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Abstract10

The cattle tracing databases set up over the past decades in Europe have become major resources for11

representing demographic processes of livestock and assessing potential risk of infections spreading by12

trade. The herds registered in these databases are nodes of a network of commercial movements, which13

can be altered to lower the risk of disease transmission. In this study, we develop an algorithm aimed14

at reducing the number of infected animals and herds, by rewiring specific movements responsible for15

trade flows from high- to low-prevalence herds. The algorithm is coupled with a generic computational16

model describing infection spread within and between herds, based on data extracted from the French17

cattle movement tracing database (BDNI). This model is used to simulate a wide array of infections, with18

either a recent outbreak (epidemic) or an outbreak that occurred five years earlier (endemic), on which19

the performances of the rewiring algorithm are explored. Results highlight the effectiveness of rewiring20

in containing infections to a limited number of herds for all scenarios, but especially if the outbreak21

is recent and if the estimation of disease prevalence is frequent. Further analysis reveal that the key22

parameters of the algorithm affecting infection outcome vary with the infection parameters. Allowing23

any animal movement from high to low-prevalence herds reduces the effectiveness of the algorithm in24

epidemic settings, while frequent and fine-grained prevalence assessments improve the impact of the25

algorithm in endemic settings. According to our results, our approach focusing on a few commercial26

movements is expected to lead to substantial improvements in the control of a targeted disease, although27
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changes in the network structure should be monitored for potential vulnerabilities to other diseases. Due28

to its generality, the developed rewiring algorithm could be applied to any network of controlled individual29

movements liable to spread disease.30

Keywords31

Control strategy; Epidemiology; Data-based; Network; Stochastic model32

Abbreviation33

BDNI: Base de données nationale d’identification animale34

Introduction35

Following bovine spongiform encephalopathy and classical swine fever epidemics in the 1990s, the Euro-36

pean Union initiated the mandatory identification and registration of cattle in Europe (EU, 2000). This37

decision led to the creation of national identification databases, such as the cattle tracing system in the38

United Kingdom (Kao et al., 2006, Vernon, 2011), the French national bovine identification database39

(BDNI) (Rautureau et al., 2011, Dutta et al., 2014), the Italian national bovine database (Natale et al.,40

2009, Bajardi et al., 2011) and the database of the Swedish board of agriculture (Nöremark et al., 2009,41

2011). These animal tracing systems have enabled the monitoring of infectious livestock diseases and42

the development of strategies to prevent their spread (Gilbert et al., 2005, Moslonka-Lefebvre et al.,43

2016, Beaunée et al., 2017), since animal trade is a major transmission pathway between herds. Indeed,44

commercial exchanges are not only recorded comprehensively, but also controlled by farmers, unlike ani-45

mal mobility in the wild. These databases, whose reliability has increased over time since their creation46

(Green and Kao, 2007), are therefore powerful tools for simulating infectious diseases in cattle (Ezanno47

et al., 2020) and assessing the impact of livestock movements on epidemics (Ezanno et al., 2021).48

The information provided by these commercial animal movements can be used as a basis for repre-49

senting comprehensively the demographic processes and trades between cattle farms located in a given50

region, using a metapopulation framework (Liu et al., 2007, Widgren et al., 2015). To this end, disease51

transmission between individuals within a defined set of herds can be modelled, by combining an epidemi-52

ological model with existing data on births, deaths and movements. This type of models accounts at least53

for two ways of spreading the infection: by contact within a herd, or by actually moving animals between54

herds. This is for instance the case for paratuberculosis, a cattle disease mainly spread between herds55

by trade (Beaunée et al., 2015, Biemans et al., 2021). Manipulating the structure of cattle movement is56

expected to have a direct impact on the latter and an indirect impact on the former.57
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The structure of these trade movements can be understood through the prism of graph theory: herds58

are the vertices of a commercial exchange network, whose edges are the movements of livestock (Dubé59

et al., 2009). Thus, each herd can be characterised using graph metrics, e.g. its in- and out-degree, i.e.60

the number of herds it has respectively bought animals from and sold animals to. Network-based control61

strategies then aim to modify the structure of the network to reduce infection risks. Removing vertices62

(Rautureau et al., 2011, Büttner et al., 2013) or edges (Yang et al., 2013, Green et al., 2009) through63

trade ban or culling is a method used to slow down epidemics. In a context of cattle exchange however,64

preventing farmers from buying or selling livestock entails high economic costs. Therefore, this strategy65

cannot be used routinely or over extended periods of time. It is likely better suited to the management of66

regulated diseases, the consequences of which are also very costly and for controlling outbreaks of newly67

introduced diseases. Conversely, the application of such drastic methods on the longer term for endemic68

diseases may not be feasible.69

Edge rewiring is a less radical approach able to balance the trade-off between health risks and economic70

costs. This method corresponds to the modification of one or both vertices that an edge connects71

