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A Reinforcement Learning 
approach to study climbing plant 
behaviour
Lucia Nasti 1*, Giacomo Vecchiato 1, Patrick Heuret 2, Nicholas P. Rowe 2, 
Michele Palladino 1,3 & Pierangelo Marcati 1

A plant’s structure is the result of constant adaptation and evolution to the surrounding environment. 
From this perspective, our goal is to investigate the mass and radius distribution of a particular plant 
organ, namely the searcher shoot, by providing a Reinforcement Learning (RL) environment, that 
we call Searcher-Shoot, which considers the mechanics due to the mass of the shoot and leaves. We 
uphold the hypothesis that plants maximize their length, avoiding a maximal stress threshold. To 
do this, we explore whether the mass distribution along the stem is efficient, formulating a Markov 
Decision Process. By exploiting this strategy, we are able to mimic and thus study the plant’s behavior, 
finding that shoots decrease their diameters smoothly, resulting in an efficient distribution of the 
mass. The strong accordance between our results and the experimental data allows us to remark on 
the strength of our approach in the analysis of biological systems traits.

Plants are living organisms coordinating a complex network of internal, e.g., nutrient concentration, and exter-
nal signals, e.g., light and soil resources. As a result, plant growth is a delicate balance among different factors 
involving environmental and physiological conditions1.

Despite their sessile life, plants can move and react to external stimuli to search for nutrients, and avoid 
obstacles and dangerous conditions2. In contrast to the animal kingdom, plants do not perform these movements 
only through “active” reversible actions, but also by expanding their organs3. Plants actually live in a complex 
environment with a limited amount of resources. These resources are shared between plants of the same species 
as well as plants of different species. In this context, the efficient use of such resources can be crucial for plant 
subsistence. For instance, in its growth process, a plant produces a limited amount of biomass. It can use such 
mass to elongate one of its stems (primary growth process) or to produce rigidity and stability of its organs 
(secondary growth). Efficient employment of biomass means finding the most convenient threshold between 
primary and secondary growth, considering that the longer the stem, the better the exploration, but the thicker, 
the more resistant it is to mechanical stress.

The concept of efficiency may be the key to understanding how plants interact with the environment and 
develop their organs. This gives a different perspective to plant modelling. Indeed, this point of view enriches a 
model by adding to the mathematical description of the biological system a possible interpretation. The possibility 
of mathematically studying the mechanics of a structure and understanding the extent of its physical limits has 
fascinated scientists since the time of Galileo (see in particular the work “Two new sciences”). Specifically on 
plants, there are studies on critical lengths (see for instance4–6), on the distribution of roots and branches7, or on 
how a root penetrates the soil8. The optimisation paradigm can be applied effectively in biological contexts9,10 
and is what has stimulated this work.

In this work, we focus on a particular climbing plant species, known as the Condylocarpon guianense Desf. 
(see Fig. 1).

This plant species is a liana widely found in the flora of French Guiana, which twines around the branches 
and the trunks of neighboring plants in order to reach the canopy. Several studies on its structure, see11–14 for 
instance, have revealed that in different growth stages, it changes the thickness and the nature of the layers that 
form its stem and consequently it changes its flexural rigidity. More specifically, the plant is more rigid during 
the self-supporting state, while it displays a less dense material and a thicker compliant cortex when attached 
to a support. Such a wide capability of C. guianense to adapt to the surrounding environment suggests that it is 
following a paradigm of efficiency, making it a suited subject for our study. In particular, we want to support the 
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hypothesis that the self-supporting organs of C. guianense, called searcher shoots, maximize their length avoid-
ing a maximal stress threshold. This idea is motivated by the fact that the searcher shoots are organs specialized 
in finding a support to attach themselves. Hence, the longer they are, the better they explore the surrounding 
environment and cross gaps. However, at the same time, they have to sustain their weight15.

