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ABSTRACT

Temperature and pressure inside a twin screw pilot-scale extruder
(Clextral BC 45) were measured. The product — maize starch, and screw
configuration — transport elements and one reverse screw element before
the die, were chosen to be very simple. Axial profiles were determined: the
increase in temperature up to 150-200°C is linked with the position of the
reverse screw element, the increase in pressure up to 50-80 bar was
mainly due to the die. Of the process variables studied, water content and
feed rate had the greatest effect. When feed rate and screw speed were
changed simultaneously in order to keep the fill fraction constant, the
temperature remained steady whereas pressure at the die increased,
changing the equilibrium point of the machine.

Interpretation of these observations is suggested in terms of conduction,
convection, friction, shear and pressure build-up in polymer flow.

INTRODUCTION

Due to its unequalled versatility, extrusion-cooking has led to many
applications (Linko er al., 1981; Harper, 1981; Cost 91, Subgroup 1,
1984; Harper and Jansen, 1985). One of its most important fields is
starch conversion. Many publications describing this use examine the
influence of several extrusion variables (machine operating conditions
and water content) on the physical structure and macromolecular state
or functional properties of the product. Some recent papers report
experimental investigations (Owusu-Ansah ez al, 1982, 1983; Gomez
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and Aguilera 1983; Launay and Lisch, 1983) and others attempt to
predict product changes by a ‘black box’ model (Meuser et al, 1982;
Olkku and Hagqvist, 1983; Kervinen et al, 1985). Such studies have

contributed notablv to the d(—’-vr—-lnnmpnt of extrusion-cooking technolooy
but, still, there is llttle basic comprehensmn of the process even if its
importance is generally recognized.

Comprehension involves establishing relationships based on internal

process variables (pressure, temperature, shear, residence time) between

controlled extrusion variables and product properties. In such an

approach, Colonna and Mercier (1983a) have shown that extrusion
cooking of manioc starch led to a degradation of macromolecular amy-
lose and amylopectin by chain splitting. Davidson et al. (1984) have
observed the same effect of degradation in wheat starch in a single screw

. o . o
extruder. Colonna et al. (1983b) using a longitudinally split barrel twin

screw extruder, operating with a simple screw configuration, identified
four functional zones. First, from the inlet to the reverse screw element,
where the starch fills a small part of screw chambers, starch granules
remain in a solid state and undergo little conversion (zone A ); second, in
the last direct flight, material accumulates and melts (zone B); third, in
the reverse screw element, molten starch is sheared and significant
macromolecular degradation occurs (zone C); the last zone (zone D),
between the screw head and die, does not play a major role in starch

conversion.
T Aovyal e thic ammesennah ra~r1ie gua f:l-‘-nnﬁn“ ~F |v\+nvnn] payacaye
10 GCvaiop uiis a})pl Oacn requires th € (uaiitiriCaiion o1 ifit¢inai Conai-

tions of processing, i.e. determining res1dence time distributions and
temperature, pressure and shear fields within the extruder. Residence
time distribution in twin screw extruders similar to the one used in this
study has been thoroughly examined (Olkku et al., 1980a' Mosso et al.,
1982; Colonna et al, 1983b; 1v1&ﬁg€ and Gelus, 170#; In the case of
pressure and temperature, published studies do not refer to simple
experimental conditions (substrate and screw configuration) which
would provide comprehension rather than observation. Olkku er al.
(1980b) Meuser et al. (1982) measured pressure and temperature at the
die but their studies were neither byblCllldllL nor directed to this buu_lcu
Some other investigations in this field are more complete: Mosso et al.
(1982) have studied the influence of machine operating conditions but
with a complex substrate; Fletcher er al (1984), Imeson et al. (1985)
Senouci and Smith (1986) have published some axial profiles, but with a
bOlllplC)\ SCIEwW C(‘JI’ulg‘L‘li‘auuu

The aim of the present work was to carry out and to analyse
systematic temperature and pressure measurements. Maize starch was

chosen as a model substrate, and a longitudinally instrumented twin
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screw extruder was used with a simple screw configuration so that the
axial profiles of temperature and pressure may be explained in relation
to the product conversion and the screw configuration. Secondly, extru-
sion conditions were varied in order to test their separate effect on
pressure and temperature. These data provide information relevant to
the working of a twin screw extruder and are also necessary for the
future development of a model of the relationship between controllable
extrusion variables and internal processing conditions.

