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Abstract
Recent observations of tree regeneration failures following large and severe distur-
bances, particularly under warm and dry conditions, have raised concerns about the 
resilience of forest ecosystems and their recovery dynamics in the face of climate 
change. We investigated the recovery of temperate forests in Europe after large and 
severe disturbance events (i.e., resulting in more than 70% canopy loss in patches 
larger than 1 ha), with a range of one to five decades since the disturbance occurred. 
The study included 143 sites of different forest types and management practices that 
had experienced 28 disturbance events, including windthrow (132 sites), fire (six sites), 
and bark beetle outbreaks (five sites). We focused on assessing post-disturbance tree 
density, structure, and composition as key indicators of forest resilience. We com-
pared post-disturbance height-weighted densities with site-specific pre-disturbance 
densities to qualitatively assess the potential for structural and compositional recov-
ery, overall and for dominant tree species, respectively. Additionally, we analyzed 
the ecological drivers of post-windthrow tree density, such as forest management, 
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1  |  INTRODUC TION

Anthropogenic climate change is causing widespread changes in for-
est ecosystems, both directly through changes in temperature and 
precipitation, and indirectly by altering natural disturbance regimes 
(Anderson-Teixeira et al., 2013; McDowell et al., 2020). Changes in 
disturbance regimes, particularly increases in the frequency, size, 
or severity of disturbances, pose a threat to the resilience of for-
ests and their ability to maintain ecosystem functions and related 
services over time (Forzieri et al., 2022; Millar & Stephenson, 2015; 
Seidl et al., 2017; Thom & Seidl, 2016). Specifically, disturbances that 
are both large in scale and severe can impair the process of recovery 
(i.e., the restoration of forest structure, composition, and function), 
which is a central component of resilience (Nikinmaa et al., 2020), 
by triggering successional shifts toward altered forest types or 
non-forested ecosystems (Coop et  al.,  2020; Donato et  al., 2016; 
Martínez-Vilalta & Lloret, 2016; Young et al., 2019).

Impaired forest recovery is primarily attributed to a combination 
of limited seed supply and other legacies resulting from large and 
severe disturbances, as well as a challenging environment, particu-
larly drought accompanied by high temperatures, which can hinder 
the successful establishment and growth of tree regeneration, es-
pecially in the case of fire (Davis et al., 2019; Hansen et al., 2018; 
Harvey et  al.,  2016). In addition to these environmental filters, 
a variety of biotic factors can influence recovering forests, in-
cluding interactions with other plants and animals, and anthropo-
genic disturbances (Dey et al., 2019; Diaci et al., 2017; Szwagrzyk 
et al., 2021). In particular, historical land use and forest management 
practices can affect disturbance legacies, that is, organisms and 
biologically derived patterns that persist following a disturbance 
(Johnstone et al., 2016; Seidl & Rammer, 2014). For example, salvage 
logging is routinely conducted following disturbances, although it is 

a controversial practice in the context of forest recovery because it 
can inadvertently damage advanced regeneration and remove lega-
cies such as deadwood and surviving trees and shrubs that together 
contribute to recovery via seed sources, erosion control, and micro-
climate amelioration (Leverkus et al., 2021; Lindenmayer et al., 2017; 
Marangon et al., 2022; Taeroe et al., 2019; cf. Konôpka, Šebeň, & 
Merganičová, 2021). Many of the factors that affect recovery pro-
cesses are linked to a specific disturbance agent. For example, wind 
and insect outbreaks, even of high severity, tend to leave the forest 
understory intact, whereas high-severity fires typically remove un-
derstory vegetation and surface litter and alter forest soil conditions 
(Frelich & Reich, 1999).

The erosion of resilience caused by regeneration failures after 
large and severe disturbances has been reported in temperate 
forests around the world (Bowd et  al.,  2023; Moser et  al.,  2010; 
Stevens-Rumann & Morgan, 2019; Turner et al., 2019). In European 
temperate forests, the regeneration of dominant tree species is well 
adapted to the historical range of disturbance variability, which is 
generally characterized by frequent, low-severity gap-scale events 
and periodic intermediate- and high-severity disturbances caused by 
wind, insect outbreaks, fire, and other agents (Adámek et al., 2016; 
Čada et al., 2016; Frankovič et al., 2021; Nagel et al., 2021; Schurman 
et  al.,  2018; Svoboda et  al.,  2014). However, there are concerns 
that a changing climate and increasing disturbance impacts may 
push European temperate forest dynamics beyond their historical 
range of variability (Patacca et al., 2023; Senf & Seidl, 2018, 2021b; 
Sommerfeld et al., 2018), potentially impacting recovery processes. 
In order to implement appropriate management responses, it is cru-
cial to understand whether European temperate forests are capable 
of recovering in terms of structure and composition after large and 
severe disturbances and to identify the driving factors that influence 
this process.

topography, and post-disturbance aridity, using a series of generalized additive mod-
els. The descriptive results show that European temperate forests have been resilient 
to past large and severe disturbances and concurrent climate conditions, albeit with 
lower resilience to high-severity fire compared with other disturbance agents. Across 
sites and disturbance agents, the potential for structural recovery was greater than 
that of compositional recovery, with a large proportion of plots becoming dominated 
by early-successional species after disturbance. The models showed that increasing 
elevation and salvage logging negatively affect post-windthrow regeneration, particu-
larly for late-successional species, while pioneer species are negatively affected by 
increasing summer aridity. These findings provide a key baseline for assessing future 
recovery and resilience following the recent occurrence of widespread disturbance 
in the region and in anticipation of future conditions characterized by increasing heat 
and drought stress.
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A widely used approach to study forest recovery, particularly 
after large-scale disturbances, is remote sensing (Guz et al., 2022; 
Rodman et  al.,  2021; White et  al.,  2022). Post-disturbance recov-
ery has been assessed in European forests using satellite imagery 
(e.g. Landsat, Modis) and active sensors (e.g. Lidar), showing that 
the majority of forests are resilient and are recovering following 
disturbances documented over the past few decades (Dobrowolska 
et al., 2022; Nolè et al., 2022; Senf et al., 2019; Senf & Seidl, 2022). 
Although remote sensing provides valuable information over large 
regions, its resolution is relatively coarse, and its temporal extent is 
limited to a few decades (Senf, 2022). To complement remote sens-
ing, empirical ground-based studies of post-disturbance regenera-
tion should be conducted, as they cover a longer temporal extent 
compared with continuous satellite records and provide structural 
and compositional information at a much finer resolution (Senf & 
Seidl, 2022).