(Gross et al., 2006, Piankoranee and Limkumnerd, 2020, Britton et al., 2016, Ball and Britton, 2020).72

Although most of the theoretical literature on the subject rather considers rewiring in the context of73

human contact networks, it has also been used to study epidemic spread in cattle movement networks74

(Gates and Woolhouse, 2015, Mohr et al., 2018, Ezanno et al., 2021, Biemans et al., 2022). For instance,75

Gates and Woolhouse (2015) present a rewiring method that creates an entirely new movement network76

disconnecting large buyers from large sellers, while retaining the total number of animals bought or77

sold by each herd. This method requires information at the network level, the criteria used being the78

distributions of in- and out-degrees of all herds. Global-level information is also generally required for79

most rewiring methods in contact networks, although Piankoranee and Limkumnerd (2020) proposed a80

method based on local information. In their study, rewiring is decided at the vertex level, according to81

its status and those of its direct neighbours. Controlling cattle movements depending on the sanitary82

status of their origin has been proposed in previous studies, e.g. by Hidano et al. (2016). Their study83

presents different scenarios regarding farmers’ practices, especially their tendency to avoid buying cattle84

from regions with a higher incidence of bovine tuberculosis. The approach presented here is similar,85

albeit at a finer grain: preventing farmers from buying cattle from herds with a higher prevalence of the86

target disease.87

This study presents a new rewiring method to reduce the spread of infections in a cattle movement88

network. To do this, we developed a rewiring algorithm aimed at preventing the movements of animals89

from higher-prevalence herds to lower-prevalence ones. It was based on an edge-level criterion: the90

estimated difference in prevalence between the herd of origin and the herd of destination of the movement91

considered. For this study, we tested the algorithm in conjunction with a computational epidemiological92
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model describing the spread of a nonspecific disease, whose infectiousness was parametrically defined. The93

impact of the algorithm was tested using a real commercial movement network, based on dataset from the94

French cattle tracing system (BDNI). In contrast with similar rewiring approaches developed recently to95

target specific diseases (Ezanno et al., 2021, Biemans et al., 2022), we propose a more generalist approach96

aimed at investigating the effectiveness of this type of method in a broader context. After presenting97

the movement network used as an example, the model and the algorithm, we consider various outputs of98

simulations with and without rewiring, concerning the functioning of the algorithm itself, its impact on99

infection propagation, and on the structure of the cattle movement network.100

Data and methods101

Cattle movement network102

In order to test the algorithm on a actual network of commercial bovine movements, we use an extraction103

from the French national bovine identification database (BDNI). It includes all cattle herds in Brittany104

(a French region) that sold or bought at least one animal during the year 2014. This set of 21,548 herds105

is referred to as the ‘metapopulation’ thereafter. Every animal in the dataset is included regardless of106

breed or age, in order to have a larger number of movements per herd over this period of time. Three107

types of commercial exchanges are considered: (i) ‘internal movements’ have an origin and a destination108

among the herds in the dataset, (ii) ‘imports’ have only a destination in the dataset and (iii) ‘exports’109

have only an origin in the dataset. They represent respectively 64%, 16% and 20% of the commercial110

exchanges involving at least one herd of the dataset. Each commercial exchange of animals is assumed111

to take place directly from one herd to another, neglecting intermediaries. This means that markets and112

sorting centres are not considered for this study. They differ from herds in that they tend to concentrate113

a large number of animals, but for a limited period of time (less than a day for markets, a few days114

for sorting centres). In addition, the dataset also includes information about the demographic events115

in the herd, which are considered as a special type of movements: (iv) births have only a destination,116

corresponding to the herd where the animal is born, and (v) deaths have only an origin, corresponding117

to the last herd recorded for the animal.118

The dataset is represented as a network with herds and internal movements corresponding to the119

vertices and edges, respectively. This network is (i) dynamic, i.e. movements are characterised by the120

date at which they occur, (ii) weighted, i.e. a single edge represents the set of all movements from herd A121

to herd B, with a weight corresponding to the number of movements, and (iii) directed, i.e. movements122

from herd A to herd B are accounted for separately from movements from herd B to herd A. The network123

therefore includes 21,548 vertices and 100,088 edges. The total number of internal movements over 2014124

is 206,640, thus the average edge weight is 2.06.125
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Epidemiological model: within and between-herd dynamics and infection settings126

The model developed aims to simulate pathogen transmission within herds, and infection spread between127

herds through cattle movements. A full description of the model is available in Supplementary material 1.128

The model is stochastic in discrete time – each time-step corresponding to a day of 2014 – and in discrete129

space – by integrating the network of herds and movements described above. Commercial exchanges130

and demography are data-based: movement m is characterised by its origin Om, its destination Dm, its131

date according to the dataset T ∗
m and the date at which it is simulated Tm. By default, movements are132

simulated according to the dataset, i.e. Tm = T ∗
m. Within-herd dynamics are based on a SIRS model with133

three parameters: the infection rate β, the recovery rate γ – therefore the average infection duration is134

