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o Abstract

u  The cattle tracing databases set up over the past decades in Europe have become major resources for
12 representing demographic processes of livestock and assessing potential risk of infections spreading by
13 trade. The herds registered in these databases are nodes of a network of commercial movements, which
1 can be altered to lower the risk of disease transmission. In this study, we develop an algorithm aimed
15 at reducing the number of infected animals and herds, by rewiring specific movements responsible for
16 trade flows from high- to low-prevalence herds. The algorithm is coupled with a generic computational
v model describing infection spread within and between herds, based on data extracted from the French
18 cattle movement tracing database (BDNI). This model is used to simulate a wide array of infections, with
1o either a recent outbreak (epidemic) or an outbreak that occurred five years earlier (endemic), on which
2 the performances of the rewiring algorithm are explored. Results highlight the effectiveness of rewiring
21 in containing infections to a limited number of herds for all scenarios, but especially if the outbreak
2 is recent and if the estimation of disease prevalence is frequent. Further analysis reveal that the key
23 parameters of the algorithm affecting infection outcome vary with the infection parameters. Allowing
2 any animal movement from high to low-prevalence herds reduces the effectiveness of the algorithm in
»  epidemic settings, while frequent and fine-grained prevalence assessments improve the impact of the
s algorithm in endemic settings. According to our results, our approach focusing on a few commercial

27 movements is expected to lead to substantial improvements in the control of a targeted disease, although
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s changes in the network structure should be monitored for potential vulnerabilities to other diseases. Due
2 toits generality, the developed rewiring algorithm could be applied to any network of controlled individual

s movements liable to spread disease.

x Keywords

2 Control strategy; Epidemiology; Data-based; Network; Stochastic model

» Abbreviation

s BDNI: Base de données nationale d’identification animale

» Introduction

s Following bovine spongiform encephalopathy and classical swine fever epidemics in the 1990s, the Euro-
w» pean Union initiated the mandatory identification and registration of cattle in Europe (EU, 2000). This
s decision led to the creation of national identification databases, such as the cattle tracing system in the
» United Kingdom (Kao et al., 2006, Vernon, 2011), the French national bovine identification database
w (BDNI) (Rautureau et al., 2011, Dutta et al., 2014), the Italian national bovine database (Natale et al.,
a 2009, Bajardi et al., 2011) and the database of the Swedish board of agriculture (Néremark et al., 2009,
22 2011). These animal tracing systems have enabled the monitoring of infectious livestock diseases and
s the development of strategies to prevent their spread (Gilbert et al., 2005, Moslonka-Lefebvre et al.,
w2016, Beaunée et al., 2017), since animal trade is a major transmission pathway between herds. Indeed,
s commercial exchanges are not only recorded comprehensively, but also controlled by farmers, unlike ani-
s mal mobility in the wild. These databases, whose reliability has increased over time since their creation
«  (Green and Kao, 2007), are therefore powerful tools for simulating infectious diseases in cattle (Ezanno
s et al., 2020) and assessing the impact of livestock movements on epidemics (Ezanno et al., 2021).

49 The information provided by these commercial animal movements can be used as a basis for repre-
so senting comprehensively the demographic processes and trades between cattle farms located in a given
s region, using a metapopulation framework (Liu et al., 2007, Widgren et al., 2015). To this end, disease
52 transmission between individuals within a defined set of herds can be modelled, by combining an epidemi-
53 ological model with existing data on births, deaths and movements. This type of models accounts at least
s« for two ways of spreading the infection: by contact within a herd, or by actually moving animals between
ss  herds. This is for instance the case for paratuberculosis, a cattle disease mainly spread between herds
ss by trade (Beaunée et al., 2015, Biemans et al., 2021). Manipulating the structure of cattle movement is

57 expected to have a direct impact on the latter and an indirect impact on the former.
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58 The structure of these trade movements can be understood through the prism of graph theory: herds
so are the vertices of a commercial exchange network, whose edges are the movements of livestock (Dubé
oo et al., 2009). Thus, each herd can be characterised using graph metrics, e.g. its in- and out-degree, i.e.
61 the number of herds it has respectively bought animals from and sold animals to. Network-based control
2 strategies then aim to modify the structure of the network to reduce infection risks. Removing vertices
s (Rautureau et al., 2011, Biittner et al., 2013) or edges (Yang et al., 2013, Green et al., 2009) through
¢« trade ban or culling is a method used to slow down epidemics. In a context of cattle exchange however,
es preventing farmers from buying or selling livestock entails high economic costs. Therefore, this strategy
s cannot be used routinely or over extended periods of time. It is likely better suited to the management of
e regulated diseases, the consequences of which are also very costly and for controlling outbreaks of newly
¢ introduced diseases. Conversely, the application of such drastic methods on the longer term for endemic
s diseases may not be feasible.