Recent empirical ground-based studies conducted in European 
forests have confirmed adequate regeneration following distur-
bances caused by different agents and of different severity (Macek 
et  al.,  2017; Moris et  al.,  2017; Taeroe et  al.,  2019). Regeneration 
processes, including post-disturbance regeneration, advanced re-
generation, surviving trees, and vegetative sprouting, can all con-
tribute to forest recovery. For example, following wind disturbance, 
post-disturbance regeneration is generally considered the most 
important of these four mechanisms, although their relative im-
portance also depends on species life-history traits, whereby ad-
vanced regeneration may play an important role for shade-tolerant 
species (Taeroe et al., 2019). The initial post-disturbance reorgani-
zation phase is widely recognized as an important window for fu-
ture forest dynamics (Seidl & Turner,  2022). However, ecosystem 
trajectories may become more unpredictable when disturbances 
are compounded, as in the case of salvage logging (Buma, 2015; Gill 
et al., 2017). Therefore, long-term inventories are needed to assess 
forest recovery after large and severe disturbances. Such informa-
tion is needed to inform forest management decisions, as well as 
for modeling ecosystem dynamics, including carbon balance (Goetz 
et al., 2012; Harris et al., 2022).

Although numerous ground-based case studies have examined 
regeneration following various disturbance events (e.g. Marcolin 
et  al.,  2019; Vodde et  al.,  2015; Wild et  al.,  2014), to our knowl-
edge, no previous efforts have conducted a continental-scale 
synthesis of forest recovery from long-term ground-based stud-
ies after stand-replacing disturbances caused by different distur-
bance agents in Europe. Such an approach can provide additional 
insights into the common drivers of post-disturbance regeneration, 
whereas case studies may reveal more idiosyncratic successional 
pathways. Therefore, we compiled both newly collected and previ-
ously published data on forest regeneration after large and severe 
disturbances occurring between 1962 and 2012, in combination 
with spatially explicit environmental datasets, to investigate the 
post-disturbance resilience of European temperate forests (Cerioni 
et al., 2024). The dataset serves as a benchmark of post-disturbance 
forest recovery over the past five decades, providing a basis for 

comparing future assessments of forest regeneration following 
large and severe disturbances under a warmer and more drought-
prone climate. We address the following questions: (1) Are European 
temperate forests capable of recovering in terms of both structure 
and tree species composition after large and severe disturbances 
caused by different agents? (2) What are the climatic, topographic, 
and management factors that affect post-disturbance regeneration, 
and is there a difference in forest recovery between different post-
disturbance management treatments?

2  |  MATERIAL S AND METHODS

2.1  |  Data collection and calculation of variables

We carried out ground-based inventories of forest recovery across 
European temperate forests (defined according to climatological 
classification by Rivas-Martínez et  al.,  2004), following large and 
severe disturbances (Figure 1). These disturbances were defined as 
those resulting in a loss of canopy cover of at least 70% in a con-
tiguous patch larger than 1 ha, which equals the average disturbance 
patch size in Europe quantified from a time series of Landsat images 
(Senf & Seidl, 2021a). We combined data from 143 sites, including 
1475 field plots. The recovery data were collected for three dis-
turbance agents: wind (17 events, 132 sites, and 1129 plots), fire 
(6 events, 6 sites, and 305 plots), and bark beetles (Ips typographus 
L.) (5 events, 5 sites, and 41 plots). These disturbance agents are 
the most important natural disturbance agents in European forests 
(Patacca et  al.,  2023; Sommerfeld et  al.,  2018) (Table  1). We did 
not include recently disturbed sites (<5 years post-disturbance), as 
short post-disturbance periods may not capture the recovery pro-
cess. Our dataset includes inventories ranging from 7 to 52 years 
after disturbance. In cases where multiple plot-level censuses were 
performed at the same site, only the most recent inventory was in-
cluded. Field procedures, including sampling design, plot sizes, and 
parameters assessed, varied among sites (Table S1). However, each 
inventory included common parameters such as the density and 
species composition of regeneration, defined as tree species older 
than 1 year and with diameter at breast height (DBH) < 7 cm (either 
aggregated in height classes or with individually recorded heights), 
trees (defined as tree species with DBH ≥7 cm), information on for-
est management before and after the disturbance, and GPS coordi-
nates of plot centers.