1/γ – and the rate of return to susceptibility δ. At each time-step t, herd h is characterised by its number135

of susceptible, infected and recovered individuals, noted respectively Sh(t), Ih(t) and Rh(t). The total136

herd size Nh(t) is defined as the sum of these three values and infection prevalence as Ph(t) = Ih(t)/Nh(t).137

Each simulated infection begins with an initial outbreak in a metapopulation without infection, i.e.138

with only susceptible individuals. At t = tI , the date of the outbreak, 10% of all herds in the metapopu-139

lation are infected, by replacing 1 susceptible individual with 1 infected individual in each of the herds.140

The probability of a herd being part of this 10% is proportional to the number of imports in the herd141

according to the 2014 dataset. The rationale is that herds receiving the most individuals from herds142

outside of the metapopulation are the most likely to introduce a new infection.143

Two types of infections are considered for the study: epidemic and endemic. An infection is defined144

as ‘epidemic’ if it starts at the outbreak, i.e. if t0 = tI . The initial state of the infection is then as145

described above. An infection is defined as ‘endemic’ if its start date is five years after the outbreak, i.e.146

t0 = tI+1825 days. The initial state of infection is then the result of a five-year infection, simulated using147

the same epidemiological model and an extraction from the BDNI over Brittany between 01/01/2009 and148

31/12/2013. Endemic simulations for which the infection goes extinct before t0 are discarded, so that149

only initial states that are not disease-free are considered.150

Prevalence status of the herds151

The algorithm developed aims at identifying and preventing movements of cattle ‘at risk’, i.e. those from152

higher-prevalence herds to lower-prevalence herds. The differences in prevalence are based on prevalence153

classes, numbered from 1 to c. Class i corresponds to prevalence values between bi and bi+1, with the154

lowest boundary b1 = 0 and the highest boundary bc+1 = 1. The prevalence status of herd h at time t,155

noted V r
h (t), is then the class including its prevalence, i.e. V r

h (t) = i if Ph(t) ∈ [bi; bi+1[, and V r
h (t) = 1156

if Ph(t) = 1. Yet, this ‘real’ prevalence status is not the one used by the algorithm. Rather, it uses157

an ‘observed’ prevalence status, noted V o
h (t), which is recorded at tobs and then remains the same for158

q time-steps., i.e. V o
h (t) = V r

h (tobs) ∀ tobs ∈ [t; t + q[. No additional error on the observed status (e.g.159
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because of imperfect test specificity or sensitivity) is assumed, so that it always corresponds to the real160

prevalence status at tobs. Movements are considered ‘at risk’ if the observed prevalence status of their161

origin is strictly greater than that of their destination.162

Sequential rewiring163

The algorithm works by permuting the origins of pairs of movements, one of which is at risk, so that neither164

of them is at risk after the rewiring. The pairs of movements are created such that 1 ≤ cON ≤ cDR <165

cOR ≤ cDN ≤ c, with cOR and cDR the observed status of the origin and destination of the movement at166

risk and cON , cDN those of the origin and destination of the other movement. By permuting the origins,167

the algorithm creates a movement with an origin of status cON and a destination of status cDR, and168

another movement with an origin of status cOR and a destination of status cDN . Then neither of the two169

movements is at risk, since cON ≤ cDR and cOR ≤ cDN .170

For all movements to occur at a given time-step, the algorithm performs these permutations in a171

specific order to ensure that no potential rewiring is missed. Supplementary material 2 describes this172

functioning of the algorithm over a single time-step in pseudo-code. Firstly, it defines all possible quadru-173

plets of prevalence classes {cOR, cDR, cON , cDN}. These quadruplets are arranged primarily in ascending174

order of cDR, secondarily in descending order of cOR, thirdly in ascending order of cON and fourthly in de-175

scending order of cDN . This order ensures that no potential permutation is missed by the algorithm. For176

each quadruplet, the algorithm then permutes the origins of k pairs of movements, with k the minimum177

between the number of movements at risk and the number of other movements considered.178

Once all possible permutations are performed, there might be remaining movements at risk set to be179

performed on this time-step. Firstly, these movements are postponed to the next day, to be potentially180

rewired with another set of movements. The postponed movements are then prioritised for rewiring on181

the following day. Yet, postponing commercial movement represents a constrain for farmers. Therefore,182

a maximal delay during which a movement can be postponed ∆MAX is fixed for the algorithm. Thus,183

remaining movement m is postponed to the next day only if it was not already postponed ∆MAX days,184

i.e. if Tm − T ∗
m < ∆MAX . If the algorithm prohibits any movement at risk, the remaining movements185

that cannot be postponed (called ‘problematic’ movements) are replaced by one export with the origin of186

the problematic movement as origin and one import with the destination of the problematic movement as187

destination. Otherwise, the problematic movement is conserved as such. Overall, the algorithm therefore188

depends on four parameters: the number of prevalence classes c, the period at which observed status is189

updated q, the maximum delay ∆MAX and whether movements at risk are prohibited.190
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Simulations191