MATERIALS AND METHODS

Starch

Commercial maize starch Rofec was purchased from Roquette, Lestrem,
France. Its normal moisture content is 13% (wet-weight basis).

Extruder

A twin-screw extruder, Clextral BC 45, was used. The barrel is 1 m
long, divided into 4 sections heated by induction or by band-type
resistance heaters, and cooled by water circulation (Fig. 1). The usual
adjustments can be made to feed rate, screw speed, barrel temperature
and water addition rate; motor current may be measured; the pressure
on the screw head can be measured by means of a pressure sensor
mounted on the screw shaft thrust blocks. A second feeder can be con-
nected to the middle of the barrel to enable the machine to work with a
short barrel (50 cm long) configuration.

The screw consists of two different modules of different lengths (100
mm and 50 mm) and decreasing flight pitch, from feeder to die (Fig. 1); it
was terminated by a reverse screw element except when stated otherwise.
This element has 6 mm wide straight gaps for leakage flow. The die is
composed of two, 30 mm long, 4 mm diameter, cylindrical tubes.

The barrel of the extruder was modified to accept probes in holes in
the terminal section, as Colonna er al (1983b) have shown the im-
portance of this section in product conversion. The five flush mounted
probe holes are located at (Fig. 2):

— the space between screwhead and die,

— the mid-point of the reverse screw element (noted RSE),

— the mid-point of the last direct flight before the RSE (LNF),

— the mid-point of the third direct flight before the RSE (3rd NF),
— the mid-point of the fifth direct flight before the RSE (5th NF ).
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Fig. 2. (a) Longitudinal position of probes (dimensions in cm). (b) Radial position of
probes.

Probes

The pressure probes are strain gauge sensors (Dynisco PT 462 E) (Fig.
3). Their precision is 1% of the measuring range of 0-345 bar. It was
confirmed during calibration trials that the thermal drift did not exceed 3
bar in the temperatures used (150-200°C) and no interference between
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transducer

4strain gauge
sensor

radiator
mounted on
probe body

thermocouple

Fig. 3. Pressure and temperature probes.

the pressure signal and the heating systems occurred provided the
transducers and induction heaters were more than 40 cm apart. A com-
bined probe TPT463E, which also indicates temperature was used for
pressure measurement at the die.

The temperature probes, manufactured by CEMEF (Ecole des Mines
de Paris, 06560 Valbonne, France) are Chromel-Alumel thermo-
couples (type K) mounted in a heat-resistant and electrically-insulating
polyimide resin. A radiator is fitted to the probe body to dissipate heat
from the barrel; this radiator and the heat-insulating resin are designed
to avoid measuring the temperature of the barrel instead of the
temperature of the product (Fig. 3).

Signal recording

All the probe signals are passed on a 12 channel, hybrid, programmable
printer YEW 3087 by means of armoured cables. The 12 channels are
scanned at five second intervals. Thermocouple voltages are measured
by the recorder. Before being recorded, pressure signals are converted to
4-20 mA current by home-made conversion cards based on the in-
tegrated circuit Burr Brown XTR 100; these cards were calibrated using
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a pressure indicator Dynisco ER 478. Extrusion conditions, i.e. the set
temperature of each heated section, solid feed rate, screw speed, and
also the motor current and thrust block pressure are recorded on the
YEW 3087 allowing useful comparison with measured signals. Conven-
tional chart recorders can also be attached when necessary.

Operating method
The standard extrusion conditions used were:

— barrel temperature: 1st heating zone: 40°C; 2nd heating zone: 80°C;
3rd heating zone: 140°C; final heating zone: 180°C (Fig. 1);

— screw rotation speed: 210 rpm;

— feed rate: 30 kgh™};

— water added: 10% (i.e. total moisture content: 21% on wet weight
basis);

— reverse screw element in final position (Fig. 1).