Post-disturbance density of tree species, including regenera-
tion and trees, was used as an indicator of forest resilience and the 
response variable in the statistical models with recovery drivers. In 
order to make post-disturbance densities comparable across sites 
with different times since disturbance, we standardized them by 
calculating a height-weighted density index following the approach 
of Vickers et al. (2019), which is based on the concept of aggregate 
height (i.e., the sum of the individual heights of a species or group 
of species) (Fei et  al.,  2006). This index accounts for the differ-
ent survival rates of individuals of different heights and provides 
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a better assessment of recruitment and future stand development 
than when only raw post-disturbance density is considered (Harris 
et al., 2022). Each tallied individual was given a weight according to 
the ratio of its height to that of a reference height (i.e., the height 
of a theoretical individual with DBH = 7 cm, which was assigned a 
weight of 1; see Supporting Information 1 for further details on the 
model we used to estimate the reference height), summed up at 
the plot-level and scaled up to a hectare. All individuals taller than 
the reference height or with DBH larger than 7 cm were weighted 
as 1. When individual tree height was not recorded during the in-
ventory, we estimated it according to DBH-height curves for each 
site or group of sites (Supporting Information  1). When only the 
aggregated density in height classes was available, each class was 
given a weight according to the ratio of its height midpoint to the 
reference height. For the purpose of analyses, tree species were 

grouped according to their life-history traits into (1) pioneer, (2) 
early-successional, and (3) late-successional tree species (using 
light values from Landolt et  al.  (2010) and expert knowledge) 
(Table S2).

To assess the influence of different recovery drivers on post-
disturbance density, we used spatially explicit European-scale data-
sets to derive harmonized predictors across the study sites. These 
predictors included environmental and management variables that 
are documented to have an effect on forest recovery (Table  2). 
Topographic variables, including elevation, slope steepness, aspect, 
and heat load index (HLI), were calculated at the plot level (using 
the plot center coordinates) using QGIS (version 3.22.9; QGIS.org, 
2022) with the Forest and Buildings removed Copernicus DEM 
(FABDEM) with a spatial resolution of 30 m (Hawker & Neal, 2021) 
(accessed on 10 February 2022). Slope steepness and aspect 

F I G U R E  1 Location of the study sites and respective disturbance agents. The pictures show forests recovering after bark beetles in 
Czechia (a), wind in Slovenia (b), and fire in Bulgaria (c). The background map is a grayscale version of Stamen Terrain Background (Map tiles 
by Stamen Design, under CC BY 4.0. Data by OpenStreetMap, under ODbL). Map lines delineate study areas and do not necessarily depict 
accepted national boundaries.
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were calculated from the FABDEM using third-order polynomials 
(Haralick, 1983), and plot-level values were calculated using bilinear 
interpolation for each of the above-mentioned variables. HLI was 
calculated based on plot latitude, slope steepness, and aspect, using 
Equation (1) from McCune and Keon (2002). To characterize post-
disturbance climate, we used the most recent European Centre 
for Medium-Range Weather Forecasts (ECMWF) ERA5-Land re-
analysis data, which has a spatial resolution of 0.1° (∼9 km) and is 
available from 1950 to the present (Muñoz-Sabater et  al., 2021). 
We extracted the monthly averaged gridded data for potential 

evaporation (pev) and total precipitation (P) for the summer months 
(JJA) from 1950 to 2019 (accessed on 25 July 2022). Yearly aridity 
index (AI) was calculated as the average of monthly JJA aridity in-
dices, which were computed as 1 − P/pev (Allen et al., 1998). Aridity 
change was calculated as the difference between the mean AI of 
the 7 post-disturbance years and the aridity baseline, calculated as 
the average of the index for the years between 1950 and 1980. 
Data wrangling, preliminary analyses, and visualization were done 
using R (R Core Team,  2022), primarily relying on the “tidyverse” 
package (Wickham et al., 2019).

TA B L E  1 Characteristics of the large and severe disturbance patches across the study region.

Agent type Site Country Patch(es) size (ha) Year of event Reference

Bark beetle Istebna POL 2.91 2011 S. Keren & J. Socha (unpublished data)

Bark beetle Kotlov zlab SLK 40 1993–1999 Pittner et al. (2020)

Bark beetle Pilsko SLK 5.7 2007 M. Saniga, S. Kucbel, J. Vencurik, J. Pittner, 
& P. Jaloviar (unpublished data)

Bark beetle Šumava CZE 2000 1997–1999 Wild et al. (2014)

Bark beetle Trojmezná CZE 550 2008 Bače et al. (2015); Červenka et al. (2016, 
2020)

Fire Antey ITA 5 1990 Garbarino MSc thesis

Fire Aquila ITA 125 2007 Morresi et al. (2019)

Fire Bazi mire LAT 1022 1992 Kitenberga et al. (2020)

Fire Bourra ITA 160 2005 Marcolin et al. (2019); Marzano et al. (2013)

Fire Lettomanoppello ITA 83 2007 Morresi et al. (2019)

Fire Sokolna BUL 196 2012 M. Panayotov & M. Cerioni (unpublished 
data)

Wind Arvillard, Cuvy FRA 5, 16 1990 Fuhr et al. (2015)

Wind Bistrishko BUL 60 2001 Tsvetanov et al. (2018)

Wind Bohor SLO 1.5–3 2008 Cerioni et al. (2022); Fidej et al. (2018)

Wind Črnivec SLO 16–87 2008 Cerioni et al. (2022); Fidej et al. (2018)

Wind Halliku EST 2.5–5 2002 Ilisson et al. (2007); Vodde et al. (2010, 
2015)

Wind High Tatras SLK 10,000 2004 Konôpka et al. (2019)

Wind Jelovica SLO 125 2006 Ščap et al. (2013)

Wind Lovrup Skov, Stursbøl 
Hegn

DEN 15,000 1999 J. H. C. de Koning & M. Hart (unpublished 
data)

Wind Parangalitsa BUL 4 1983 Tsvetanov et al. (2018)

Wind Parangalitsa BUL 22 1962 Tsvetanov et al. (2018)

Wind Piska/Szast POL 460 2002 Dobrowolska (2015); Szwagrzyk 
et al. (2017); Szwagrzyk, Gazda, 
et al. (2018)

Wind Roztocze POL 2.50 2008 Szwagrzyk, Maciejewski, et al. (2018)

Wind Slitere LAT 1.1–25.6 1969 Bāders et al. (2017); Bāders et al. (2021)

Wind Trnovski gozd SLO 7–16 2008 Cerioni et al. (2022); Fidej et al. (2018)

Wind Tudu EST 2.5–5 2001 Ilisson et al. (2007); Vodde et al. (2010, 
2015)

Wind (Lothar / 
Martin)

France FRA 1.4–556 1999 Dietz et al. (2020)

Wind (Vivian/
Wiebke)

Sonian forest—
Kersselaerspleyn

BEL 1.1 1990 Vandekerkhove et al. (2018)
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TA B L E  2 Description of the variables explored in the analyses of post-disturbance recovery drivers.