70 Edge rewiring is a less radical approach able to balance the trade-off between health risks and economic
7 costs. This method corresponds to the modification of one or both vertices that an edge connects
2 (Gross et al., 2006, Piankoranee and Limkumnerd, 2020, Britton et al., 2016, Ball and Britton, 2020).
7z Although most of the theoretical literature on the subject rather considers rewiring in the context of
7 human contact networks, it has also been used to study epidemic spread in cattle movement networks
5 (Gates and Woolhouse, 2015, Mohr et al., 2018, Ezanno et al., 2021, Biemans et al., 2022). For instance,
75 Gates and Woolhouse (2015) present a rewiring method that creates an entirely new movement network
77 disconnecting large buyers from large sellers, while retaining the total number of animals bought or
7 sold by each herd. This method requires information at the network level, the criteria used being the
7o distributions of in- and out-degrees of all herds. Global-level information is also generally required for
g0 most rewiring methods in contact networks, although Piankoranee and Limkumnerd (2020) proposed a
s method based on local information. In their study, rewiring is decided at the vertex level, according to
g2 its status and those of its direct neighbours. Controlling cattle movements depending on the sanitary
g3 status of their origin has been proposed in previous studies, e.g. by Hidano et al. (2016). Their study
s presents different scenarios regarding farmers’ practices, especially their tendency to avoid buying cattle
s from regions with a higher incidence of bovine tuberculosis. The approach presented here is similar,
s albeit at a finer grain: preventing farmers from buying cattle from herds with a higher prevalence of the
s target disease.

88 This study presents a new rewiring method to reduce the spread of infections in a cattle movement
s network. To do this, we developed a rewiring algorithm aimed at preventing the movements of animals
o from higher-prevalence herds to lower-prevalence ones. It was based on an edge-level criterion: the
o estimated difference in prevalence between the herd of origin and the herd of destination of the movement

o considered. For this study, we tested the algorithm in conjunction with a computational epidemiological
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s model describing the spread of a nonspecific disease, whose infectiousness was parametrically defined. The
« impact of the algorithm was tested using a real commercial movement network, based on dataset from the
s French cattle tracing system (BDNI). In contrast with similar rewiring approaches developed recently to
o target specific diseases (Ezanno et al., 2021, Biemans et al., 2022), we propose a more generalist approach
o aimed at investigating the effectiveness of this type of method in a broader context. After presenting
s the movement network used as an example, the model and the algorithm, we consider various outputs of
o simulations with and without rewiring, concerning the functioning of the algorithm itself, its impact on

wo infection propagation, and on the structure of the cattle movement network.

« Data and methods

w2 Cattle movement network

103 In order to test the algorithm on a actual network of commercial bovine movements, we use an extraction
s from the French national bovine identification database (BDNI). It includes all cattle herds in Brittany
s (a French region) that sold or bought at least one animal during the year 2014. This set of 21,548 herds
s is referred to as the ‘metapopulation’ thereafter. Every animal in the dataset is included regardless of
w7 breed or age, in order to have a larger number of movements per herd over this period of time. Three
s types of commercial exchanges are considered: (i) ‘internal movements’ have an origin and a destination
0o among the herds in the dataset, (ii) ‘imports’ have only a destination in the dataset and (iii) ‘exports’
1o have only an origin in the dataset. They represent respectively 64%, 16% and 20% of the commercial
w  exchanges involving at least one herd of the dataset. Each commercial exchange of animals is assumed
2 to take place directly from one herd to another, neglecting intermediaries. This means that markets and
u3  sorting centres are not considered for this study. They differ from herds in that they tend to concentrate
s a large number of animals, but for a limited period of time (less than a day for markets, a few days
s for sorting centres). In addition, the dataset also includes information about the demographic events
s in the herd, which are considered as a special type of movements: (iv) births have only a destination,
u7  corresponding to the herd where the animal is born, and (v) deaths have only an origin, corresponding
us  to the last herd recorded for the animal.

119 The dataset is represented as a network with herds and internal movements corresponding to the
1o vertices and edges, respectively. This network is (i) dynamic, i.e. movements are characterised by the
1 date at which they occur, (ii) weighted, i.e. a single edge represents the set of all movements from herd A
122 to herd B, with a weight corresponding to the number of movements, and (iii) directed, i.e. movements
123 from herd A to herd B are accounted for separately from movements from herd B to herd A. The network
e therefore includes 21,548 vertices and 100,088 edges. The total number of internal movements over 2014

s is 206,640, thus the average edge weight is 2.06.
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s Epidemiological model: within and between-herd dynamics and infection settings

12z The model developed aims to simulate pathogen transmission within herds, and infection spread between
s herds through cattle movements. A full description of the model is available in Supplementary material 1.
120 The model is stochastic in discrete time — each time-step corresponding to a day of 2014 — and in discrete
10 space — by integrating the network of herds and movements described above. Commercial exchanges
1 and demography are data-based: movement m is characterised by its origin O,,, its destination D,,, its
132 date according to the dataset T, and the date at which it is simulated 7},. By default, movements are
133 simulated according to the dataset, i.e. T,,, = T}¥. Within-herd dynamics are based on a SIRS model with
13« three parameters: the infection rate [, the recovery rate v — therefore the average infection duration is
155 1/ — and the rate of return to susceptibility §. At each time-step ¢, herd h is characterised by its number
s of susceptible, infected and recovered individuals, noted respectively Si(t), I5(t) and Ry (t). The total
w7 herd size Nj,(t) is defined as the sum of these three values and infection prevalence as Py (t) = I}, (t) /Ny (t).
138 Each simulated infection begins with an initial outbreak in a metapopulation without infection, i.e.
139 with only susceptible individuals. At ¢ = t7, the date of the outbreak, 10% of all herds in the metapopu-
wo lation are infected, by replacing 1 susceptible individual with 1 infected individual in each of the herds.
1 The probability of a herd being part of this 10% is proportional to the number of imports in the herd
2 according to the 2014 dataset. The rationale is that herds receiving the most individuals from herds
w3 outside of the metapopulation are the most likely to introduce a new infection.