Changes in these variables were made one at a time over the following
ranges:

— barrel temperature: in 3rd heating zone: 100-140°C; in final heating
zone: 120-180°C;

— screw rotation speed: 130-250 rpm;

— feed rate: 20-50 kg h™!;

— water added: 5-30% (i.e. total moisture content range of 17-33% on
wet basis);

— barrel length: two different lengths (1 m and 0-5 m) of barrel have
been tested in order to give more information on the working of zone
A;

— screw configuration: an experiment was carried out with a different
screw configuration from the standard one: a forward screw element
was placed in the terminal position following a reverse screw element
in order to determine the specific effect of the reverse element.

Variables not investigated in the experiment were held at the reference
value.

Temperature and pressure were the average, over a five minute
interval, of the chart recordings taken when the extruder was running
steadily at the desired operating conditions. Data spread around the
mean value is indicated by range bar on the graphical presentation of the
results. The extruder was judged to be at a steady state when the
measured variables — motor current and the controlled temperatures —
attained steady values, which took about 10 minutes; the machine is then
said to have reached an equilibrium point. Flow rate was determined by
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weighing the extruded product over a time interval (about 5 min), without
taking into account the water evaporated after the die.

RESULTS AND DISCUSSION
Quality of measured signals

A typical record of temperature and pressure is shown in Fig. 4. The left-
hand side shows unstable working conditions characterized by wide
fluctuations in pressure and temperature. When normal conditions are
established (right-hand side of the chart) a periodic signal with smaller
fluctuations is observed from which an average value is derived. The
amplitude of these fluctuations being 6 bar for pressure and 3°C for tem-
perature, the measurement precision is about *15% and * 2% respec-
tively. It has been verified that the apparent period of this signal cor-
responds to the time necessary for one screw revolution.

B S PO T e S NI B I

N e |t

PRESSURE

b
| |
T

T

Detail of

Unsteady Behaviour Oscillations

Fig. 4. Example of temperature and pressure records.
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The repeatability of the measurements was checked by repeating the
same standard operating conditions, with a precision of 4% on each
extrusion variable, on different occasions (Table 1). A major cause for
the scatter might be the difficulty of ensuring exactly the same feed rate
on different occasions: starch packing and bridging in the hopper causes
variations to the extent that the sum of the rate of water addition and the
mass flow rate at the feeder agrees with total feed rate at the die within
+4%. Results showed that the temperature of the product varied
between 170 and 187°C in zone B, 180 and 193°C in zone C, 152
and 170°C in zone D. These variations represented a relative error of
+ 5% which was wider than the above but still acceptable. The pressure
was 16-30 bar in zone B, 39-62 bar in zone C, 36-60 bar in zone D.
The differences in temperature in zone A were not insignificant (about
50°C); this variation might be due to the fact that the temperature probes
only measured the product temperature at the inner surface of the barrel;
furthermore, the starch is still granular in zone A, so thermal contact
between the probe and the product is not as good as in subsequent zones
where starch is molten.

Longitudinal profiles of temperature and pressure

Results

Longitudinal profiles were drawn by plotting temperature or pressure as
a function of axial distance z between the fifth direct flight and the die
(Figs 5, 6 and 7). They are of the same shape even when the added water
rate is changed.

For a long (1 m) barrel with a normal screw configuration (Fig. 5), the
temperature reaches a maximum in the third direct flight (3rd NF) of
190-220°C, then decreases to 170~-200°C at the LNF, increases slightly
to 180-200°C at the RSE and finally drops to near 150°C at the die.
Despite the small number of experimental points, it seems established
that the pressure increases by 10-20 bar between LNF and RSE, to
reach its maximum of 40 bar, then decreases slightly at the die to 30 bar.