Variable (unit 
measure) Values range/levels Expected effect Reference

Disturbance agent Beetle, Fire, Wind Advanced regeneration surviving after wind 
or beetle could boost the recovery process 
compared with severe fires, which remove 
the understory vegetation and may have a 
detrimental effect on soil. Analogously, late-
successional species will be proportionally more 
present than pioneer species after wind or 
beetle, compared with fire

Frelich and Reich (1999); Taeroe 
et al. (2019)

Time since 
disturbance 
(years)a

7 to 52 Pioneer species will decrease with time since 
disturbance, while later-successional species 
will proportionally increase. Overall weighted 
density is deemed to peak at the onset of self-
thinning stage

Fei et al. (2006)

Elevation (m a.s.l.)a 5 to 1951 With increasing elevation, growing season gets 
shorter and climate more extreme, reducing 
density and size of regeneration. At low 
altitudes, changes in elevation will not play a 
large role

Cunningham et al. (2006); 
Szwagrzyk et al. (2021)

Slope steepness (°) 0 to 70 Steeper slopes are more conducive to processes 
such as erosion and surface water runoff, 
which hamper plant establishment and growth, 
resulting in lower post-disturbance densities and 
size

Baier et al. (2007)

Slope aspect (°) 0 to 360 Southerly exposed sites are more exposed to 
droughts, while north-facing slopes may lack 
direct radiation. Aspect will interact with 
elevation in affecting regeneration

Brang (1998)

Topographic 
wetness index

−8.05 to 3.67 Can be considered a proxy for soil moisture and soil 
drought, incorporates specific catchment area 
and slope steepness. Low levels of this index 
will result in lower plant establishment and post-
disturbance densities

Beven and Kirkby (1979); Kopecký 
et al. (2021)

Heat load indexa 0.13 to 1.07 Can be considered a proxy for topographically 
driven potential heat load, incorporates latitude, 
slope steepness, and aspect. Extreme levels of 
solar radiation will negatively affect regeneration 
density, depending on site elevation and 
microclimate

McCune and Keon (2002)

Aridity changea −0.099 to 0.146 Post-disturbance droughts have a negative impact 
on plant establishment. An increase in aridity 
in the first years post-disturbance, compared 
with the historical baseline, will result in lower 
regeneration densities and size

Stevens-Rumann and Morgan (2019)

Pre-disturbance 
managementa

None, Light (<50 years since 
management stopped), 
Managed

Unmanaged sites tend to have a more irregular 
uneven-aged structure, therefore a larger share 
of legacies (i.e., organisms and matter carrying 
over the disturbances), also in the form of 
advanced regeneration, compared with managed 
sites, which will favor the recovery process

Johnstone et al. (2016)

Post-disturbance 
managementa

None, Only salvage 
logging, Intensive 
(Logging + planting/
thinning)

Salvage logging can damage legacies such as 
advanced regeneration and be detrimental to the 
ecosystem recovery process. As such, pioneer 
species will be relatively more common after 
salvage treatments, compared with unmanaged 
or planted sites

Lindenmayer et al. (2017); Taeroe 
et al. (2019)

a Included in the final models.
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    |  7 of 18CERIONI et al.

2.2  |  Analyses

2.2.1  |  Assessment of structural and compositional 
recovery potential

Recovery was qualitatively evaluated with regard to restoring pre-
disturbance forest structure (i.e., structural recovery potential, 
sensu Rodman et al., 2022) and tree species composition (i.e., com-
positional recovery potential, sensu Andrus et al., 2020). For struc-
tural recovery potential, post-disturbance weighted density was 
compared with its respective site-specific pre-disturbance tree den-
sity (i.e., structural recovery target; conceptually akin to engineering 
resilience, sensu Nikinmaa et al., 2020). Pre-disturbance tree density 
was either calculated based on pre-disturbance inventories or esti-
mated from density values in undisturbed stands of similar composi-
tion in the surroundings of the damaged area (Table S3). We inferred 
that sites having a high share of plots with a post-disturbance 
weighted density below their structural recovery target are at high 
risk of regeneration failure.

For compositional recovery potential, site-specific recovery tar-
gets were set for the density of the respective pre-disturbance dom-
inant tree species (defined as the species accounting for more than 
half of the overall composition or as the two most common species 
if none had a share above 50%) as a proportion of the structural re-
covery target (i.e., 50% of the structural recovery target in the case 
of a single dominant species or 25% for each dominant species in 
the case of two dominant species) (Table S3). A plot was considered 
to show compositional recovery potential if the weighted densities 
of the dominant species were at least equal to the corresponding 
target value(s). Both structural and compositional recovery potential 
were computed at the plot level and summarized for each site as the 
share of recovered plots. Values in the results section are presented 
as averages of the site-level shares (overall, and for each disturbance 
agent). Unlike the results of the statistical models, which can be gen-
eralized beyond our study sites, caution must be taken in drawing 
conclusions from these recovery assessments, as they summarize 
the investigated areas without accounting for the spatial dependen-
cies and adjustment for heterogeneity with respect to external co-
variates among sites or sampling effort imbalances.

