
chloroplast proteome of Chlamydomonas [44,57]. A fluorescent protein-tagging and affinity
purification–MS pipeline developed in Chlamydomonas allowed the identification and the
analysis of the interactions of known and new proteins of the pyrenoid (a chloroplast
microcompartment found in many algae) with those involved in the CCM, significantly
improving our understanding of the algal CCM [83]. In addition, using MS, Zhan et al. [58]
characterized 190 proteins, among which 81 were of unknown function, in the pyrenoid
proteome of Chlamydomonas. Their functional analysis showed that, in addition to its known
function to promote photosynthetic CO2 fixation by Rubisco, the pyrenoid may be involved
in photoacclimation and/or responses to light-induced stress.

Quantitative proteomics has been widely used to improve our understanding of pho-
tosynthesis by investigating C. reinhardtii wild types or mutants’ responses to changing
light [38,72,87,121]. It has also been widely applied to study other metabolisms than photo-
synthesis in Chlamydomonas, such as micronutrient deficiency [122], nutrient use [40,123],
salt tolerance [50], etc. Similar approaches were used to study key metabolisms in other mi-
croalgae, such as the response of D. salina and Chlorella sorokiniana to toxic metals [124–126]
and of Thalassiosira pseudonana to P depletion [37]. The latter provided key knowledge on
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the strategies developed by diatoms to survive P depletion such as swapping phospholipids
for sulfolipids to maintain intracellular P levels.

5.2. Applied Research

Microalgae farming currently supports a multi-billion USD industry, and significant
research is focusing on the development of microalgal biotechnologies for wastewater
treatment and the production of high-value molecules and biofuels [11–14]. Proteomics,
and especially quantitative proteomics, could provide insight for cultivation or strain
improvement for the above-mentioned biotechnological applications [13,16,18,127,128].

Quantitative proteomics has thus been widely applied to microalgae with commercial
potential such as Chlorella [127,129], Dunaliella [113,130,131], Haematococcus [132], Nan-
nochloropsis [32,133] and Scenedesmus [134], to name a few (see Table 1 from [16] and ex-
tensive supplementary data from [13]). However, even when considering the tremendous
potential of microalgae for biotechnology, an extensive literature search showed that most
of the proteomics studies concerned the effects of stresses, such as nitrogen depletion, to
trigger lipid production for biofuels [16]. Generally, the majority of differentially abundant
proteins are found to have functions in metabolic pathways related to fatty acid and lipid
metabolism, carbohydrate metabolism, and photosynthesis [16,17,135]. In brief, during
nutrient stress, the cells experience reduced photosynthetic efficiency and divert energy and
carbon fluxes toward lipids rather than carbohydrate, protein and chlorophyll biosynthesis.

In addition to generating knowledge that improves the understanding of the metabolic
pathways involved during specific growth conditions relevant to biotechnological appli-
cations, quantitative proteomics also allows for the identification or functional character-
ization of proteins of interest for biotechnology ([13] and see Section 6 below). The next
logical step in microalgal biotechnology would, therefore, be to focus on the in silico and
in vitro study of proteins with biotechnological potential. Structural and functional infor-
mation about 31 algal proteomes can now be found in the Algal Protein Annotation Suite
(Alga-PrAS) [114]. In addition, several software platforms are now available to determine
the biotechnological potential of proteins or characterize specific features (e.g., bioactivity)
of proteins with biotechnological potential (Section 4.2).

6. Proteomics in the Post-Omics Era

Artificial intelligence (AI) technology, especially based on deep learning, is changing
our everyday life. It has been rapidly expanding during the last few years and has already
had a strong impact on science [24,27,136]. As mentioned above, bioinformatics play a key
part in understanding and unraveling the full potential of proteomics data. Combined with
AI, bioinformatics is now on the edge of a huge acceleration and facilitation of data anal-
yses, offering new opportunities and incomparable results in applied research [24,27,29].
The development of AI-based software for MS data analysis is one example. Applica-
tions in protein structure prediction is another. AI software such as AlphaFold v2.3.2 or
RoseTTAFold v1.0 generate protein structure fast and accurately [137], preventing the
need for the laborious, time-consuming and expensive experimental techniques for pro-
tein structure determination such as X-ray crystallography [136]. Currently, more than
1 million computed protein structures have been added to the Protein Databank (PDB,
https://www.rcsb.org/; accessed on 1 April 2024), the main reference deposit of protein
structures, and almost all known proteins have had their structure calculated [138]. Com-
bined with molecular dynamics and ligand docking analyses, in silico protein studies have
wide applications in many biological fields such as medicine and drug discovery [136–138].
In silico studies are also critical for fundamental research. In the case of microalgae, Cliff
et al. [41] used Alphafold 2 and molecular dynamics to generate the first models of VTC4
protein in C. reinhardtii, C. vulgaris, Scenedesmus sp. and Gonium pectorale, based on se-
quences from databases and their own sequencing data (example in Figure 3). Prior to this
study, the function of VTC4 as a polyP polymerase was only confirmed in C. reinhardtii,
without information on its structure. However, as the models showed conservation of the