144 Two types of infections are considered for the study: epidemic and endemic. An infection is defined
us as ‘epidemic’ if it starts at the outbreak, i.e. if t5 = ¢;. The initial state of the infection is then as
us described above. An infection is defined as ‘endemic’ if its start date is five years after the outbreak, i.e.
w  tg = t;+1825 days. The initial state of infection is then the result of a five-year infection, simulated using
us  the same epidemiological model and an extraction from the BDNI over Brittany between 01/01/2009 and
uw  31/12/2013. Endemic simulations for which the infection goes extinct before t; are discarded, so that

150 only initial states that are not disease-free are considered.

151 Prevalence status of the herds

12 The algorithm developed aims at identifying and preventing movements of cattle ‘at risk’; i.e. those from
153 higher-prevalence herds to lower-prevalence herds. The differences in prevalence are based on prevalence
15 classes, numbered from 1 to c¢. Class ¢ corresponds to prevalence values between b; and b; 1, with the
155 lowest boundary b; = 0 and the highest boundary b.41 = 1. The prevalence status of herd h at time ¢,
15 noted V) (¢), is then the class including its prevalence, i.e. V' (t) = i if Py(t) € [b;;bi+1], and V[ (¢) =1
57 if Pp(t) = 1. Yet, this ‘real’ prevalence status is not the one used by the algorithm. Rather, it uses
158 an ‘observed’ prevalence status, noted V,°(t), which is recorded at t,ps and then remains the same for

159 ¢ time-steps., i.e. Vi°(t) = V[ (tops) V¥ tobs € [t;t + ¢[. No additional error on the observed status (e.g.
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o because of imperfect test specificity or sensitivity) is assumed, so that it always corresponds to the real
11 prevalence status at t,,s. Movements are considered ‘at risk’ if the observed prevalence status of their

162 origin is strictly greater than that of their destination.

163 Sequential rewiring

16« The algorithm works by permuting the origins of pairs of movements, one of which is at risk, so that neither
s of them is at risk after the rewiring. The pairs of movements are created such that 1 < cony < e¢pr <
66 Cor < cpn < ¢, with cor and cppr the observed status of the origin and destination of the movement at
wr  risk and con, cpn those of the origin and destination of the other movement. By permuting the origins,
s the algorithm creates a movement with an origin of status con and a destination of status cpg, and
10 another movement with an origin of status cor and a destination of status cpy. Then neither of the two
o movements is at risk, since cony < ¢pr and cor < ¢pn.

1 For all movements to occur at a given time-step, the algorithm performs these permutations in a
2 specific order to ensure that no potential rewiring is missed. Supplementary material 2 describes this
173 functioning of the algorithm over a single time-step in pseudo-code. Firstly, it defines all possible quadru-
s plets of prevalence classes {cor, ¢pr, con, cpn}. These quadruplets are arranged primarily in ascending
s order of cpg, secondarily in descending order of cog, thirdly in ascending order of con and fourthly in de-
ws  scending order of cpy. This order ensures that no potential permutation is missed by the algorithm. For
7 each quadruplet, the algorithm then permutes the origins of k pairs of movements, with k& the minimum
s between the number of movements at risk and the number of other movements considered.

179 Once all possible permutations are performed, there might be remaining movements at risk set to be
1o performed on this time-step. Firstly, these movements are postponed to the next day, to be potentially
11 rewired with another set of movements. The postponed movements are then prioritised for rewiring on
12 the following day. Yet, postponing commercial movement represents a constrain for farmers. Therefore,
183 a maximal delay during which a movement can be postponed Ajp;ax is fixed for the algorithm. Thus,
18e  remaining movement m is postponed to the next day only if it was not already postponed A 4x days,
w5 le if T, — T < Aprax. If the algorithm prohibits any movement at risk, the remaining movements
185 that cannot be postponed (called ‘problematic’ movements) are replaced by one export with the origin of
17 the problematic movement as origin and one import with the destination of the problematic movement as
s destination. Otherwise, the problematic movement is conserved as such. Overall, the algorithm therefore
189 depends on four parameters: the number of prevalence classes ¢, the period at which observed status is

1o updated ¢, the maximum delay Aj;4x and whether movements at risk are prohibited.
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101 Simulations

12 Simulations are performed on the dataset between 01/01/2014 (defined as t = 0) and 01/01/2015 (¢t =
13 365). Different epidemiological settings are explored by manipulating the SIRS model parameters (3,
s v and ¢) and infection type (epidemic or endemic). Two clustering analyses are performed on the
s preliminary simulations to define six epidemiological settings (Supplementary material 3): weak, moderate
s and strong epidemic settings and weak, moderate and strong endemic settings (Fig. S2).