With a short (0-5 m) barrel (Fig. 6), some differences may be observed
from the results obtained with the long one, for the same screw con-
figuration:

— the temperature in the 3rd NF is lower (130-180°C) and rises steadily
up to 150-190°C at the RSE;

— pressure remains below 20 bar before the LNF and the measurement
may not be accurate for pressure at such values; however, the pressure
build-up between the LNF and the RSE is steeper and reaches about
60 bar at its highest value;
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. tha ¢+ :
ror tne tests w th the r

flight element with the short barrel only boundary profiles have been
drawn (Fig. 7). Temperature profiles have the same shape as those
obtained with the normal screw configuration. Temperature increases by
about 40°C in the RSE and remains constant in the following direct

nnnnnnnn ¢l ~ wnnnhac tha cama laual ag in tha ~raca Af tha

luglllb I’lCDDUIC at tne u1c reacnes tne same ievel as in tnc case of tne
normal screw configuration (40-60 bar) but the profiles clearly show
that pressure increases only at the die. The reverse screw element does
not itself produce significant changes in pressure.

Discussion

It may be noted first that the values of temperature and pressure
observed are similar to those found in other studies (Olkku et al., 1980b;
Meuser et al., 1982) even if the pressures are less than those reported
(50 100 bar). This difference can be explained by the die geometry: a
simple physical model of polymer flow through a tube shows that
pressure depends greatly on diameter. The shape of the profiles confirms
the usefulness of the division of the extruder into four working zones, as

proposed by Colonna et al. (1983b), in the case of extrusion-cooking of
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starch with a simple screw configuration (reverse screw element in ter-
minal position).

e A:fF. th A 1+
((4') Zone A (u(/‘l malﬂights, The difference in the proauct icmp

at the end of zone A (3rd direct flight) between the experiments with the
long and the short barrel is partly explained by the difference of barrel
temperatures (160-180°C in Fig. 5, 145-155°C in Fig. 6). However
thermal convection is not the only explanatlon as the product tem-
perature is greater than that of the barrel; the balance of energy is prob-
ably supplied to the product by friction since the starch is still solid in
zone A and starch granules rub on the barrel surface as they pass under
the edge of the screw flight. So the longer is the conveying section, the
higher is the temperature reached at the end of zone A. This would also
explain the greater power consumption of the long barrel extruder.

Since the screws are not completely filled, the product pressure is
approximately zero and oscillations in the pressure signal are due to the

WALy L4 LHILL Laiidliativullis 111 LG S MG Al AL LU0 1 G

edge of the screw flight passing over the sensor.

(b} Zone B (last normal flight). The measurement here is more truly
representative of the real temperature of the product because at LNF,

starch granules accumulate, mix and melt. The layer overheated by fric-

tion in the case of the long barrel disappears and the temperature
becomes more uniform as the product enters zone B: the temperature
decreases in the long barrel but increases in the short barrel so that the
difference existing in zone A between this long and short barrel
condition is reduced.

The pressure increase in zone B corresponds to accumulation of
starch as described by Colonna ez al. (1983b) and as explained later on
(zone D).

{c) Zone C (reverse screw element — ASE) Resuits are the same for
long and short barrels. Temperature increases considerably as the
product passes through RSE (Fig. 7) and exceeds the barrel temperature
whatever the screw configuration, no doubt due to high shear dissipa-
tion in the molten starch.

When the reverse screw element is placed before a direct flight
element, the product pressure does not vary much (Fig. 7) as the product
flows through the RSE. So, for standard screw configuration, pressure
increase is not due to the presence of RSE.

(d) Zone D (die). At present, no explanation can be offered for the
temperature drop at the die: it may be due to a real physical
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phenomenon (cooling by conduction from ambient air) or relate to the
measurement itself (the probe at the die was of a different design from
the others).

Pressure here is due to the resistance to starch flow through the die
(Fig. 7). In the case of the standard screw configuration, this high die
pressure is transmitted through the RSE (across which the pressure drop
is small as explained above) to the end of the direct screw element (zone
B). In this zone, the pressure necessary for the product to flow through
the die is generated by the action of the screws on a given length of
molten starch.

Since these profiles confirm the usefulness of the conceptual division
into four zones, it is interesting to see how pressure and temperature
vary in each section with extrusion conditions in the case of a standard
screw configuration.

Change of extrusion variables

Results

(a) Variations in the barrel temperature in the final heating zone do
not significantly affect product temperature (180-200°C) or pres-
sure (40-50 bar) in any of the zones studied provided that these
variations are small (Fig. 8). However, when the barrel tem-
perature is much lower (120°C) the temperature of the product
also decreases to the same extent (140°C). This is particularly so
in zone A where the product temperature also drops to 120°C;
such a change of barrel temperature produces an increase of the
pressure at the die to 60-70 bar.