https://www.rcsb.org/
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VTC catalytic core and the SPX regulatory domains among the microalgae species and yeast,
the study of Cliff et al. [41] confirmed the probable function of VTC4 as a polyP polymerase
in the other microalgae. In addition, by showing, through molecular docking calculations,
the affinity between inositol phosphates and the SPX domain, this study also suggested
a regulation of VTC4 proteins in microalgae that may be similar to that in yeast. These
findings have significant implications in microalgal biology and biotechnology, as polyPs
have important metabolic functions in microalgae and significant research is focusing on
the ability of microalgae to accumulate polyPs for P recovery from waste [4,40–42,139].
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While protein models inform on the putative functions (e.g., substrates and products)
and regulatory features of proteins (and, therefore, on the potential differences in the
selectivity and specificity between homologous proteins), this should still be validated
experimentally, in vitro. Proteins of interest can be isolated from cell extracts using chro-
matographic methods (Table 1). However, protein isolation can be hindered by the low
concentration of certain proteins in cell extracts and/or by the embedding of some proteins
in subcellular structures [37,87,91]. Another possibility is to produce proteins of interest
using heterologous expression [140]. In recent years, the advances in synthetic biology
have facilitated the process of heterologous expression by providing, through automated
gene synthesis and molecular biology pipelines, tools for rapid engineering and produc-
tion of recombinant proteins. Proteins of interest are overexpressed in a host organism,
facilitating the extraction and purification of samples suitable for in vitro studies and/or
of products for biotechnological applications (e.g., pharmaceuticals). As for proteomics,
heterologous expression consists of several steps that can only partly be automated, i.e.,
host selection, vector design and cloning, transformation of the host, screening of trans-
formants, cultivation of the transformant, heterologous enzyme production, and finally
protein recovery and purification. Several hosts can be used for heterologous expression
such as Komagataella phaffii (formerly Pichia pastoris) and Escherichia coli [140–142]. The
yeast K. phaffii is commonly used because of its reliability, the possibility to achieve a
high heterologous protein expression level, and the presence of the co-translational and
post-translational processing necessary for eukaryotic proteins [140]. Furthermore, the
secretory production of recombinant proteins directly into the supernatant of the culture
medium is possible with K. phaffii [140]. The limited production of endogenous secretory
proteins by this yeast is indeed a key attribute for the purification of recombinant protein
from supernatants. The microalga C. reinhardtii has also been proposed as a promising host
to produce recombinant protein [143–145]. The successful expression of several proteins
with pharmaceutical relevance has been reported from editing of the nuclear and the chloro-
plastic genome [145]. While promising for biotechnological applications, considerable
developments are, however, still needed before it can be used at large scale [143,144].
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7. Future Prospects

The study of model species like C. reinhardtii has shed light on a major challenge
faced when dealing with un-sequenced microalgal genomes—the lack of comprehensive
databases for protein identification. In the past decade, significant progress has been
made, as evidenced by the availability of databases with multi-omics data and software
to integrate genome sequences and annotation enabling us to broaden ecological and
applied research (e.g., PhycoCosm, which integrates genome sequences and annotation for
>100 algal genomes, [146]). Aided by AI, it is expected that databases and software will
continue developing and improving. As such, the field of microalgal proteomics is on the
edge of a huge acceleration of data generation and new opportunities. For instance, while
combining omics techniques (multi-omics) may prove critical to building a detailed picture
of molecular signatures, their interactions and the phenotypes [16,18,22,24], multi-omics
data integration is currently hindered by the heterogeneous nature of data across multi-
omics datasets and the natural noise in biological data. AI technology could play a critical
role in addressing these challenges [24].

Proteomics has been instrumental improving our understanding of microalgal biology.
The continuous development of sample preparation techniques (e.g., extraction, proteases)
and high-throughput techniques via AI-based pipelines and software will provide a suit-
able platform to decipher complex metabolic processes in microalgae. Importantly, many
chemicals can be produced by microalgae; therefore, future studies should continue focus-
ing on conditions other than the ones used to trigger lipids production. In addition, the
study of PPIs can significantly improve our understanding of protein function, interaction
and cellular processes, as shown for the C. reinhardtii fatty acid metabolism [84]. Further
PPI analyses of key microalgal proteins could, therefore, lead to significant advance for
strain (or protein) selection and modifications.

Advances in genetic engineering (e.g., CRISPR/Cas9) have facilitated the creation
and analysis of mutants, offering deep insights into vital functions, such as those of
global regulators [121,147]. The field of synthetic biology and the production of protein
of interest by heterologous expression should therefore continue advancing biological
knowledge while also providing the opportunity for new biotechnological applications
with the production of proteins of biotechnological interest.

8. Conclusions

In summarizing the recent advances in microalgal proteomics, this review underscores
the crucial role of these technologies in understanding both fundamental biological pro-
cesses and their biotechnological applications. Yet the importance of rigorously maintaining
key steps from sample preparation to data analysis for successful proteomics analyses can-
not be overstated. Recent years have seen substantial efforts to develop and streamline
proteomics frameworks, making this field increasingly accessible to non-experts. This
evolution has been complemented by the emergence of companies specializing in afford-
able data analysis, curation and visualization. With the ongoing integration of AI, these
processes are set to become even more efficient and reliable. The insights gained from
functional enrichment analyses and protein–protein interactions have been instrumental in
addressing complex biological questions and will certainly guide future research directions
(e.g., strain improvement). As we transition into the post-omics era, the increasing avail-
ability of advanced software and databases promises a broad spectrum of discoveries in
both fundamental and applied microalgal research. This journey into the future of microal-
gal proteomics is not just about enhancing our understanding but also about harnessing
the potential of microalgae in innovative and sustainable ways. Notably, microalgae can
produce a wide array of chemicals (e.g., nutraceuticals, pharmaceuticals); therefore, the
field would benefit from more proteomics studies focusing on conditions triggering the
production of these chemicals.
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