To investigate this specific behavior and prove our hypothesis, we combine mechanical modelization and 
Reinforcement Learning (RL). Specifically, to prove that climbing plants optimize the mass distribution in their 
self-supporting stems, we developed a RL environment, which we called Searcher-Shoot, to study the radius 
along the climbing plant shoot. At the base of this environment, we considered two planar mechanical models: 
(MeLe) and (Me), which give us information about the development of the curvature and the mass along the 
shoot, considering the leaves or not, respectively.

The application of Artificial Intelligence (AI) to many biological problems is increasing rapidly in the analysis 
of plant morphology, growth, and development, or the understanding of their changing environment in con-
junction with agriculture16. In particular, Machine Learning (ML) is playing a conspicuous role in developing 
predictive models in complex plant biological systems17 whenever possible the integration and the analysis of 
multidimensional omics data18. Moreover, as described in Ref.19, with inadequate data, AI/ML applications 
perform poorly. When Supervised and Unsupervised methods are not able to generate a direct linear or non-
linear mapping among the raw data, RL stands up for being a valid alternative method20,21 and, as underlined in 
Ref.22, it is emerging as a robust and reliable tool to face out real-world problems concerning biological systems. 
Example of this application are available in synthetic biology23, metabolic engineering24, chemical reaction 
network25, and plant biology26.

Our study delved into the complex and dynamic interactions that occur within plant growth behavior. Tra-
ditional numerical methods rely on deterministic models that may not accurately represent the nonlinear and 
dynamic nature of plant behavior. In contrast, we utilized RL  which is better suited to capture the nuances of 
plant responses to various stimuli as it adapts to complex, changing environments.

RL’s trial-and-error learning approach allows our model to explore and adapt to the dynamic behaviors of 
plants, enabling us to uncover optimal strategies that may not be evident in static, pre-defined models. Addition-
ally, RL operates in a data-driven manner, which is particularly advantageous when studying plant dynamics. 
This allows us to extract patterns and behaviors that may be difficult to capture using theoretical, equation-based 
approaches.

To test our RL environment, we applied it to five samples of C. guianense, using experimental data provided 
by Refs.15,27. We found that the optimal policy was able to reproduce the decreasing behavior that characterizes 
the radius of the sample in consideration. This outcome suggests that, at least for C. guianense, the mass distri-
bution along the searcher shoot is distributed optimally to maximize the length while avoiding the curvature 
reaching a certain breakdown threshold.

Results
We develop the Searcher-Shoot environment in Python. Precisely, we employ the OpenAIGym28 and Stable-
Baselines3 (SB3)29 libraries, two open-source frameworks implementing several commonly used model-free 
deep RL algorithms. In particular, from SB3, we import the PPO algorithm30. For the mathematical modelling, we 
develop two models for the searcher shoot: (1) a model with the mechanics, but without the leaves (Me) and (2) 
a model with both the mechanics and the leaves (MeLe). We perform all the simulations with the discount fac-
tor γ = 0.99 (see Supplementary Material) and we train the models setting the number of episodes to 1 million.

In Fig. 2, we plot the results of our simulations and we show the radius (Fig. 2a) and the mass distributions 
(Fig. 2b). We find that the radius decreases at each step, i.e. the agent chooses the actions leading to a smaller 
radius.

Figure 1.   Searcher of Condylocarpon guianense in humid tropical forest canopy of French Guiana. Like many 
searchers the stem bears numerous expanded leaves and shows evidence of “adjustments” in stem direction 
along its length. In the lower part of the picture, additional searchers of the same species show the variety of 
searcher stem developments and orientations at different stages of development.
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We compare our simulated scenario with samples S1–S515,27. As we can notice in Fig. 2a, comparing the 
obtained radius distribution (in blue) with the experimental radius of sample S2 (in red), the relative error is 
8.55% in the segment [0, 0.868], which represents the length of the sample S2. In the Supplementary Material, 
we include the simulation results and the comparison with all the other four samples.