2.2.2  | Modeling of post-disturbance 
recovery drivers

To account for spatial autocorrelation among plots (i.e., pseudorep-
lication) in our dataset and potential non-linearities between predic-
tors and response variables, we developed a series of Generalized 
Additive Mixed Models (GAMMs) to examine the influence of vari-
ous drivers on the post-disturbance weighted density of different 
species groups. The GAMM models were computed using the R 
package “mgcv” (version 1.8-38; Wood, 2017). Because both raw 
and post-disturbance weighted densities were highly right-skewed, 
we took their natural logarithm and modelled this transformed 

variable as Gaussian. After fitting exploratory models that included 
all observations with disturbance agent as a three-level categorical 
variable, and three separate models for each disturbance agent, we 
focused solely on the wind-disturbed sites for the formal statisti-
cal analyses (data points = 1129; sites = 132), because of the uneven 
spatial distribution and low replication of fire and beetle-disturbed 
sites. This approach was adopted to minimize bias and uncertainty 
related to the model results. Based on a priori ecological informa-
tion, the explanatory variables included random site effect, eleva-
tion, pre-disturbance-management, post-disturbance management, 
time since disturbance, aridity change, and HLI. Prior to conducting 
the formal statistical analyses, we decided to include HLI as a pre-
dictor instead of slope steepness, aspect, or topographic wetness 
index because of potential multi-collinearity between these related 
DEM-derived variables.

To enable the comparison of covariate effects across different re-
sponses, we employed the same model structure for all the response 
variables investigated in this study, including overall weighted den-
sity, pioneer species weighted density, early-successional species 
weighted density, and late-successional species weighted density. 
The models were fitted independently for each response vari-
able, allowing for distinct parameter estimates for each response. 
Specifically, the model structure for a response variable Y at the j-th 
plot within the i-th site is as follows:

where �0 is the overall intercept; I(. ) is the indicator function (assuming 
the value of 1 when its argument is true and the value of 0 otherwise); 
�k is the effect of the k-th level of pre-disturbance management (with 
the usual baseline-type restriction for identifiability as in ANOVA, or 
general linear models, Graybill, 1976); �k is the effect of the k-th level 
of post-disturbance management (with the usual baseline-type restric-
tion for identifiability); �years is the slope of the linear trend on time 
since disturbance (measured in years); �aridity_change is the slope on the 
linear effect of summer aridity change; �HLI is the slope on the linear 
effect of HLI index; bi is the random site effect (assuming bi ∼ N

(

0, �2
b

)

 ), 
included as a random intercept; s(. ) is the smooth effect of elevation, 
implemented as a penalized spline (De Boor, 1978; Wood, 2017); �ij is 
the error term with a Gaussian distribution (�ij ∼ N

(

0, �2
)

).
In summary, the model allows for estimation of slopes with re-

spect to several ecological gradients, such as time since disturbance, 
aridity change, and HLI. It also enables a detailed examination of the 
(potentially nonlinear) effect of elevation, while accounting for ran-
dom site variability and the ANOVA-like effects of pre-  and post-
disturbance management types. It is important to note that the 
additive structure of the model (1) for logarithmically transformed re-
sponses implies that, on the original scale, the model is multiplicative. 

(1)

log
(

Yij+1
)

=�0+bi+s
(

elevationij
)

+
∑

k

�k ⋅ I(pre-disturbancemanagement of the ij-th plot is k)

+
∑

k

�k ⋅ I(post-disturbancemanagement of the ij-th plot is k)

+�years ⋅years_since_disturbancei+�aridity_change ⋅aridity_changei

+�HLI ⋅HLIi+�ij,
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Additionally, assumed gaussianity on the log-scale implies a lognor-
mal distribution (Crow & Shimizu, 1988) on the scale of the original 
recovery measurements. The unknown model parameters, including 
the nonparametric estimate of function as a “functional parameter,” 
were estimated using an optimization of the penalized likelihood with 
penalty coefficients kept at the values previously estimated by the 
generalized cross-validation procedure (Wood et al., 2016).

3  |  RESULTS

3.1  |  Post-disturbance forest structure and 
composition

The 143 sites featured in the recovery analyses were sampled, on 
average, 19 ± 4 years after a large and severe disturbance, with 
minor differences among agents: 13 ± 6, 15 ± 8, and 19 ± 4 years for 
beetles, fire, and wind, respectively (descriptive values are given as 
site-level mean ± standard deviation without accounting for differ-
ences in sampling effort among sites). Post-disturbance density (i.e., 
including both regeneration and trees) following large and severe 
disturbances varied widely across European temperate forests and 
disturbance agents, with an overall mean of 6274 ± 4665 individuals/
ha. Post-beetle density was on average greater than that after wind 
or fire, with 9240 ± 3124, 6275 ± 4703, and 3615 ± 3495 individuals/
ha, respectively (but note that the number of sites was highly unbal-
anced among the agents) (Figure 2a; Figure S1a). A complete lack of 
regeneration or trees only occurred in 3.5% of the plots across 25 
sites, on average 15 years after the disturbance and more commonly 
after fire events than wind (6.6% vs. 2.8% of plots, respectively). 
When incorporating tree height in the density index (i.e., weighted 
density), the relative rankings between disturbances changed: 
3339 ± 2546 theoretical individuals (i.e., trees with DBH equal to 
7 cm)/ha were present after wind, compared with 1482 ± 885 and 
810 ± 1153 individuals/ha, respectively, after beetle and fire distur-
bances (Figure 2a; Figure S1a).