197 The effectiveness of the algorithm is tested by running simulations with 3 x 3 x 3 X 2 combinations of
s the algorithm parameters, respectively (i) the number of prevalence classes ¢ (2, 3 or 4 classes), (ii) the
1o update period ¢ (1, 28 or 91 days), the maximum delay Aprax (1, 3 or 7 days) and (iv) the prohibition
20 Of movements at risk (yes or no). Each combination, as well as a control without rewiring, are simulated
20 100 times for each of the six epidemiological settings.

202 Preliminary simulations are also carried out for each epidemiological setting between 01/01,/2009
203 (¢ = —1825) and 31/12/2013 (¢t = —1), with an initial outbreak at {; = —1825. On the one hand,
24 the number of susceptible, infected and recovered individuals of each herd at ¢ = —1 are used as the
205 starting numbers for the endemic simulations (starting at ¢ = 0). On the other hand, the boundaries
26 of the prevalence classes b; used by the algorithm are set as quantiles of the distribution of prevalence
27 values. These boundaries ensure that the number of herds of each class is roughly the same at the start
s of the simulation. If fewer than 1/c herds have a null prevalence, b; is the ((i — 1) /¢)™ quantile of the
2o distribution. If it is greater than 1/¢, by = by = 0 and b; is the ((i —2)/(c— 1)) quantile of the

20 distribution.

an Qutcomes and analyses of numerical explorations

22 The simulations outcomes are listed in Table 1. They are related either to (i) the functioning of the
23 algorithm, (ii) the infection or (iii) the network of internal movements modified by the algorithm.

214 The algorithm-related outcomes Ny (t), Naer(t) and nprop(t) are computed each time-step after
a5 rewiring, while n,.;5,(t) and ne..(t) are computed before. These latter outcomes are computed by using
26 the real prevalence status of the herds, rather than the observed ones. A movement m is included in
ar npsk(t) if VS (t) > V) (1), and also included in ne,..(t) if Vi§ (t) < V5 (t) at the same time. The
218 proportion of undetected movements at risk is computed on a weekly basis, to account for intra-week

20 variability in the number of livestock movements. Over week w, this proportion pe,,(w) is:

Tw

_ Zt:7(w71)+1 Nerr (1)

- Tw .
Et:7(w71)+1 Nrisk(t)

Perr(W)

20 The Spearman’s correlation coefficient p between p.,.(w) and the number of weeks since last update

a1 (from 1 to 4 weeks if ¢ = 28 days, from 1 to 13 weeks if ¢ = 91 days) is also computed to assess the
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Outcomes related to Notation  Description
Algorithm Npew (t) Number of movements rewired at time ¢
Nger (1) Number of delayed movements at time ¢
Nprob(t) Number of problematic movements at time ¢
Nyisk (t) Number of movements at risk at time ¢
Nerr (1) Number of movements undetected as at risk at time ¢
Infection Ninf Number of herd infections
Next Number of herds in which the infection goes extinct
Adur Average duration of infection
Cine(t) Cumulative incidence at time ¢
Nherd(t) Number of infected herds at time ¢
Nind(t) Number of infected individuals in the metapopulation at time ¢
Aprey(t) Average prevalence in the infected herds at time ¢
Network nscc Number of strongly connected components
marsco  Size of the largest strongly connected component
ndp, In-degree of herd h
outdp, Out-degree of herd h

Table 1: List of the outcomes computed from the simulations. The infection-related outcomes were
computed for each simulation separately. The algorithm and network-related ones were computed for
each simulation with the algorithm.

2 relationship between errors in herd prevalence status and time. The Spearman’s coefficient is preferred
223 because it does not assume any particular distribution of the involved variables.

24 The impact of the algorithm on the infection dynamic is estimated through c;,.(t), i.e. the cumulative
»s number of herds newly infected over the simulation. The variations in nperq(t) and ninq(t) over time are
26 also presented in Supplementary material 4. Besides, the overall impact of the algorithm on the infection
27 is assessed using a global multivariate sensitivity analysis, following Lamboni et al. (2011) and using the
»s  multisensi package of the R software (Bidot et al., 2018), which is used to perform sensitivity analyses on
29 a multivariate output. For this analysis, twelve variables are derived from the infection-related outcomes.
20 The three outcomes computed once per simulation n;,f, Nezt and agy, are used as such. In addition,
an  the maximum, minimum and final values over the whole period simulated (respectively noted max(u(t)),
a2 min(u(t)) and w(365) for outcome u(t)) of npera(t), Nind(t) and apre,(t) are also computed. The analysis
23 includes a principal component analysis (PCA) on the scaled variables, which are used as the multivariate
24 output for the sensitivity analysis. Two generalised sensitivity indices (GSI), which are weighted means
25 of the sensitivity indices over all the dimensions of the PCA, are computed for each algorithm parameter:
2 the total index (tGSI) including interactions with other parameters, and the first-order index (mGSI),
27 not including them. The first principal component of the PCA is also used to assess the distribution of
28 the simulations depending on the algorithm parameters.