Successively, we consider the (MeLe) model, where, in addition to the mechanics features, we model also the 
mass of the leaves along the shoot. In Fig. 3, we present the results of our simulations. Both the radius (Fig. 3a) 
and the mass distributions (Fig. 3b) are consistent with the results of the preceding model. Again, we compare 
the experimental radius (in red) of sample S2 with the one we derive using the (MeLe) model (in blue), and, by 
computing the relative error, we find that the discrepancy between the two radii is 10.28% in segment [0, 0.868].

Study on model sensitivity w.r.t leaves configuration
To evaluate the model’s adaptability to variations in leaf configuration, we conducted supplementary simula-
tions introducing systematic changes in the length of the internode. In contrast to the original model, where the 
internode length is fixed at 0.13m , we explored a spectrum of lengths randomly generated within the range of 
[0.01, 0.5] (the length is generated at the beginning of a simulation and it doesn’t change within that simulation). 
The central aim of this investigation was to unveil the model’s sensitivity to leaf positioning, yielding nuanced 
insights. Noteworthy findings surfaced when the leaf cluster was positioned near the base of the shoot, revealing 
an average relative error of 7.43% across 100 simulation rounds. In contrast, scenarios with internode lengths 

Figure 2.   Radius and fresh mass distribution in the (Me) model.We show the radius and, consequently, 
the mass distribution obtained in the (Me) model after training. Specifically, in Fig. 2a, we compare the 
experimental radius (red) to the one obtained by our simulation (blue). Computing the relative error, we find 
that the discrepancy between the two radii is at most 8.55% in segment [0, 0.868]. The value 0.868 represents the 
total length in meters of the shoot sample. In Fig. 2b, we show the simulated mass. The mass decreases smoothly 
and is approximately zero at the tip.

Figure 3.   Radius and mass distribution in the (MeLe) model. We show the radius and, consequently, the 
mass distribution obtained in the (MeLe) model after the training. Specifically, in Fig. 3a, we compare the 
experimental radius (red) to the one obtained by our simulation (blue). Computing the relative error, we 
find that the discrepancy between the two radii is at most 10.28% in the segment [0, 0.868]. The value 0.868 
represents the total length in meters of the shoot sample. In Fig. 3b, we show the simulated mass. The mass 
decreases smoothly and is approximately zero at the tip.
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surpassing 0.2m displayed a significantly higher average relative error, reaching 28% over the same number of 
simulations.

In Fig. 4, we show an example of the worst (Fig. 4a) and the best leaves configuration (Fig. 4b). We show on 
the y-axis the radius distribution, on the x-axis the length of the plant’s shoot. The vertical lines in light blue 
represent the leaves’ position. In plot 4b, the internode is 0.0548m long and the relative error in 7.29% . Instead, 
in plot 4a, the length of the internode is 0.2103m.

Furthermore, in the example of the worst-case scenario (4a), it becomes apparent that the mass of the leaves 
does not diminish to zero (see Fig.  5), indicating an interruption in the plant’s growth due to the violation of 
the curvature threshold. This behavior can be explained by considering the influence of the weight of the leaves 
on the slender shoots of the plant, which causes the violation.

Model insights
To demonstrate the effectiveness of the model, Fig. 6 depicts the median and variance calculated from 100 simu-
lations, alongside the experimental radii corresponding to sample S1. Additional sample plots can be found in 
the Supplementary Material for comparison.

Discussion
The relative error between the measured radius (data provided by15) and the simulated samples is less than 
15% for all the samples and in both cases with or without leaves (see Tables 1 and 2). Such a small relative error 
suggests that the optimal policy successfully reproduces the radial profile of the samples. Going into more 
detail, in the (Me) case with generic c2 and ψ0 (respectively, the constant for the curvature threshold and the 
ratio between curvature and the fourth power of the radius at the base of the shoot), the error is between 12.9 
and 16.8% (see Table 1), with the exception of sample S1. This error decreases between 7.8 and 9.8% when the 
constants are sample-specific. In particular, we observe that the coefficient of variation of c2 is about 35% (see 
Table 3), while the coefficient of variation of ψ0 is much greater since it is approximately 74% . This might imply 
that the environmental conditions have a relevant impact on the initial curvature of the shoot, while the stress 
threshold might be characteristic of the plant species. The difference between the length of the simulation and 

Figure 4.   Example of different leaves configuration. We show the length and radius of the plant with different 
leaves’ configurations (vertical lines in light blue). As we can notice, in the best scenario the leaves are close to 
the base of the shoot.