Post-disturbance raw and height-weighted densities showed dif-
ferent trends over time since disturbance for the different agents 
(Figure S2). For windthrow, raw density decreased as the time since 
disturbance increased, while the weighted density was relatively 
stable over time (cf. Fei et al., 2006). Weighted density correlated 
with time since disturbance only in the case of fire (Figure  S2). 
When comparing post-disturbance weighted densities with pre-
disturbance density values, European temperate forests showed 
adequate structural recovery potential (Figure 2b; Figure S1b). On 
average, 86.2% of the investigated sites exhibited structural recov-
ery potential, but there were differences among disturbance agents; 
a larger proportion of the wind and beetle-disturbed sites met the 
recovery target compared with fire-disturbed sites (88.7%, 82.2%, 
and 33.6%, respectively).

A lower proportion of the sites exhibited compositional recovery 
potential, with an average of 52.3% (Figure 2b; Figure S1b). Beetle 
and wind-disturbed sites tended to show greater compositional 
recovery potential than fire-disturbed sites, at 84.4%, 52.5%, and 
19.1%, respectively. Pre-disturbance stands were primarily com-
posed of late-successional species, which were dominant at 66% of 
the sites, while the overall proportion of early-successional and pio-
neer species largely increased after disturbance (43.3% and 12.9%, 
respectively). The proportion of late-successional species decreased 
to 43.8% following disturbance. Compared with wind and beetle-
disturbed areas, which were analogous to the overall patterns, post-
fire stands were mainly comprised of early-successional (60.2%) and 
pioneer species (26.7%). Across all sites, beech (Fagus sylvatica L.) 
was the most common post-disturbance species, with an average 
density per site of 1487 ± 2879 individuals/ha, followed by spruce 
(Picea abies (L.) H. Karst) with 681 ± 1588 individuals/ha. Beech 
and spruce were also the most prevalent forest types among the 
investigated areas, as they were either the dominant or co-dominant 
species at 43 sites each. Beech-dominated sites tended to show 
greater compositional recovery potential compared with spruce-
dominated sites, with an average of 82.5% and 54.1% of plots per 
site, respectively.

F I G U R E  2 Site-level post-disturbance 
raw and weighted density distribution 
(a); share of plots per site structurally 
and compositionally recovering (b) across 
different disturbance agents (n sites = 5 
beetle; 6 fire; 132 wind). Boxes bound 
the interquartile ranges (IQR), black lines 
show the median values, and whiskers 
extend to a maximum of 1.5 × IQR beyond 
the box. Small diamonds are site-level 
data points (transparent, or in black for 
outliers).
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    |  9 of 18CERIONI et al.

3.2  |  Management and environmental drivers of 
post-windthrow recovery

The influence of forest management and environmental variables on 
post-windthrow weighted density varied (Tables 3 and 4; Table S4). 
For all species combined, post-windthrow salvage logging (109 sites, 
632 plots) had a negative influence on post-windthrow weighted 
density (−0.55 ± 0.20) (model results are given as effect size ± stand-
ard error; note that the response variables, that is, weighted den-
sities, were log-transformed), compared with no post-windthrow 
management (28 sites, 354 plots) and intensive management (i.e., 
logging followed by planting/tending; 5 sites, 143 plots). In other 
words, in salvaged sites we expect the median value of the overall 
post-windthrow weighted density to be 58% (with a confidence in-
terval of 47%–70%) of that in unmanaged sites, holding other vari-
ables constant. The same result was found for the late-successional 
species model (−1.16 ± 0.33), while there was no significant effect 
for early-successional or pioneer species (Figure 3). Pre-disturbance 
management was not significant in any of the weighted density 
models.

The effect of elevation on post-windthrow weighted density was 
complex, but generally negative for all successional groups, with 
some differences in the weighted density patterns with increasing 
elevation (Figure 4; Table 4). The negative effect of elevation was 
more pronounced at high elevations (i.e., above 1000 m a.s.l., but 
note the larger confidence intervals above 1500 m a.s.l.), except for 
early-successional species, which showed a marked decrease at low 
elevation, followed by a relatively stable pattern above 500 m a.s.l. 
HLI was negatively associated with post-windthrow weighted den-
sities, but was significant only for pioneer and early-successional 
species (−1.71 ± 0.50 and −1.18 ± 0.50, respectively). Pioneer species 
decreased with increasing time since disturbance and with greater 
aridity change (−0.097 ± 0.048 and −14.85 ± 6.28, respectively). 
Raw density models showed overall similar patterns to the weighted 
models (i.e., the same predictors were significant), with minor differ-
ences in effect sizes (Table S5).

4  |  DISCUSSION

As anthropogenic climate change continues to alter disturbance re-
gimes, there is growing concern regarding the resilience of forests 
and their ability to recover their functions and provide ecosystem 
services after large and severe disturbances (McDowell et al., 2020). 
In this study, we conducted field surveys and analyzed bioclimatic 
and topographic datasets to provide the first continental-scale 
quantitative analyses of European temperate forest recovery after 
large and severe disturbances. By assessing post-disturbance forest 
structure and composition and comparing them to pre-disturbance 
stand characteristics, we found evidence for the overall resilience of 
European temperate forests to such disturbances. These findings are 
consistent with several previous studies that have assessed forest 
recovery after a variety of disturbance severities using both remote TA
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sensing (Senf et al., 2019; Senf & Seidl, 2022) and ground-based data 
(Taeroe et al., 2019). However, our study also identified high-risk sites 
(≈14%) that would require additional tree establishment to achieve 
structural recovery (i.e., imminent failure, sensu Vickers et al., 2019). 
Furthermore, we observed considerable heterogeneity among sites 
and disturbance agents, with fire-disturbed sites generally exhibit-
ing lower recovery potential compared with that after other distur-
bance agents. In contrast to wind disturbances, which typically leave 
advanced regeneration intact (Taeroe et al., 2019), and bark beetle 
outbreaks, in which both advanced regeneration and regeneration 
that establishes during protracted outbreaks play a significant role 
(Andrus et al., 2020; Macek et al., 2017), stand-replacing fires tend 
to leave very few living legacies in temperate forest ecosystems 
(Gill et al., 2017; Guz et al., 2021; Moser et al., 2010). Overall, we 