239 The network-related outcomes are based on an static view of the network aggregating all the internal
20  movements performed during the simulation, from ¢ = 0 to ¢t = 365. Therefore, they take into account the
a1 rewiring performed by the algorithm, and the potential removal of problematic movements if movements
a2 at risks are completely prohibited. The outcomes recorded for the modified networks are compared to the

23 same metrics for the original network defined by the 2014 dataset. The strongly connected components —
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a4 from which ngce and maxgcc are computed — correspond to groups of vertices linked to each other by
us  a directed path. The percentiles of the distributions of ind; and outd; of all herds in the static network

us  are used to assess the in-degree and out-degree distributions, respectively.

« Results

us  OQutcomes related to the algorithm

29 Our results show that number of movements rewired varies greatly depending on the date of the outbreak.
50 It is negligible in the epidemic settings, with 80% of simulations with a total of rewired movements between
1 192 (fewer than 0.1% of all movements) and 2250 (1.1%). However, it is larger in the endemic settings,
2 with 80% of simulations with between 17,344 (8.4% of all movements) and 33,640 (16.3%) movements
3 rewired. Besides, increasing the value of Aj;ax logically increases the number of delayed movements
2s¢  (which is 0 by definition for Ap;ax = 0) and decreases the number of problematic movements. In the
»s  endemic settings, the problematic movements represent a small proportion of the movements detected as
»s  high risk (median: 5.4%, 9'" decile: 17.4%). In the epidemic settings however, they represent a larger
»7  part (median: 14.3%, 9" decile: 59.7%), although their absolute numbers remain low (median: 129, 9"
s decile: 651). Because of the overwhelming number of initially non-infected herds in these simulations,
0 the movements at risk are likely more difficult to rewire, and thus more likely to be tagged as problematic
20 by the algorithm.

261 Increasing the herd status update period g is not associated with a decrease in the number of rewiring
2 events (Fig. 1A, 1B). The value of ¢ is even rather positively correlated with the number of rewiring
%3 events in epidemic settings. This suggests that the algorithm performs more erroneous rewiring as ¢
¢ increases. This is confirmed by the distributions of Spearman’s correlation coefficient between pe;. (w)
s and the number of weeks since last update p with ¢ = 91 days (Fig. 1D), in epidemic settings (80% of
26 values of p between -0.01 and 0.50) and in endemic settings (80% of values of p between 0.39 and 0.75).
27 This is also somewhat the case with ¢ = 28 days (Fig. 1C), although the correlations are weaker, in
s  endemic (80% of values of values between -0.09 and 0.79) as well as in epidemic settings (80% of values
260 of values between -0.05 and 0.34).

270 The average proportions of undetected movements at risk pe,.(w) all tend to increase with the number
on of weeks since the last update w (Fig. 1E, 1F). This increase is systematically greater for the largest
o value of g, up to perr(w) = 0.3. However, they also appear to have reach a plateau after 10 weeks.
o3 This suggests that a further increase in the update period ¢ would not strongly increase the proportion
aa - of undetected movements at risk. As for Spearman’s correlation coefficient p, the increase is greater in

o5 endemic settings than in epidemic settings.
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o Qutcomes related to the infection

a7 Comparison of the results with and without rewiring shows the overall effectiveness of the algorithm

2 in containing the infection (Fig. 2). Regardless of the epidemiological setting and the combination of

wn
S ¢ s |E °
0
~ 2 - /
> — ~ \9 — o —©
= o e . 2 °
3 & 3 31 | g -
o - o _ ! 8 — °
< Qo l S e  § o« —
o ! /
=] PY Py
2 - / g ff—t=—"""
S T T T
o — 2 4 ;
1 2 3 4
B !/5 o | P !
p— i — o -
=" | - |F o o8¢
o —»/!/ > 7] | 3 7 o Vg 7 O\
o 8 NETE=—= === 2 4 / °® o
= 8 === o o ] o o ® /
= e S = q - /
[ e o — ~ o ° e o4
S R | O , 3 . A M Y
] w S i QL 2 | e 8 /e ®
3 | 1 c /e ® 8 °
B | —e,8 o° o
-
o | =} S.nt
o - S - S -
T T T T T T T T = 1T T T T 1
1 28 91 -1.0 -0.5 0.0 0.5 1.0 2 4 6 8 10 12
, .
q Spearman's p Weeks since last update

Figure 1: Impact of the update period ¢ on the undetected movements at risk, in epidemic (magenta)
or endemic settings (green), weak (light), moderate (medium) or strong (dark). First column: total
number of rewiring events as a function of the update frequency ¢, averaged over all simulations for
a same algorithm parameter combination, in epidemic (A) and endemic settings (B). Second column:
distribution of Spearman’s correlation coefficients (p), with ¢ = 28 days (C) and ¢ = 91 days (D). Third
column: average proportion of undetected movements at risk pe,.(w) as a function of the number of
weeks since the last update, with ¢ = 28 days (E) and ¢ = 91 days (F).
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Figure 2: Cumulative incidence ¢;p.(t), in number of herd infections, as a function of time (¢, in days), for
simulations with (colour) or without rewiring (black), in epidemic (1%¢ row, magenta) or endemic settings
(2" row, green), weak (1°! column, light), moderate (2"¢ column, medium) and strong (3"¢ column,
dark). Each combination of algorithm parameters is represented by its mean over the repetitions (solid
line) and an interval of 80% of simulations (envelope).
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Figure 3: Generalised sensitivity indices (GSI) of the maximum delay Aprax (purple) the number of
prevalence classes ¢ (cyan), the update period ¢ (yellow) and the prohibition of movements at risk (blue),
in epidemic (1% row) or endemic settings (2"¢ row), weak (1° column), moderate (2"¢ column) and
strong (3"¢ column). The total indices (tGSI) are in solid colour and the first-order indices (mGSI) are
hatched.