Figure 5.   Mass distribution. We show the mass distribution associated to the example of the worst-case 
scenario of plot Fig. 4a. Here, on x-axis, we show the length of the shoot, on y-axis we show the mass of the 
plant. As we can notice, the mass does not go to zero, meaning that the plant’s growth is interrupted by the 
violation of the curvature threshold.
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Figure 6.   Median and variance computed over 100 simulations. We show the comparison with the samples S1.

Table 1.   The table reports the Relative Error with and without estimated parameters (EP), without considering 
the mass of the leaves. To show the strength of our results, we compute the Relative Errors by comparing our 
results with the experimental radii of the samples15,27. To understand the influence of two crucial parameters, c2 
and ψ0 , which are the curvature threshold and the initial curvature, respectively, we simulate our (Me) model 
by using their estimated values and an average value.

Sample Relative error ( % ) without EP Relative error ( % ) with EP

S1 8.6 13.6

S2 – 8.5

S3 16.8 8.2

S4 16.2 7.8

S5 12.9 9.8

Table 2.   The table reports the Relative Error with estimated parameters, by considering the mass of the leaves. 
To show the strength of our results, we compute the Relative Errors by comparing our results ((MeLe) model) 
with the experimental radii of the samples15,27.

Sample Relative error ( %)

S1 7.4

S2 10.2

S3 11.4

S4 14.1

S5 11.8

Table 3.   The table reports the values of ψ0 , c2 , with average and coefficient of variation. The values of ψ0 and c2 
are estimated utilizing the methods described in33.

Sample ψ0 c2

S1 −5.9e − 12 8.7e − 4

S2 −3.7e − 12 3.6e − 4

S3 −7.8e − 12 4.8e − 4

S4 −2.3e − 11 6.1e − 4

S5 −1.1e − 11 4.9e − 4

Average −1e − 11 5.6e − 4

Coeff. of variation 73.61% 34.4%
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the experimental one, displayed in Fig. 2a, can be explained by the experimental error in the mass and density 
measurements, or by some assumptions on the model, such as a constant Young modulus all along the shoot. 
Regarding the simulations with the leaves, i.e. the (MeLe) model, the relative error gets worse if compared to 
the (Me) model (see Table 2). This drop in the accuracy of the model can be due to the fact that the agent has no 
control over the distribution of the leaves. Moreover, the constants ψ0 and c2 are estimated on a model based only 
on the optimisation of the mass of the main stem. Hence, effective implementation of the leaves would require 
a more accurate model; nevertheless, even in our approximation, we get an error between 7.4 and 14.1% . This 
result suggests that a functional advantage of the plant during the self-supporting stage is the optimization of 
the main stem’s mass. This is in line with the application of the behavioural ecology theoretical framework for 
plants (see31 for a survey on the behavioural ecology of climbing plants). In other words, according to this theory, 
plants have the capability to place their stems and other organs in accordance with optimal economic models. 
For instance, depending on the external supports in the surrounding environment, the risk of herbivory and the 
energetic stress, a shoot may delay leaf expansion or have short internodes. In our case, the plant has a limited 
amount of mass and can develop limited internal stress. A longer stem means, on one hand, a greater exploration 
capability, but on the other hand, a greater risk, since the structure is more fragile. Our RL environment gives a 
quantitative answer to the trade-off that the plant has to face, in the specific case of the C. guianense in its natural 
habitat. However, the generality of the equations at the base makes such an environment suitable for applica-
tion to other plant species. Safety factors in terms of mechanical stability of stems and other plant organs is an 
informative way of relating size, length mass and stiffness to mechanical stability and height. The approach was 
not explored in this study primarily because of the longitudinal complexity and changing tissue patterning and 
stiffness (E) along the searcher stems. Our observations indicate that many searchers probably function under 
relatively low safety factors and rely on high stiffness values over developing wide diameters. Field observations 
even suggest that exceeding critical buckling length after crossing maximal reach gaps might be an advantage for 
contacting potential host supports just after a truly self-supporting phase14. In general, the use of a RL method 
to study a biological phenomenon can have some disadvantages, since it depends heavily on the concept of state 
and value function32. However, when properly formulated, it is a valuable instrument to predict and understand 
the behaviour of the phenomenon in consideration.