found that nearly 70% of the fire-disturbed areas had not structur-
ally recovered at the time of observation. However, it is important 
to note that this does not necessarily indicate a change to a non-
forested ecosystem, as new trees could still establish, and the recov-
ery interval may still be shorter than the disturbance interval (i.e., 
not in a critical state, sensu Senf & Seidl, 2022). For instance, Scots 
pine (Pinus sylvestris L.) forests in the northern Czech Republic took 
about 140 years to recover to pre-fire conditions, while the average 
wildfire frequency in that region is once every 200 years (Adámek 
et al., 2016). It is important to also point out that none of the forest 
types that experienced fire in this study (forests dominated by either 
beech, black pine (Pinus nigra Arn.), Scots pine, or spruce) are known 
to recover from canopy (i.e., serotinous cones) or soil seed banks 
(Habrouk et al., 1999), such that regeneration after fire will largely 
depend on arrival of seeds from outside the disturbance area, pro-
longing the recovery process.

TA B L E  4 Results of the Generalized Additive Mixed Model analyses of post-windthrow weighted densities of different successional 
groups (log-transformed), showing effective degrees of freedom (edf) as measures of effect complexity/nonlinearity, and significance (p-
value) of smooth terms.

Response variable Overall w. density Pioneer w. density
Early-successional w. 
density

Late-successional w. 
density

Predictor edf p-Value edf p-Value edf p-Value edf p-Value

Elevation 7.22 4.74e-05 4.98 2.14e-05 8.31 2.65e-05 4.90 0.000934

Site 90.70 <2e-16 106.96 <2e-16 106.80 <2e-16 108.32 <2e-16

F I G U R E  3 Effect of post-disturbance management on post-
windthrow weighted density of different successional groups, 
based on results of Generalized Additive Mixed Model analyses 
(the “Unmanaged” category is the baseline). Note that “Salvaged” 
category refers to plots where only salvage logging was carried out. 
Error bars represent the 95% confidence intervals for the estimated 
parameters.

F I G U R E  4 Effect of elevation on post-windthrow weighted 
density of different successional groups shown with partial 
dependence plots derived from the results of Generalized Additive 
Mixed Models. Gray bands represent the 95% confidence intervals 
for the regression lines.
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Throughout European temperate forests, the potential for struc-
tural recovery was more likely than compositional recovery, with 
approximately half of the areas showing compositional recovery 
potential. We observed that plots not meeting the compositional 
recovery objective displayed different species mixtures compared 
with the pre-disturbance stand, with a greater proportion of early-
successional and pioneer species. This pattern is consistent with 
findings from studies examining a variety of sites and disturbance 
agents (Andrus et al., 2020; Bisbing et al., 2019; Moser et al., 2010; 
Rodman et al., 2022; Scherrer et al., 2021; Szwagrzyk et al., 2021; 
Vickers et  al.,  2019). However, these findings alone are not suffi-
cient evidence of a persistent change in ecosystem composition in 
response to climate change (i.e., reassembly). Establishing such ev-
idence would require a characterization of the historical range of 
variability and evidence of a significant departure from that range 
(Seidl & Turner,  2022). It should be noted that our assessment of 
compositional recovery potential only considered the maintenance 
of absolute dominance for the main pre-disturbance tree species, 
which is a less stringent criterion than the maintenance of the 
pre-disturbance relative proportion. This difference in assessment 
criteria may explain the differences in the proportion of composi-
tional recovery found in other studies (Cerioni et al., 2022; Rodman 
et al., 2022; Vickers et al., 2019).

While rapid compositional recovery may be beneficial for timber 
production, the failure to recover pre-disturbance tree species com-
position is not necessarily undesirable. In the context of a changing 
climate, disturbances can create opportunities for the establish-
ment of better-adapted species, especially in the case of monocul-
ture forests whose composition has been altered in the past (Dietz 
et al., 2020; Scherrer et al., 2021; Thom et al., 2017). Furthermore, 
early-seral communities play an important role in biodiversity and 
the creation of wildlife habitat (Swanson et  al.,  2011). Early-seral 
patches may also prevent homogenization of the forested land-
scape, thus reducing susceptibility to future disturbances (Bače 
et al., 2023). As the time since disturbance increased in our study, 
pioneer species decreased and were replaced by later-successional 
species. Therefore, allowing natural succession after large and se-
vere disturbances, rather than resorting to salvage logging and 
planting, may be a viable option for forest managers, even in inten-
sively managed forest areas such as Europe (Kulakowski et al., 2017; 
Sommerfeld et al., 2021).