2o parameters considered, the cumulative number of herds newly infected c¢;n.(t) remains systematically
0 lower after rewiring. The algorithm is particularly effective in weak and moderate epidemic settings,
21 where very few herds are infected during the year. In other epidemiological settings, the impact of the
2 algorithm varies more strongly depending on the scenario considered. Results for nperq(t) and ni,q(t)
23 are presented in Supplementary material 4. In epidemic settings, variations in nperq(t) logically follow
20 closely those of ¢;,.(t). Hence, the algorithm also reduces the increase in the total number of infected
s herds. It also reduces the total number of infected individuals, although the impact is not as strong as
26 for herds. In endemic settings, the value of npe.q(t) remains similar during the whole simulation without
27 rewiring (Fig. S3), despite new infections according to variations in ¢;,.(t). This indicates a turnover in
s  the infection at the metapopulation level, with populations losing the infection through the acquisition
x9  of resistance or the culling and trade of infected animals. By reducing the number of new infections, the
20 algorithm actually therefore reduces the total number of infected herds over time. However, its impact
21 is smaller on the total number of infected individuals (Fig. S4).

200 The sensitivity analysis shows differences in the relative importance of the algorithm parameters on the
203 reduction of the infection (Fig. 3). Three different patterns of sensitivity to the algorithm parameters are
2a  Observed. Firstly, simulations in weak and moderate epidemic settings exhibit an overwhelming sensitivity
205 to the prohibition of movements at risk. Secondly, those in strong epidemic or endemic settings exhibit
26 a strong sensitivity to the number of prevalence classes ¢. Finally, those in weak and moderate endemic

27 settings exhibit a more balanced sensitivity to all parameters, with a substantial difference between total

11
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Figure 4: Distribution of the simulations on the first component of the PCA performed as a first step of
the sensitivity analysis, in the weak epidemic setting (A), the strong epidemic setting (B, C), the weak
endemic setting (D, E) and the strong endemic setting (F). The outputs are divided by maximum delay
(purple, D), management of problematic movements (blue, A), number of prevalence classes (cyan, B and
F) and herd status update period (yellow, C and E).

28 and first-order indices for the maximum delay Apsrax, the number of classes and the prohibition of
209 movements at risk. These differences suggest an interaction between the three algorithm parameters.
w0 Besides, simulations for every epidemiological setting are somewhat sensitive to the update period gq.

301 The PCA performed as a first step of the sensitivity analysis is used to explore further the way
sz  algorithm parameters impact the infection-related outputs. Supplementary material 5 shows that the
33 first principal component of the PCA is globally positively correlated with outputs describing the extent
s Of the infection. The distributions of simulations along this first principal component therefore provides
w5 information about the way algorithm parameter values affects the extent of the infection. Supplementary
w6 material 6 presents these distributions for every epidemiological setting and every algorithm parameter,
sr - while Fig. 4 displays some of the most relevant distributions. Fig. 4A shows that, in the weak epidemic
w8 setting, simulations in which movements at risk are prohibited almost always score lower on the first
30 principal component than those in which they are not. The distribution is similar in the moderate
s0  epidemic setting (Fig. S6), which has similar sensitivity indices (Fig. 3). Interestingly, distributions
sn  of simulations in strong epidemic or endemic settings show that those with ¢ = 2 score higher on their
sz respective first component, while those with ¢ = 3 and ¢ = 4 are not different (Fig. 4B, 4F). A similar

a1z pattern is observed with the maximum delay in the weak endemic setting: only simulations with Ap;ax =

12
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Figure 5: Distributions of the differences in number of strongly connected components (A, ngcc) and
in size of the largest strongly connected component B, mazscc) between rewired networks and the
original one from the dataset, for epidemic (magenta) and endemic (green) settings, weak(light), moderate
(medium) and strong (dark).

a0 score higher on the first principal component (Fig. 4D). In the strong epidemic setting, the two high-
as  scoring peaks in the distribution according to ¢ (Fig. 4B) correspond to the simulations with ¢ = 28 and
a6 g = 91 (Fig. 4C), highlighting an interplay between the number of classes ¢ and the update period ¢g. No
a7 interplay between Aj;ax and g is visible in the weak endemic setting, although Fig. 4E show that the
ais  score of simulations on the first principal component is positively correlated with g. Distributions in the

a0 moderate endemic setting are similar to those in the weak endemic setting (Fig. S6).