Simulations are performed on the dataset between 01/01/2014 (defined as t = 0) and 01/01/2015 (t =192

365). Different epidemiological settings are explored by manipulating the SIRS model parameters (β,193

γ and δ) and infection type (epidemic or endemic). Two clustering analyses are performed on the194

preliminary simulations to define six epidemiological settings (Supplementary material 3): weak, moderate195

and strong epidemic settings and weak, moderate and strong endemic settings (Fig. S2).196

The effectiveness of the algorithm is tested by running simulations with 3× 3× 3× 2 combinations of197

the algorithm parameters, respectively (i) the number of prevalence classes c (2, 3 or 4 classes), (ii) the198

update period q (1, 28 or 91 days), the maximum delay ∆MAX (1, 3 or 7 days) and (iv) the prohibition199

of movements at risk (yes or no). Each combination, as well as a control without rewiring, are simulated200

100 times for each of the six epidemiological settings.201

Preliminary simulations are also carried out for each epidemiological setting between 01/01/2009202

(t = −1825) and 31/12/2013 (t = −1), with an initial outbreak at tI = −1825. On the one hand,203

the number of susceptible, infected and recovered individuals of each herd at t = −1 are used as the204

starting numbers for the endemic simulations (starting at t = 0). On the other hand, the boundaries205

of the prevalence classes bi used by the algorithm are set as quantiles of the distribution of prevalence206

values. These boundaries ensure that the number of herds of each class is roughly the same at the start207

of the simulation. If fewer than 1/c herds have a null prevalence, bi is the ((i− 1) /c)
th

quantile of the208

distribution. If it is greater than 1/c, b1 = b2 = 0 and bi is the ((i− 2) / (c− 1))
th

quantile of the209

distribution.210

Outcomes and analyses of numerical explorations211

The simulations outcomes are listed in Table 1. They are related either to (i) the functioning of the212

algorithm, (ii) the infection or (iii) the network of internal movements modified by the algorithm.213

The algorithm-related outcomes nrew(t), ndel(t) and nprob(t) are computed each time-step after214

rewiring, while nrisk(t) and nerr(t) are computed before. These latter outcomes are computed by using215

the real prevalence status of the herds, rather than the observed ones. A movement m is included in216

nrisk(t) if V r
Om

(t) > V r
Dm

(t), and also included in nerr(t) if V o
Om

(t) ≤ V o
Dm

(t) at the same time. The217

proportion of undetected movements at risk is computed on a weekly basis, to account for intra-week218

variability in the number of livestock movements. Over week w, this proportion perr(w) is:219

perr(w) =

∑7w
t=7(w−1)+1 nerr(t)∑7w
t=7(w−1)+1 nrisk(t)

.

The Spearman’s correlation coefficient ρ between perr(w) and the number of weeks since last update220

(from 1 to 4 weeks if q = 28 days, from 1 to 13 weeks if q = 91 days) is also computed to assess the221
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Outcomes related to Notation Description
Algorithm nrew(t) Number of movements rewired at time t

ndel(t) Number of delayed movements at time t
nprob(t) Number of problematic movements at time t
nrisk(t) Number of movements at risk at time t
nerr(t) Number of movements undetected as at risk at time t

Infection ninf Number of herd infections
next Number of herds in which the infection goes extinct
adur Average duration of infection
cinc(t) Cumulative incidence at time t
nherd(t) Number of infected herds at time t
nind(t) Number of infected individuals in the metapopulation at time t
aprev(t) Average prevalence in the infected herds at time t

Network nSCC Number of strongly connected components
maxSCC Size of the largest strongly connected component
indh In-degree of herd h
outdh Out-degree of herd h

Table 1: List of the outcomes computed from the simulations. The infection-related outcomes were
computed for each simulation separately. The algorithm and network-related ones were computed for
each simulation with the algorithm.

relationship between errors in herd prevalence status and time. The Spearman’s coefficient is preferred222

because it does not assume any particular distribution of the involved variables.223

The impact of the algorithm on the infection dynamic is estimated through cinc(t), i.e. the cumulative224

number of herds newly infected over the simulation. The variations in nherd(t) and nind(t) over time are225

also presented in Supplementary material 4. Besides, the overall impact of the algorithm on the infection226

is assessed using a global multivariate sensitivity analysis, following Lamboni et al. (2011) and using the227

multisensi package of the R software (Bidot et al., 2018), which is used to perform sensitivity analyses on228

a multivariate output. For this analysis, twelve variables are derived from the infection-related outcomes.229