Conclusion
In this work, we developed a RL environment called Searcher-Shoot to optimize the mass distribution along 
the main stem of a climbing plant during its self-supporting phase. At the base of the environment, there is a 
mechanical model that treats the plant’s stem as an elastic rod. We applied the Searcher-Shoot environment to 
the experimental data using two variants of the mechanical model: with or without leaves. The radii that we 
obtained from the numerical simulation are in accordance with the data, supporting the hypothesis that climbing 
plants apply the strategy of growing the stem as long as possible. Building an RL environment is a compelling 
strategy to understand complex systems biology behaviors, especially in the absence of crucial data required 
for the application of ML. The RL approach we employed in this work has yielded promising results, making 
us even more hopeful for future developments. In line with this work, we plan to build a more sophisticated 
model that can consider the curvature’s time development in addition to the optimal mass distribution. Indeed, 
plant movement is partially determined by the response to external signals. This response can be optimized to 
maximize (or minimize) a reward based on the signals themselves.

Methods
Notations for the mechanics of a planar elastic rod
Let e1, e2, e3 a basis of orthonormal vectors for R3 . We assume that the searcher shoot behaves like an inextensible 
and unshearable elastic rod34 confined in the plane spanned by the vectors e1 and e2 . The centerline of this rod 
lies on the curve Ŵ ⊂ span{e1, e2} . We parametrize the curve Ŵ with its arc length s, so that if the length of the 
curve is L, we have s ∈ [0, L] . We denote with Ŵ(s) the position in the plane of the point on Ŵ whose arc length 
is s. With this parametrisation, ∂sŴ(s) represents the normal tangent vector to Ŵ at the point Ŵ(s) . We denote 
with θ(s) the angle between ∂sŴ(s) and the vector e2 . Consequently, θ ′(s) is the curvature of Ŵ at the point Ŵ(s).

We refer to Ŵ as the current configuration, which corresponds to the actual shape of the rod when subject 
to external physical forces. To study the effects of gravity acting on that rod, we need to consider the intrinsic 
configuration, denoted as Ŵ̂ , which corresponds to the geometric curve assumed by the rod when there are no 
external forces acting on it. Since the rod is inextensible, the arc length parameter of Ŵ̂ and Ŵ is the same s ∈ [0, L].

The difference between the curvature ∂s θ̂ (s) of the intrinsic configuration and the curvature ∂sθ(s) of the cur-
rent configuration is proportional to the resultant moment (of force) m(s) acting at the point Ŵ(s) (and directed 
along e3 ) through the Euler-Bernoulli formula:

This relation holds because we are considering unshearable rods. With E we are denoting the Young’s modulus, 
which expresses the stiffness of the material, and with I the second moment of area of the cross-section (with 
respect to e3 ). We assume that the rod is in elastic equilibrium, that is, all the internal forces and moments are in 
balance with the external forces and moments. In this framework, considering equation (1) and the gravity force 
as the only external force acting on the rod, we can write the following differential equation (see for instance35)

(1)m(s) = −E(s)I(s)(∂sθ(s)− ∂s θ̂ (s)).