20  Qutcomes related to the movement network

s In endemic settings, rewiring movements increase the in- and out-degrees of the herds, i.e. the number
w2 of different herds they are connected to (see Supplementary material 7). The increase is small but
2 systematic, for every algorithm parameter value (Fig. S7). In addition, the algorithm also affects the
a4 strongly connected components of the network in endemic settings. On the one hand, the algorithm
»s  reduces their number, all the more that the infection was strong (Fig. 5). On the other hand, the size
»s  of the largest strongly connected component is increased in most, but not all simulations (64%, 67% and
21 80% of simulations in low, moderate and high endemic settings, respectively). It should be noted that
28 the lesser impact of the algorithm on the network in epidemic settings can be explained by a number of

0 rewiring events 25 times smaller on average than in endemic settings.

+ 1Discussion

s The rewiring algorithm we developed for this study is able to reduce the extent of infections, in the
s absence of any other restriction measure and for a large panel of disease parameters (infection rate 3,
s recovery rate 7y or rate of return to susceptibility 0). However, the extent of the reduction varies between

s the different epidemiological settings considered. Indeed, infections are almost completely prevented with
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15 weak or moderate epidemic settings, while they still develop or persist for other settings, although not as
136 much as without any rewiring. However, the decrease in the number of infected herds is not necessarily
;7 coupled with a decrease in the number of infected individuals. This result highlights the tendency of
18 the algorithm to concentrate infected individuals in the already infected herds. The algorithm therefore
;39 performs a trade-off that is beneficial to the metapopulation as a whole — with fewer infected herds — but
a0 detrimental to the smaller number of already infected herds, in such a situation where movement rewiring
s is not combined with complementary on-farm measures to reduce within-herd infection prevalence. This
sz is the case for the infections in an epidemic setting, in which the prevalence in the infected herds increases
sz over the year. This is also the case for infections in endemic settings, in which new sensitive individuals
s could still be born or imported.

5 The sensitivity analysis on the infection-related outcomes reveals that the impact of the parameters of
us  the algorithm is highly dependent on the epidemiological setting. Prohibiting the movements at risk, i.e.,
s removing the movements that cannot be rewired and are delayed as much as possible, is mostly significant
us if the infection is not too strong and is just beginning. Only in these cases can the infection be fully
s contained by the prohibition. Increasing the maximal delay improves the performance of the algorithm
0 in an endemic setting, for which the number of movements rewired is much larger than in epidemic
1 settings. In those, delaying the movement to the next day increases substantially the opportunities
s for rewiring. The other two parameters are both related to the definition of the prevalence statuses
3 used by the algorithm. A greater number of prevalence classes, which mainly impacts rewiring during
s strong infections, improves the separation of disease-free herds from the rest. Indeed, considering more
s prevalence classes lowers the upper boundary of the lowest one, which included only herds with very few
6 or no infected animals, thus allowing the algorithm to effectively protecting disease-free herds. A longer
7 update period between updates of the prevalence status makes the rewiring algorithm more error-prone,
s with a proportion of undetected movements at risk increasing with the time since the last update, at
30 least up to ten weeks. This result is visible for any epidemiological setting, suggesting that any increase
w0 in the frequency of update to the status of the herds should improve the effectiveness of the algorithm.
sr  Conversely, the results indicate that increasing the number of prevalence classes to more than two, or
2 having a maximum delay greater than zero, improves the efficiency of the algorithm much more than
3 further increases.

364 As expected, the impact of rewiring on the commercial movements network structure is limited, as
s it targeted a few movements only: less than 20% of the movements for endemic infections and less than
6 2% of them for epidemic infections. Nevertheless, rewiring tends to increase the overall connectedness
s7  of the herds during endemic infections. Indeed, the increase in degree and in size of the largest strong
s component indicates that the algorithm has connected herds that were originally not so. These metrics

w0 are generally correlated with higher expected epidemic risks (Kiss et al., 2006, Dubé et al., 2009). The use
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s of such a rewiring method to manage actual bovine movements should take into account this potential
sn increase in the risk of spreading other diseases. The algorithm could be extended to assess multiple
s diseases at once, but the additional constraints on rewiring would likely reduce its effectiveness.

373 The main hurdle to implementing this rewiring method in a real-life setting is its reliance on accurate
s and frequent prevalence data from a large number of farms. Firstly, a lack of specificity or sensitivity
a5 in the tests used might lead to an overestimation or underestimation of the prevalence in the herds,
s depending on the disease considered. Although we show that the algorithm remains efficient even though
sz the observed prevalence differed from the real ones, this additional error could add up with the one
sis observed in our study. However, the impact of such errors is also expected to be mitigated by the use of
s prevalence classes, so that small differences do not necessarily change the prevalence status of the herds.
380 Secondly, obtaining frequent prevalence data for a large number of farms remains challenging. Bulk
s milk-based sampling systems could be used for some diseases in cattle (e.g. Garoussi et al., 2008, Humphry
s et al., 2012, with bovine viral diarrhoea), which would facilitate prevalence estimation for multiple herds
;3 at once, thus reducing the associated costs. It would also be possible to reduce the sampling effort by
;s focusing on a subset of herds to monitor. Firstly, this sampling effort should take into account additional
s information available thanks to measures already in place. For instance, the status of some herds could
s be approximated through health accreditation schemes (e.g. Ezanno et al., 2021), with herds already
sr  identified as disease-free could be automatically assigned to the lowest prevalence status for a given
s duration. Secondly, herds to monitor could be selected based on their role in disease spread, notably
;0 through network metrics. Indeed, central herds in the movement network, i.e. those through which a
30 large proportion of animal movements pass, are expected to play a larger role in the spread of infection
;1 (Rautureau et al., 2011, Natale et al., 2011). Hoscheit et al. (2021) reviewed centrality measures taking
32 into account the dynamic nature of the movement network, based on the BDNI. They found that the
33 TempoRank index would for example be a good candidate for selecting a subset of herds to be specifically
s monitored and taken into account by the algorithm.