The three outcomes computed once per simulation ninf , next and adur are used as such. In addition,230

the maximum, minimum and final values over the whole period simulated (respectively noted max(u(t)),231

min(u(t)) and u(365) for outcome u(t)) of nherd(t), nind(t) and aprev(t) are also computed. The analysis232

includes a principal component analysis (PCA) on the scaled variables, which are used as the multivariate233

output for the sensitivity analysis. Two generalised sensitivity indices (GSI), which are weighted means234

of the sensitivity indices over all the dimensions of the PCA, are computed for each algorithm parameter:235

the total index (tGSI) including interactions with other parameters, and the first-order index (mGSI),236

not including them. The first principal component of the PCA is also used to assess the distribution of237

the simulations depending on the algorithm parameters.238

The network-related outcomes are based on an static view of the network aggregating all the internal239

movements performed during the simulation, from t = 0 to t = 365. Therefore, they take into account the240

rewiring performed by the algorithm, and the potential removal of problematic movements if movements241

at risks are completely prohibited. The outcomes recorded for the modified networks are compared to the242

same metrics for the original network defined by the 2014 dataset. The strongly connected components –243
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from which nSCC and maxSCC are computed – correspond to groups of vertices linked to each other by244

a directed path. The percentiles of the distributions of indh and outdh of all herds in the static network245

are used to assess the in-degree and out-degree distributions, respectively.246

Results247

Outcomes related to the algorithm248

Our results show that number of movements rewired varies greatly depending on the date of the outbreak.249

It is negligible in the epidemic settings, with 80% of simulations with a total of rewired movements between250

192 (fewer than 0.1% of all movements) and 2250 (1.1%). However, it is larger in the endemic settings,251

with 80% of simulations with between 17,344 (8.4% of all movements) and 33,640 (16.3%) movements252

rewired. Besides, increasing the value of ∆MAX logically increases the number of delayed movements253

(which is 0 by definition for ∆MAX = 0) and decreases the number of problematic movements. In the254

endemic settings, the problematic movements represent a small proportion of the movements detected as255

high risk (median: 5.4%, 9th decile: 17.4%). In the epidemic settings however, they represent a larger256

part (median: 14.3%, 9th decile: 59.7%), although their absolute numbers remain low (median: 129, 9th257

decile: 651). Because of the overwhelming number of initially non-infected herds in these simulations,258

the movements at risk are likely more difficult to rewire, and thus more likely to be tagged as problematic259

by the algorithm.260

Increasing the herd status update period q is not associated with a decrease in the number of rewiring261

events (Fig. 1A, 1B). The value of q is even rather positively correlated with the number of rewiring262

events in epidemic settings. This suggests that the algorithm performs more erroneous rewiring as q263

increases. This is confirmed by the distributions of Spearman’s correlation coefficient between perr(w)264

and the number of weeks since last update ρ with q = 91 days (Fig. 1D), in epidemic settings (80% of265

values of ρ between -0.01 and 0.50) and in endemic settings (80% of values of ρ between 0.39 and 0.75).266

This is also somewhat the case with q = 28 days (Fig. 1C), although the correlations are weaker, in267

endemic (80% of values of values between -0.09 and 0.79) as well as in epidemic settings (80% of values268

of values between -0.05 and 0.34).269

The average proportions of undetected movements at risk perr(w) all tend to increase with the number270

of weeks since the last update w (Fig. 1E, 1F). This increase is systematically greater for the largest271

value of q, up to perr(w) = 0.3. However, they also appear to have reach a plateau after 10 weeks.272

This suggests that a further increase in the update period q would not strongly increase the proportion273

of undetected movements at risk. As for Spearman’s correlation coefficient ρ, the increase is greater in274

endemic settings than in epidemic settings.275
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Outcomes related to the infection276

Comparison of the results with and without rewiring shows the overall effectiveness of the algorithm277

in containing the infection (Fig. 2). Regardless of the epidemiological setting and the combination of278

Figure 1: Impact of the update period q on the undetected movements at risk, in epidemic (magenta)
or endemic settings (green), weak (light), moderate (medium) or strong (dark). First column: total
number of rewiring events as a function of the update frequency q, averaged over all simulations for
a same algorithm parameter combination, in epidemic (A) and endemic settings (B). Second column:
distribution of Spearman’s correlation coefficients (ρ), with q = 28 days (C) and q = 91 days (D). Third
column: average proportion of undetected movements at risk perr(w) as a function of the number of
weeks since the last update, with q = 28 days (E) and q = 91 days (F).