(2)∂s(EI(∂s θ̂ − ∂sθ))(s) = sin(θ(s))g

∫ L

s
ρ3(s

′)A(s′)ds′.
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In this equation, g represents the gravity acceleration constant, ρ3(s) the volume density of the shoot/rod at 
the point Ŵ(s) and A(s) the cross-section area at that point.

We are now interested in computing the internal bending stresses. We know that the internal moment m is 
generated by the deflection from the intrinsic configuration Ŵ̂ . Indeed, this deflection generates an internal pres-
sure called stress, that we denote with σ , and a deformation ε of each element of the rod, called strain. Stresses 
and strains vary according to the position Ŵ(s) on the rod, and depend also on the position on the cross-section. 
Since the rod is ushearable, the cross-section is always orthogonal to the tangent vector ∂sŴ . To describe the 
position of a generic point on the cross-section at Ŵ(s) , we name

the normal vector, which is orthogonal to ∂sŴ(s) , and we consider the binormal vector

Then, the cross-section at the point Ŵ(s) is a subset C(s) of the plane span{β(s), τ(s)} with the origin on the 
centerline. We define

In this framework, the maximal bending stress at Ŵ(s) results to be36

Formulation of the models
We assume that the searcher shoot has a circular cross-section with radius r and that the Young’s modulus E is 
constant all along the shoot. So, we have

and we name

So, equation (2) can be rewritten as

with

These equations hold for a.e. s ∈ [0, L] . At the boundary of this domain, we assume (1) to know the angle at 
the base of the shoot θ(0) = θ0 ; (2) that at the tip of the shoot, there is not any external weight so that the intrinsic 
curvature equals the current curvature. Using the functions defined above, this means ψ(L) = 0 and µ(L) = 0 ; 
(3) the mass M of the whole shoot is known, so that µ(0) = M.

The effectiveness of the self-sustaining behavior of the shoot can be quantitatively evaluated considering a 
threshold for the maximal internal stresses. In other words, we would like to find a distribution of the mass such 
that the maximal stress at each point of the shoot σm(s) does not cross some fixed value σ̄ . Employing equation 
(Eq. 3), this means that any solution of system (Eq. 4) which satisfies the boundary conditions above discussed, 
has also to satisfy the condition

with

We group all these considerations into the following problems.

β(s) =
∂2s Ŵ(s)

|∂2s Ŵ(s)|
∈ span{e1, e2}

τ(s) =
∂sŴ × β(s)

|∂sŴ(s)× β(s)|
,

C(s, z) = {w ∈ R : Ŵ(s)+ zβ(s)+ wτ ∈ C(s)}.

(3)
σm(s) = max{|w| : C(s,w) �= ∅} ·

m(s)

I(s)

= max{|w| : C(s,w) �= ∅} · E(s)|∂sθ(s)− ∂s θ̂ (s)|.

A(s) = πr2(s)

I(s) =
π

4
r4(s)

r(s) = max{|w| : C(s,w) �= ∅}

u(s) = r2(s), ψ(s) = u2(s)(∂s θ̂ (s)− ∂sθ(s)), µ(s) =

∫ L

s
πρ3(s

′)u(s′)ds′

(4)







∂sψ(s) = c1 sin(θ(s))µ(s)

∂sθ(s) = ∂s θ̂ (s)−
ψ(s)
u2(s)

∂sµ = −πρ3(s)u(s)

c1 =
4g

πE
.

(5)|ψ(s)| ≤ c2u
3/2(s) for every s ∈ [0, L]

c2 =
σ̄

E
.
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Problem of shoot growth with Mechanics (Me). We want to find the maximal length L of the shoot for which 
there exists at each point a radius r(s) such that the following system is satisfied