(b) No clear influence of screw speed on temperature or pressure can
be noted (Fig. 9), in the case of either the long barrel (continuous

T(°C) p(bars)
220 10
200 > 8l
e 6 f\’/‘
160 b f
40

140 t 20 '/4t”
120 . Barrel Temperature (°C) N Barrel Temperature {°C)

100 120 140 160 180 200 100 120 140 160 180 2007

Fig. 8. Change in product pressure and temperature with barrel heating temperature
(End of zone A: —O——; zone B: — ¥ —: zone C: — A——; zone D: —0—).
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line) or the short barrel (dashed line). Only a small increase in
temperature (10-15°C) in zone C, and a small pressure drop (20
bar) in zone C and D can be noted in the range of screw speed
explored (130-250 rpm).

The influence of feed rate was first studied with constant screw
speed. In zone A, temperature drops (40°C) when the feed rate
rises in the case of both barrel lengths whereas the decrease is
smaller (10°C) in the other zones (Fig. 10). The pressure in zone B
is not much affected by changes of feed rate whereas it increases
considerably (30-40 bar) in zone C and D.

When feed rate Q and screw speed N are changed simultaneously
in order to keep Q/N constant, the temperature remains constant
in all zones at each value of Q/N (Fig. 11). When Q/N is changed
(dashed line Q/N= 24%, continuous line Q/N=17%) marked
change in temperature (50°C) is observed in zone A, whereas in
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zone C it stays at the same level (170°C) for both values of Q/N.
The pressures in zones C and D remain the same (60 bar) for the
two values of Q/N but rise (10-20 bar) when feed rate and screw
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increases (20 bar) when Q/N decreases whereas it remains con-
stant when feed rate and screw speed increase simultaneously.

(e) When the rate of water addition is increased from 5% to 30%,
temperature and pressure decrease con51derably (by 50°C and 40
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stant (20 bar) (Fig. 12).
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Fig. 12. Changes in product pressure and temperature with quantity of water added.
(End of zone A: —0O——; zone B: — ¥ —; zone C: — A——; zone D: —eo—),

Discussion

The relationship between extrusion variables and the pressure and tem-
perature of the product are summarized in Table 2. This table is
obtained for specmc expeﬁmemal conditions and must not be inter-
preted as a general rule for twin-screw extruder working. However the
temperature and pressure of the product at the die show the same trends
as those observed by Mosso et al. (1982) (Table 3). The influence of
added water is the same as observed by Senouci and Smith (1986) for

potato starch extrusion cooking.

(a) Barrel temperature (Fig. 8). The results in zone A are not very sig-
nificant because, as noted before, the temperature is not uniform in this
zone. In other zones, the results merely show that an increase in the
barrel temperature produces an increase of similar magnitude in product
temperature, a consequence of thermal convection.

The viscosity of molten polymers generally increases as temperature
decreases; this would explain why the pressure at the die rises when the

temperature is reduced.
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TABLE 2
Effect of Extrusion Variables on Temperature and Pressure of Product
Changed variable Range Change in measurements
Position of Temperature  Pressure
probes (°C) (bar)
End of zone A +50 0
Temperature of the barrel  120-180  LDF:zone B +50 0
at the die end (°C) RSE: zone C +40 —
Die: zone D +40 —20
End of zone A 0 0
Screw speed (rpm) 130-250 LDF:zone B — =20
RSE: zone C +10 =20
Die: zone D 0 -20
End of zone A ~40 0
Feed rate (kgh™') 20-50 LDF:zone B -10 +10
RSE: zone C ~10 +30
Die: zone D - 10 + 30
End of zone A ~50 0
Added water (% wsb) 5-30 LDF: zone B ~50 0
RSE: zone C -50 —40
Die: zone D ~50 -40

20 signifies insignificant influence and — signifies influence not tested.