Figure 2: Cumulative incidence cinc(t), in number of herd infections, as a function of time (t, in days), for
simulations with (colour) or without rewiring (black), in epidemic (1st row, magenta) or endemic settings
(2nd row, green), weak (1st column, light), moderate (2nd column, medium) and strong (3nd column,
dark). Each combination of algorithm parameters is represented by its mean over the repetitions (solid
line) and an interval of 80% of simulations (envelope).
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Figure 3: Generalised sensitivity indices (GSI) of the maximum delay ∆MAX (purple) the number of
prevalence classes c (cyan), the update period q (yellow) and the prohibition of movements at risk (blue),
in epidemic (1st row) or endemic settings (2nd row), weak (1st column), moderate (2nd column) and
strong (3rd column). The total indices (tGSI) are in solid colour and the first-order indices (mGSI) are
hatched.

parameters considered, the cumulative number of herds newly infected cinc(t) remains systematically279

lower after rewiring. The algorithm is particularly effective in weak and moderate epidemic settings,280

where very few herds are infected during the year. In other epidemiological settings, the impact of the281

algorithm varies more strongly depending on the scenario considered. Results for nherd(t) and nind(t)282

are presented in Supplementary material 4. In epidemic settings, variations in nherd(t) logically follow283

closely those of cinc(t). Hence, the algorithm also reduces the increase in the total number of infected284

herds. It also reduces the total number of infected individuals, although the impact is not as strong as285

for herds. In endemic settings, the value of nherd(t) remains similar during the whole simulation without286

rewiring (Fig. S3), despite new infections according to variations in cinc(t). This indicates a turnover in287

the infection at the metapopulation level, with populations losing the infection through the acquisition288

of resistance or the culling and trade of infected animals. By reducing the number of new infections, the289

algorithm actually therefore reduces the total number of infected herds over time. However, its impact290

is smaller on the total number of infected individuals (Fig. S4).291

The sensitivity analysis shows differences in the relative importance of the algorithm parameters on the292

reduction of the infection (Fig. 3). Three different patterns of sensitivity to the algorithm parameters are293

observed. Firstly, simulations in weak and moderate epidemic settings exhibit an overwhelming sensitivity294

to the prohibition of movements at risk. Secondly, those in strong epidemic or endemic settings exhibit295

a strong sensitivity to the number of prevalence classes c. Finally, those in weak and moderate endemic296

settings exhibit a more balanced sensitivity to all parameters, with a substantial difference between total297
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Figure 4: Distribution of the simulations on the first component of the PCA performed as a first step of
the sensitivity analysis, in the weak epidemic setting (A), the strong epidemic setting (B, C), the weak
endemic setting (D, E) and the strong endemic setting (F). The outputs are divided by maximum delay
(purple, D), management of problematic movements (blue, A), number of prevalence classes (cyan, B and
F) and herd status update period (yellow, C and E).

and first-order indices for the maximum delay ∆MAX , the number of classes and the prohibition of298

movements at risk. These differences suggest an interaction between the three algorithm parameters.299

Besides, simulations for every epidemiological setting are somewhat sensitive to the update period q.300

The PCA performed as a first step of the sensitivity analysis is used to explore further the way301

algorithm parameters impact the infection-related outputs. Supplementary material 5 shows that the302

first principal component of the PCA is globally positively correlated with outputs describing the extent303

of the infection. The distributions of simulations along this first principal component therefore provides304

information about the way algorithm parameter values affects the extent of the infection. Supplementary305

material 6 presents these distributions for every epidemiological setting and every algorithm parameter,306

while Fig. 4 displays some of the most relevant distributions. Fig. 4A shows that, in the weak epidemic307

setting, simulations in which movements at risk are prohibited almost always score lower on the first308

principal component than those in which they are not. The distribution is similar in the moderate309

epidemic setting (Fig. S6), which has similar sensitivity indices (Fig. 3). Interestingly, distributions310

of simulations in strong epidemic or endemic settings show that those with c = 2 score higher on their311

respective first component, while those with c = 3 and c = 4 are not different (Fig. 4B, 4F). A similar312

pattern is observed with the maximum delay in the weak endemic setting: only simulations with ∆MAX =313

12

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2022.08.24.505123doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.24.505123
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: Distributions of the differences in number of strongly connected components (A, nSCC) and
in size of the largest strongly connected component B, maxSCC) between rewired networks and the
original one from the dataset, for epidemic (magenta) and endemic (green) settings, weak(light), moderate
(medium) and strong (dark).

0 score higher on the first principal component (Fig. 4D). In the strong epidemic setting, the two high-314

scoring peaks in the distribution according to c (Fig. 4B) correspond to the simulations with q = 28 and315

q = 91 (Fig. 4C), highlighting an interplay between the number of classes c and the update period q. No316

interplay between ∆MAX and q is visible in the weak endemic setting, although Fig. 4E show that the317

score of simulations on the first principal component is positively correlated with q. Distributions in the318

moderate endemic setting are similar to those in the weak endemic setting (Fig. S6).319

Outcomes related to the movement network320

In endemic settings, rewiring movements increase the in- and out-degrees of the herds, i.e. the number321

of different herds they are connected to (see Supplementary material 7). The increase is small but322

systematic, for every algorithm parameter value (Fig. S7). In addition, the algorithm also affects the323

strongly connected components of the network in endemic settings. On the one hand, the algorithm324

reduces their number, all the more that the infection was strong (Fig. 5). On the other hand, the size325

of the largest strongly connected component is increased in most, but not all simulations (64%, 67% and326