305 In this study, we use a network corresponding to commercial movements between every farm in
w6 Brittany (an administrative region of France) over a year to test the efficiency of the algorithm. The choice
37 to limit the size of the network is notably motivated by computational limitations. Indeed, simulating a
s stochastic spread of the disease on a national scale over six years - five for the preliminary simulations and
39 one for the main simulations - would have been considerably more costly, thus limiting the exploration
w0 of variations in the parameters of the SIRS model and the algorithm. Yet, this choice had additional
w1 implications that should be underlined.

402 Firstly, a substantial proportion of the movements involve herds outside of Brittany and are therefore
w3 not concerned by the rewiring. Indeed, 20% of all movements whose destination was in the metapopulation

s had an origin outside of it. In our simulations, these imports are assumed to not be movement at risk,
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ws i.e. that the prevalence status of their origin is never higher than that of their destination. This is not
w6 trivial, as it presumes that imports do not create greater infection risks than internal movements. In a
w7 real-life context, applying this rewiring method in a single region would therefore require an additional
w08 management of the risk associated with imports. Yet, extending its use nationally should mitigate this
w0 problem, as the proportion of imports is expected to be much lower at this scale. Secondly, every
a0 commercial movement between farms is considered to test the algorithm, regardless of breed or age, in
a order to have a large enough set of movements. Indeed, additional criteria, concerning for instance the
a2 breed of the animals, could be added easily by providing the algorithm with movements for individuals in
az  each category separately. However, such criterion would reduce the rewiring possibilities of the algorithm
a4 and therefore its effectiveness. Again, the network of commercial movements at the national scale could
a5 be large enough to separate the movements by breed or consider only movements of specific breeds.

416 Although the algorithm is tested on historical data from the BDNI for this study, it could also be
a7 used prospectively as part of decision-making tools, barring the limitations presented above. Indeed, the
ais rewiring method could work without any simulation of infection, if herd statuses were provided otherwise.
a0 Given these statuses and the potential movements to occur, the algorithm would also suggest necessary
20 changes to prevent movements at risk. In this context, the implementation of these changes would also
o1 depend on the actual decision of the informed farmers. Unless rewiring is enforced, it is expected that
a2 constraints other than sanitary ones would affect movements, which would impact the effectiveness of the
a3 algorithm. Coupling it with a decision-making model could provide additional insight on this impact. In
a4 order to make it easier to use as part of such decision-making tools, the algorithm has been specifically
w5 designed to be able to include additional, different constraints.

26 Besides, the rewiring method presented is not limited to cattle, but applicable to a much wider range
a7 of networks in animal and plant populations, e.g. among seed exchange networks, which face similar
w2 infection risks (Jeger et al., 2007, Pautasso et al., 2010). While the need for controlled movements makes
a0 this method more relevant to agricultural systems, the spatial and temporal scales considered can also be
a0 adapted depending on the context. Indeed, the daily time-step and the region level were used here as they
a1 correspond to the BDNI data structure, but are not necessary for the algorithm to work. The usefulness
a2 of our rewiring method could therefore extend beyond cattle concerns, even though the effectiveness of
a3 the algorithm in other contexts remains to be tested.

a3 This study demonstrates the effectiveness of a rewiring method targeting specific movements to reduce
15 infection risks. Our approach thus differs radically from that presented by Gates and Woolhouse (2015),
16 as it also aims at generating minimal changes in the structure of the movement network. However, this
s study builds upon the results from Ezanno et al. (2021), by confirming the effectiveness of this method
as beyond the specific case of bovine paratuberculosis. Indeed, the algorithm presented by Ezanno et al.

0 (2021) and later by Biemans et al. (2022), was developed specifically to address the control of bovine
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paratuberculosis, notably characterised by an endemic status and a low detection rate. To do so, they
used a specific age-structured epidemiological model (Camanes et al., 2018) and an algorithm calibrated
to target the disease. This was also the case for instance of Mohr et al. (2018), which specifically
targeted foot-and-mouth disease. Conversely, the present study aims at assessing more comprehensively
the effectiveness of the algorithm. It is tested for different epidemiological settings — both endemic and
epidemic — using a non-specific epidemiological model, and for broad range of parameter values. This
study is therefore complementary to the previous ones, by bringing a broader perspective on the impact

of rewiring in animal movement network on infectious diseases in general.
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