Some environmental factors influenced forest recovery after 
large-scale, severe windthrow events. Higher elevation negatively 
affected all types of regeneration, which is consistent with our 
expectations and findings from other studies (Macek et  al.,  2017; 
Szwagrzyk et al., 2021; cf. Kramer et al., 2014). This result has im-
portant implications in the context of global warming. Future warm-
ing may ease climate constraints and increase growing season length 
at high elevations (Pretzsch et  al., 2020), potentially reversing the 
relationship between elevation and post-disturbance recovery. Such 
post-disturbance recovery patterns, in which higher elevation is pos-
itively related to seedling density and forests at low elevation are at 
risk of regime shift, have already been documented, particularly in 

the case of wildfires (Guz et al., 2021; Moser et al., 2010; Rodman 
et  al.,  2022; Stevens-Rumann & Morgan,  2019). Surprisingly, the 
HLI, an indicator of solar radiation derived from topographic vari-
ables and latitude, was negatively associated with post-windthrow 
densities of early-seral species, suggesting that cooler slopes tended 
to recover better than warmer slopes. In contrast to our findings, 
topographic variables were not a significant driver of juvenile den-
sities following bark beetle disturbances in the Rocky Mountains 
(Andrus et  al., 2020), while potential solar radiation was found to 
positively affect Sorbus aucuparia L., which we classified as an early-
successional species, in mountain forests of Poland after wind and 
beetle disturbances (Szwagrzyk et al., 2021). We found that changes 
in post-disturbance aridity compared with the historical baseline had 
little effect on post-windthrow densities, except in the case of pio-
neer species, which were negatively affected by an increase in arid-
ity compared with the historical baseline. This is not surprising given 
that pioneer species in European forests (e.g. Betula, Populus, and 
Salix species) are characterized as drought intolerant (Leuschner & 
Meier, 2018). In conifer forests in northwestern United States, post-
disturbance drought and temperature had an important impact on 
post-fire regeneration densities, establishment, and growth (Davis 
et al., 2019; Guz et al., 2021; Hankin et al., 2019). A potential expla-
nation for this difference may be that the role of post-disturbance 
drought likely differs across sites and disturbance agents, and is rel-
evant in more arid locations and particularly after fire disturbances, 
where young seedlings established from seed have poorly devel-
oped root systems.

Our study provides valuable insights into the role of manage-
ment in driving recovery after large-scale severe windthrows. We 
found that intensively managed areas, whether managed before or 
after the disturbance (i.e., salvage logging followed by planting or 
tending), did not consistently show better recovery than unmanaged 
areas. However, it is important to note that this could be a conse-
quence of not having enough power in the statistical tests (i.e., type 
II error). It is worth mentioning that sites that were only salvaged 
and left to natural regeneration performed worse than those that 
were planted after logging or without any post-windthrow manage-
ment. This negative effect was evident for shade-tolerant species, 
which was expected, as these species are typically planted, and 
their advanced regeneration could have been damaged by logging 
activities. Although salvage logging is often carried out for eco-
nomic reasons, it is known to cause direct harm to regeneration and 
can thus negatively affect forest recovery (Bowd et al., 2021; Royo 
et al., 2016; Taeroe et al., 2019). Furthermore, the deadwood being 
removed could otherwise act as a regeneration substrate, especially 
for spruce, when sufficiently decayed (Bače et al., 2012; Priewasser 
et al., 2013; Tsvetanov et al., 2018), a microsite that protects seed-
lings from climate stress (Marangon et al., 2022), or as an obstacle 
for herbivores (Hagge et al., 2019; Kramer et al., 2014; Marangon 
et  al.,  2022). However, a meta-analysis by Leverkus et  al.  (2021) 
found that post-disturbance salvage logging does not generally hin-
der forest regeneration, and in some cases, the soil perturbation 
caused by logging can promote the regeneration of pioneer species 
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by reducing competition with ground vegetation (Ilisson et al., 2007). 
In general, our results are consistent with a previous remote sensing-
based study indicating that both managed and unmanaged forests 
in central Europe recover well after disturbances (Senf et al., 2019), 
although that study found lower rates of recovery in the case of un-
managed forests (i.e., lower engineering resilience).

This study synthesizes forest recovery after large and severe 
disturbances over the past five decades, which can be considered 
a baseline period when climate change impacts were compara-
tively low. Consequently, these findings provide a benchmark for 
assessing how future forest recovery will be influenced by altered 
disturbance regimes under a changing climate (Seidl et  al.,  2017; 
Seidl & Rammer, 2017). Although European temperate forests have 
demonstrated resilience to large-scale, high-severity disturbances 
and concurrent climate conditions during this period, there are still 
a number of research directions that warrant further attention. We 
assessed a wide range of disturbance sizes and severities (i.e., re-
moving between 70% and 100% of canopy cover in patches ranging 
in size from 1 to 100 s of hectares). However, even small differences 
in these parameters may have important implications, particularly 
with respect to severity, which has been found to be a more im-
portant driver of recovery than disturbance size (Senf & Seidl, 2022). 
Future work should explicitly account for differences in disturbance 
severity and size by combining field data on recovery with remote 
sensing of disturbance characteristics (e.g. patch size, shape, and se-
verity). Moreover, we did not account for demographic processes 
such as future tree mortality and establishment. Previous research 
in subalpine forests of the Rocky Mountains has shown that initial 
post-disturbance regeneration is not always indicative of long-term 
successional trajectories, particularly after large and severe wildfires 
and compounded disturbances (Gill et al., 2017). Therefore, it is im-
portant to continue to monitor long-term recovery in plot networks 
such as those used in this study. Additionally, we did not quantify 
the role of biotic interactions in forest recovery due to a lack of con-
sistent data, such as competition or facilitation when herbaceous 
vegetation and shrubs are present, which are expected to vary 
across a stress gradient (Käber et al., 2023), and ungulate browsing, 
which has strong negative effects on palatable tree species (Andrus 
et al., 2020; Cerioni et al., 2022; Vickers et al., 2019) and often leads 
to reduced species richness (Bernes et al., 2018; Konôpka, Šebeň, 
Pajtík, et al., 2021). We emphasize the need for continued monitor-
ing of forest recovery following both past and future disturbances to 
improve our understanding of the complex process of forest recov-
ery under climate change.
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