TABLE 3

Effect of Operating Variables on Temperature and Pressure of a Starch Based Mixture at

the Die (from Mosso et al., 1982)

Variable changed Range Change in measurements
Temperature (°C) Pressure (bar)
Temperature of the barrel 150-190 +30 -10
at the die end (°C)
Screw speed (rpm) 40-100 +5 -10
Feed rate (kgh™!) 25-50 -10 +40
Added water (% wsb) 10-30 - 15 - 30

(b) Screw speed (Fig. 9). The energy supplied by friction, as previously
mentioned, is proportional to the velocity of the powder particles in zone
A. At the same time, the quantity of heat transferred by convection from
the barrel wall decreases as this velocity increases, since the residence
time of the product at the hot barrel wall decreases. Thus, these two
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physical phenomena, i.e. friction and convection, have opposite effects
and that leads to a complex thermal behaviour in zone A. When the
screw speed is increased, the energy due to shear in the reverse screw
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in zone C.

Molten starch exhibits non-Newtonian behaviour (Fletcher et al.,
1984; Vergnes et al, 1985) and, as the shear increases with the screw
speed, viscosity decreases and this may explain why pressure decreases
in zone C and D.

(c) Feed rate (at constant screw speed) (Fig. 10). When the feed rate is
increased at constant screw speed, the degree of fill of the screw channels
increases in zone A. Heat production and flow due to friction and con-
vection do not ulai‘lge, since unt:y“ depend only on barrel temperature and
screw speed, so each particle of starch is provided with less energy. This
could explain the temperature drop in zone A when the feed rate
increases. In zones B, C and D, the quantity of starch to be heated
remains constant since the degree of fill is always 100%. So the
temperature drop is much smaller in these zones.

The increase in pressure in zone D is explained by the flow of a
molten polymer through a tube in which the pressure difference between
input and output is related to the flow rate. The pressure drop across the
RSE being slight as product flows through it, the same trend is observed
for pressure in zone C. The length of the filled screw zone increases as

the feed rate increases, so a smaller pressure gradient is necessary to
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villi i W LA, lus‘l yl WA L W (A v L ¥4 A WA LAV “L LALN ASZ TS S /K LANTLAN u, Catina

therefore the pressure increase in zone B is smaller.

(d) Feed rate (at constant ratio Q/N (Fig. 11). The ratio Q/N is propor-
tional to the degree of fill of the screw channels in zone A. If Q and N are
changed simultaneously keeping Q/N constant, starch particles are pro-
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v1ded with the same quantity of energy so the temperature in zone A
remains constant. In zone C, starch completely fills the screw channel
and screw speed and feed rate have slight and opposite effects (Fig. 9 and
Fig. 10), so the degree of fill has little influence, and the temperature

ramaing congtant
Aviiiaiilo vuliawaiil.

The pressure in zones C and D increases because feed rate has a
greater influence than screw speed in the ranges explored (Fig. 9 and Fig.
10) and produces an effect similar to the increase of feed rate at constant
screw speed.

(e) Water addition (Fig. 12). Since the viscosity of molten starch de-
creases as its water content increases (Fletcher er al., 1984; Vergnes et
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al., 1985), viscous dissipation is less which explains the temperature
drop in zones C and D. Better knowiedge of the influence of water on the
thermal viscosity of starch would be needed to give a correct interpreta-
tion of the temperature drop in zone A.

The influence of water content on viscosity explains the pressure drop
in zone C and D.

CONCLUSION

Despite the specificity of the material used in this study, some points
seem well established:

— profiles of temperature and pressure show good agreement with the
suggested division of the extruder into four functional zones. In the
first, friction of starch particles on the surtace of the barrel produces a
significant increase in temperature; the role of each of the other
sections depends on the position of the reverse screw element, in
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which temperature increases considerably at the high shear rate; the
equilibrium point of the machine is set by the relationship between
feed rate and pressure at the die.

— among the extrusion variables studied, the most influential is the

added water: chanoes in the degree of fill (nrnnnrhnnal to O/N) com-
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bine the effects of screw speed and feed rate on temperature and
pressure in all zones.

Some guidance for twin-screw extrusion-cooker operation can be
drawn from these results. Further development of this work will include
a theoretical study of the working conditions in the extruder; the
qualitative physical interpretations and the data given here will be useful

on which to bace come hv othecec and to tect the thearetical model
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