Problem of shoot growth with Mechanics and Leaves (MeLe). In problem (Me) we consider just the weight 
of the main stem. However, in most of climbing plant species, a relevant part of the total biomass is due to the 
leaves. We assume that the leaves are not uniformly distributed along the shoot. On the contrary, we assume that 
they are located at intervals equally spaced. Moreover, we assume that the mass mlm of a single leaf at the point 
Ŵ(s) depends just on the shoot radius r(s) at Ŵ(s) (so mlm = mlm(r(s)) ). Let dlm the distance between two leaves 
locations and nlm the (fixed) number of leaves at each location. Then, we name

where Nlm is the total number of leaves locations. Therefore, si denotes the arc length of the i-th leaves location. 
Now, we want to compute how the weight of the leaves affects the shoot at the point Ŵ(s) . To achieve this, we 
subtract from the total leaves mass Mlm the mass of the leaves in the shoot portion between the base and Ŵ(s) . 
We define

and

where the operation ⌊x⌋ is the greatest integer lower or equal than x. Then, to take the leaves into account, we 
compute the gravity force acting at the point Ŵ(s) :

This leads to another problem of length maximization. Like for the (Me) case, we want to find the maximal 
length L of the shoot for which there exists at each point a radius r(s) such that

Reinforcement Learning framework
We define the Searcher-Shoot environment as a Markov decision process problem (see Supplementary Material). 
Here, the agent is the liana’s searcher shoot, a structure that has presumably been selected during evolution to 
have the greatest reach to colonize its environment by adjusting on its mechanical properties and the taper of the 
shoot’s diameter. Specifically, the agent learns how to complete the task (i.e., the mass distribution) in the highest 
number of steps, choosing radius values does not generate internal stresses over a fixed threshold.

The fundamental elements of the framework are:

•	 State and observations. At each step, the agent, in the current state, can observe the mass, the radius, and 
the curvature before the next move. The choice of such a state is due to algorithmic and biological reasons. 
Indeed, in our algorithm, the agent controls the distribution of the mass by choosing the radius at each step. 
To this aim, the agent is able to observe the (remaining) mass and the radius. Regarding the curvature, it is 
a stop criterion and an index of efficiency. Moreover, plants are able to sense their own curvature through 
specialized fiber cells37. Plants are also able to sense their own inclination38, but we prefer to keep the number 
of observable variables as low as possible in order to reduce the computational effort of the algorithm.

•	 Actions. In this framework, the action space is discrete. In the (Me) and (MeLe) models, at each time step, the 
agent can select one action among eleven options: it can leave the radius value unchanged or it can increase 
(or decrease) the radius of a certain quantity ( ±1× 10−5 , ±2× 10−5 , ±3× 10−5 , ±4× 10−5 , ±5× 10−5 ). 

(Me)



































∂sψ(s) = c1 sin(θ(s))µ(s)

∂sθ(s) = ∂s θ̂ (s)−
ψ(s)
u2(s)

∂sµ = −πρ3(s)u(s)
ψ(L) = 0
θ(0) = θ0
µ(0) = M, µ(L) = 0
|ψ(s)| ≤ c2u

3/2(s)

.

si = i × dlm for i = 1, ..., Nlm,

qlm(s) =

⌊

s

dlm

⌋

RESlm(s) = Mlm − nlm

qlm(s)
∑

i=0

mlm(r(si)),

−g

[
∫ L

s
ρ3(s

′)A(s′)ds′ + RESlm(s)

]

e2.

(MeLe)








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
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



















∂sψ(s) = c1 sin(θ(s))(µ(s)+ RESlm(s))

∂sθ(s) = ∂s θ̂ (s)−
ψ(s)
u2(s)

∂sµ = −πρ3(s)u(s)
ψ(L) = 0
θ(0) = θ0
µ(0) = M, µ(L) = 0
|ψ(s)| ≤ c2u

3/2(s)

.
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Of course, this selection will influence the mass distribution: intuitively, the larger the radius value, the larger 
the mass allocated in the next step.

•	 Reward. Every time the agent moves to the next step, it will receive positive feedback equal to +1 . Whether 
the move ends with the total mass equivalent to or less than 0, or the condition on the curvature (Eq. 5) is 
violated, the reward is 0 and the algorithm stops.