80% of simulations in low, moderate and high endemic settings, respectively). It should be noted that327

the lesser impact of the algorithm on the network in epidemic settings can be explained by a number of328

rewiring events 25 times smaller on average than in endemic settings.329

Discussion330

The rewiring algorithm we developed for this study is able to reduce the extent of infections, in the331

absence of any other restriction measure and for a large panel of disease parameters (infection rate β,332

recovery rate γ or rate of return to susceptibility δ). However, the extent of the reduction varies between333

the different epidemiological settings considered. Indeed, infections are almost completely prevented with334
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weak or moderate epidemic settings, while they still develop or persist for other settings, although not as335

much as without any rewiring. However, the decrease in the number of infected herds is not necessarily336

coupled with a decrease in the number of infected individuals. This result highlights the tendency of337

the algorithm to concentrate infected individuals in the already infected herds. The algorithm therefore338

performs a trade-off that is beneficial to the metapopulation as a whole – with fewer infected herds – but339

detrimental to the smaller number of already infected herds, in such a situation where movement rewiring340

is not combined with complementary on-farm measures to reduce within-herd infection prevalence. This341

is the case for the infections in an epidemic setting, in which the prevalence in the infected herds increases342

over the year. This is also the case for infections in endemic settings, in which new sensitive individuals343

could still be born or imported.344

The sensitivity analysis on the infection-related outcomes reveals that the impact of the parameters of345

the algorithm is highly dependent on the epidemiological setting. Prohibiting the movements at risk, i.e.,346

removing the movements that cannot be rewired and are delayed as much as possible, is mostly significant347

if the infection is not too strong and is just beginning. Only in these cases can the infection be fully348

contained by the prohibition. Increasing the maximal delay improves the performance of the algorithm349

in an endemic setting, for which the number of movements rewired is much larger than in epidemic350

settings. In those, delaying the movement to the next day increases substantially the opportunities351

for rewiring. The other two parameters are both related to the definition of the prevalence statuses352

used by the algorithm. A greater number of prevalence classes, which mainly impacts rewiring during353

strong infections, improves the separation of disease-free herds from the rest. Indeed, considering more354

prevalence classes lowers the upper boundary of the lowest one, which included only herds with very few355

or no infected animals, thus allowing the algorithm to effectively protecting disease-free herds. A longer356

update period between updates of the prevalence status makes the rewiring algorithm more error-prone,357

with a proportion of undetected movements at risk increasing with the time since the last update, at358

least up to ten weeks. This result is visible for any epidemiological setting, suggesting that any increase359

in the frequency of update to the status of the herds should improve the effectiveness of the algorithm.360

Conversely, the results indicate that increasing the number of prevalence classes to more than two, or361

having a maximum delay greater than zero, improves the efficiency of the algorithm much more than362

further increases.363

As expected, the impact of rewiring on the commercial movements network structure is limited, as364

it targeted a few movements only: less than 20% of the movements for endemic infections and less than365

2% of them for epidemic infections. Nevertheless, rewiring tends to increase the overall connectedness366

of the herds during endemic infections. Indeed, the increase in degree and in size of the largest strong367

component indicates that the algorithm has connected herds that were originally not so. These metrics368

are generally correlated with higher expected epidemic risks (Kiss et al., 2006, Dubé et al., 2009). The use369
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of such a rewiring method to manage actual bovine movements should take into account this potential370

increase in the risk of spreading other diseases. The algorithm could be extended to assess multiple371

diseases at once, but the additional constraints on rewiring would likely reduce its effectiveness.372

The main hurdle to implementing this rewiring method in a real-life setting is its reliance on accurate373

and frequent prevalence data from a large number of farms. Firstly, a lack of specificity or sensitivity374

in the tests used might lead to an overestimation or underestimation of the prevalence in the herds,375

depending on the disease considered. Although we show that the algorithm remains efficient even though376

the observed prevalence differed from the real ones, this additional error could add up with the one377

observed in our study. However, the impact of such errors is also expected to be mitigated by the use of378

prevalence classes, so that small differences do not necessarily change the prevalence status of the herds.379

Secondly, obtaining frequent prevalence data for a large number of farms remains challenging. Bulk380

milk-based sampling systems could be used for some diseases in cattle (e.g. Garoussi et al., 2008, Humphry381

et al., 2012, with bovine viral diarrhoea), which would facilitate prevalence estimation for multiple herds382

at once, thus reducing the associated costs. It would also be possible to reduce the sampling effort by383

focusing on a subset of herds to monitor. Firstly, this sampling effort should take into account additional384

information available thanks to measures already in place. For instance, the status of some herds could385

be approximated through health accreditation schemes (e.g. Ezanno et al., 2021), with herds already386

identified as disease-free could be automatically assigned to the lowest prevalence status for a given387

duration. Secondly, herds to monitor could be selected based on their role in disease spread, notably388

through network metrics. Indeed, central herds in the movement network, i.e. those through which a389

large proportion of animal movements pass, are expected to play a larger role in the spread of infection390