•	 Episode and Reset. The episode does not have a fixed term. Instead, it ends whether the mass becomes zero 
or negative or the picked radius causes the curvature to violate condition (Eq. 5), as displayed in Algorithm 1 
and 2. Then, we set the system parameters and the observation space to their initial values.

Require: M > 0
r > 0
(ψ, θ, µ) ← (ψ0, π/2,M)
while µ ≥ 0 and ψ ≤ c2 × r3 do

r ← r or rS or rL
ρ ← cvd + bvd · r + avd · r2
(ψ, θ, µ) ← Solve System (Me) with u = r2, ρ3 ≡ ρ,

ψ(0) = ψ, θ(0) = θ, µ(0) = µ
reward = 1

end while
reward = 0

Algorithm 1.   Algorithm of Shoot growth with mechanics.

Require: M > 0, Mlm ≥ 0, dlm > 0, dlm > h > 0
r > 0
dbase ← 0
(ψ, θ, µ) ← (ψ0, π/2,M)
RES ← Mlm
while µ ≥ 0 and ψ ≤ c2 × r3 do

r ← r or rS or rL
ρ ← cvd + bvd · r + avd · r2
if dbase % dlm < h and RES > 0 then

RES ← RES −nlm · (clm + blm · r + alm · r2)
end if
(ψ, θ, µ) ← Solve System (MeLe) with u = r2, ρ3 ≡ ρ, RESlm = RES

ψ(0) = ψ, θ(0) = θ, µ(0) = µ
dbase ← dbase + h
reward = 1

end while
reward = 0

Algorithm 2.   Algorithm of Shoot growth with mechanics and leaves.

Models implementation and parameters
To begin with, we implement the System of equations (Me) in the Searcher-Shoot environment. In such a sys-
tem, we consider stress and strain as factors responsible for its shaping, together with gravity, which acts as an 
external force on the plant’s structure, affecting its curvature. Moreover, the material density is a function of the 
radius r, defined as follows:

We use Algorithm 1 to clarify the approach we implemented. Starting from an initial configuration of curva-
ture, angle and mass (ψ0,−π/2,M) , and given an initial radius R0 , at each step of the algorithm the agent chooses 
how much to increase or decrease the current radius. Consequently, the total mass decreases and curvature 
and angle change accordingly to System (Me). This process is repeated until the mass vanishes or the curvature 
constraint is violated. The values of the constants c2 and ψ0 are estimated in two ways, leading to two groups of 
simulations. In the first group, c2 and ψ0 are the same for all the samples, while in the second group, they are 
estimated specifically for each sample by utilizing the method described in33.

Successively, we add the leaves’ mass contribution, which affects the plant’s weight remarkably. We implement 
the System of equations (MeLe), where we can notice that the effects of the leaves are visible on the curvature 
and, then, in the formulation of the equation of ψ . As for the material density, the mass of a single leaf depends 
on the radius r according to the following relation:

In Algorithm 2 we clarify how we implement our model in the RL context. The Algorithm iterations are 
similar to Algorithm 1, and in addition, we consider the mass of the leaves and check whether at the position of 
the agent there is a group of leaves or not. In Table 4, we include all the parameters used in the models.

(6)ρ3 = cvd + bvd · r + avd · r
2.

(7)mml = clm + blm · r + alm · r2.
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Statement on research methodology
The research methodology employed in this study adheres strictly to ethical and legal considerations associ-
ated with experimental research and field studies on plants. We affirm our compliance with relevant institu-
tional, national, and international guidelines and legislation governing such research endeavors. Additionally, 
we emphasize our commitment to following the IUCN Policy Statement on Research Involving Species at Risk 
of Extinction and the Convention on the Trade in Endangered Species of Wild Fauna and Flora. This ensures the 
responsible and ethical conduct of our research with due consideration for the well-being of the studied plant 
species and the broader ecosystem.

Data availability
All data generated or analyzed during this study are included in this published article and in its Supplementary 
Material.
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