(Rautureau et al., 2011, Natale et al., 2011). Hoscheit et al. (2021) reviewed centrality measures taking391

into account the dynamic nature of the movement network, based on the BDNI. They found that the392

TempoRank index would for example be a good candidate for selecting a subset of herds to be specifically393

monitored and taken into account by the algorithm.394

In this study, we use a network corresponding to commercial movements between every farm in395

Brittany (an administrative region of France) over a year to test the efficiency of the algorithm. The choice396

to limit the size of the network is notably motivated by computational limitations. Indeed, simulating a397

stochastic spread of the disease on a national scale over six years - five for the preliminary simulations and398

one for the main simulations - would have been considerably more costly, thus limiting the exploration399

of variations in the parameters of the SIRS model and the algorithm. Yet, this choice had additional400

implications that should be underlined.401

Firstly, a substantial proportion of the movements involve herds outside of Brittany and are therefore402

not concerned by the rewiring. Indeed, 20% of all movements whose destination was in the metapopulation403

had an origin outside of it. In our simulations, these imports are assumed to not be movement at risk,404
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i.e. that the prevalence status of their origin is never higher than that of their destination. This is not405

trivial, as it presumes that imports do not create greater infection risks than internal movements. In a406

real-life context, applying this rewiring method in a single region would therefore require an additional407

management of the risk associated with imports. Yet, extending its use nationally should mitigate this408

problem, as the proportion of imports is expected to be much lower at this scale. Secondly, every409

commercial movement between farms is considered to test the algorithm, regardless of breed or age, in410

order to have a large enough set of movements. Indeed, additional criteria, concerning for instance the411

breed of the animals, could be added easily by providing the algorithm with movements for individuals in412

each category separately. However, such criterion would reduce the rewiring possibilities of the algorithm413

and therefore its effectiveness. Again, the network of commercial movements at the national scale could414

be large enough to separate the movements by breed or consider only movements of specific breeds.415

Although the algorithm is tested on historical data from the BDNI for this study, it could also be416

used prospectively as part of decision-making tools, barring the limitations presented above. Indeed, the417

rewiring method could work without any simulation of infection, if herd statuses were provided otherwise.418

Given these statuses and the potential movements to occur, the algorithm would also suggest necessary419

changes to prevent movements at risk. In this context, the implementation of these changes would also420

depend on the actual decision of the informed farmers. Unless rewiring is enforced, it is expected that421

constraints other than sanitary ones would affect movements, which would impact the effectiveness of the422

algorithm. Coupling it with a decision-making model could provide additional insight on this impact. In423

order to make it easier to use as part of such decision-making tools, the algorithm has been specifically424

designed to be able to include additional, different constraints.425

Besides, the rewiring method presented is not limited to cattle, but applicable to a much wider range426

of networks in animal and plant populations, e.g. among seed exchange networks, which face similar427

infection risks (Jeger et al., 2007, Pautasso et al., 2010). While the need for controlled movements makes428

this method more relevant to agricultural systems, the spatial and temporal scales considered can also be429

adapted depending on the context. Indeed, the daily time-step and the region level were used here as they430

correspond to the BDNI data structure, but are not necessary for the algorithm to work. The usefulness431

of our rewiring method could therefore extend beyond cattle concerns, even though the effectiveness of432

the algorithm in other contexts remains to be tested.433

This study demonstrates the effectiveness of a rewiring method targeting specific movements to reduce434

infection risks. Our approach thus differs radically from that presented by Gates and Woolhouse (2015),435

as it also aims at generating minimal changes in the structure of the movement network. However, this436

study builds upon the results from Ezanno et al. (2021), by confirming the effectiveness of this method437

beyond the specific case of bovine paratuberculosis. Indeed, the algorithm presented by Ezanno et al.438

(2021) and later by Biemans et al. (2022), was developed specifically to address the control of bovine439
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paratuberculosis, notably characterised by an endemic status and a low detection rate. To do so, they440

used a specific age-structured epidemiological model (Camanes et al., 2018) and an algorithm calibrated441

to target the disease. This was also the case for instance of Mohr et al. (2018), which specifically442

targeted foot-and-mouth disease. Conversely, the present study aims at assessing more comprehensively443

the effectiveness of the algorithm. It is tested for different epidemiological settings – both endemic and444

epidemic – using a non-specific epidemiological model, and for broad range of parameter values. This445

study is therefore complementary to the previous ones, by bringing a broader perspective on the impact446

of rewiring in animal movement network on infectious diseases in general.447
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