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Detection and Mapping of Cover Crops Using
Sentinel-1 SAR Remote Sensing Data

Sami Najem , Nicolas Baghdadi , Hassan Bazzi , Nathalie Lalande , and Laurent Bouchet

Abstract—Cover crops are intermediary crops planted in be-
tween two main cash crops. They play a role in limiting nitrate
leaching into groundwater. Currently, there is no database per-
taining to cover crops despite their importance. The development
period of cover crops is characterized by a dense cloud cover in
Europe, which obstructs land surface monitoring using optical
remote sensing. This study proposes a cover crops mapping method
based on synthetic aperture radar remote sensing data from the
Sentinel-1 (S1) constellation, which is unaffected by weather condi-
tions. Our method is based on the dynamics of the S1 backscattering
coefficient at the plot level. Using a decision tree, we mapped cover
crops. In the decision tree algorithm, filters were added to eliminate
other crops that temporally intersect with the cover crop, namely
wheat and rapeseed. The proposed decision tree proved effective in
detecting existing cover crop plots, as shown by the classification
Recall values ranging between 83.5% and 95.0% and the high pre-
cision values ranging between 81.5% and 89.2%. Comparison with
the Random Forest classifier showed that our proposed method
yielded better and more consistent results. The main limitations
in the classification approach were weak cover crops and residual
vegetation. The results show that the developed approach, based
on the S1 time series, is capable of remotely monitoring cover
crops, giving managers and decision makers the ability to follow
farmers’ work and ascertain if they are applying the recommended
agricultural practices that promote sustainable land use and limit
the contamination of groundwater.

Index Terms—Cover crops, groundwater, synthetic aperture
radar (SAR) remote sensing, Sentinel-1 (S1), sustainable land use.

I. INTRODUCTION

THE world’s population is increasing rapidly, leading to
higher demand for food resources. This growing demand

begets a need to improve agricultural productivity, resulting in
more intense exploitation of agricultural land [1], [2] and in an
increased use of chemical fertilizers. Unfortunately, when not
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managed correctly, excess fertilizers move through the soil pro-
file and reach the groundwater table causing the contamination
of the groundwater table with nitrates [3], [4]. This happens
through a process called nitrate leaching, leading to negative
health impacts on communities, caused by the contamination
of drinking water sources [5], and to environmental harm to
aquatic ecosystems, caused by the high concentration of nitrates
[6], [7]. Leaching is influenced by many factors such as leach-
ing potential, soil characteristics, irrigation practices [8], [9],
and agricultural practices (fertilizer inputs, tillage). One of the
practices commonly used to reduce nitrate infiltration into the
groundwater is cover cropping [10], [11], [12].

Cover cropping can be a powerful tool for promoting healthy
soil and sustainable agriculture practices [13], [14]; it is a part
of the conservation agriculture practices (along with zero tilling
and mulching) that are applied by farmers around the world [15].
The primary functions of cover crops include limiting nutrient
leaching, mitigating soil erosion, and enhancing long-term soil
fertility [16], [17], [18], [19]. The influence of cover crops arises
from their ability to minimize the loss of nitrates, nutrients, and
sediment from agricultural fields [20], [21] because they act as a
barrier, hindering the movement and transfer of materials [22].
Hence, they can capture nutrients during the winter months that
will later be released at the start of the growing season of the
subsequent main crop [23]. In fact, cover crops are proven to be
effective in reducing nitrate leaching [24]. Other than reducing
nitrate leaching, cover crops also limit soil erosion and weed
growth through competition. Wood and Bowman [25] found
that cover crops have impacts on four soil health indicators
(active carbon, aggregate stability, respiration, and total organic
matter). On a larger scale, cover crops play an important role in
water conservation at the basin level by protecting groundwater
from pollution [26]. Conversely, the absence of cover cropping
leads to nutrient leaching since soils are exposed following
the harvest of main crops. Cover crops are sown subsequent
to the harvest of a field, serving the purpose of providing soil
coverage to enhance the agroecosystem. They are fast-growing
crops, grown between successive plantings of a main crop. In
our study areas (located in the west of France), cover crops
are planted from mid-August to mid-October, after summer
crops (maize, sunflower, etc.) or after winter crops (wheat,
rapeseed, etc.), and then harvested (plowed) before planting
the next crop from mid-November to end-March, depending on
planting time if the following crop. Effective cover crop manage-
ment involves careful planning, proper timing, and attention to
detail.
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The Nitrates Directive (91/676/EEC) was adopted in 1991
by the United Nations. It has two objectives: the first is to re-
duce water pollution caused by nitrates and eutrophication from
agricultural activities and the second is to prevent the spread
of such pollution. From 2012 on, winter soil cover became
mandatory for all farms in vulnerable zones (a vulnerable zone,
is a part of the territory, defined by the Nitrates Directive as
water pollution by the direct or indirect discharge of nitrates
of agricultural origin threatens in the short term the quality
of aquatic environments and more particularly drinking water
supply). Furthermore, over the last two decades, the EU Water
Framework Directive (Directive 2000/60/EC) has been advocat-
ing the use of cover cropping as a measure to safeguard water
bodies against excessive fertilization. The European legislative
guidelines on the Common Agricultural Policy (EU Regulation
No 1307/2013) have provided the primary legal framework for
on-site monitoring and the requirement for comprehensive in-
formation on cover cropping areas. These EU-level legislations
along with numerous other national and local level legislations
(“Nitrates directive”) adopted in 1991 aim to reduce water
pollution caused by nitrates from agricultural sources. In 2011,
these measures were expanded in France through the sixth “ni-
trates” action program consisting of a national action program,
containing mandatory measures for all French vulnerable zones.
Moreover, there are regional (department level or drinking water
catchment supply area) action programs that are adapted to each
territory that reinforce certain measures taken on the national
level with additional actions in order to achieve the water quality
objectives. These legislations elevated the importance of the
monitoring and detection of cover cropping throughout the Eu-
ropean region, leading to the increased interest in modern, tech-
nologically advanced tools that allow for the monitoring of large
areas quickly and affordably, most notably remote sensing data.

Remote sensing data has been widely employed for the moni-
toring of vegetation covers [27], [28]; it offers advantages such as
the relatively few resources needed when compared to traditional
field visits, and the ability to have large-scale applications when
needed. Optical remote sensing is a very important tool for
quantitatively assessing vegetation abundance [29]. Through the
analysis of reflected light across various spectral bands, optical
remote sensing enables the extraction of essential information
pertaining to vegetation characteristics and dynamics. Indices,
such as the normalized difference vegetation index (NDVI) [30],
facilitate the precise quantification of vegetation density and
health [31], [32]. Optical multispectral remote sensing has been
used for estimating crop areas by generating crop type maps
and conducting crop classification [33], [34], [35]. Furthermore,
it has proven valuable for assessing various plant-biophysical
characteristics, such as the green leaf area index and canopy-
level chlorophyll content among others [36], [37]. Prabhakara
et al. [38] studied the relationship between ten different visible
range and near-infrared indices and the percent ground cover
and biomass of winter cover crops were compared, showing that
the NDVI was strongly correlated with the percent groundcover
(r2 = 0.93) and that the triangular vegetation index was best and
used high ranges of biomass (r2= 0.86). The European Sentinel-
2 (S2) constellation, in particular, produces free and open access
data with a high spatial resolution ranging from 10 m to 60 m (10
m × 10 m for the bands used for NDVI) as well a high temporal

resolution (five days revisit time). These characteristics allow for
its use in crop detection as well as the mapping of changes in land
use throughout the growing season with a high overall accuracy
higher than 90% [39], [40]. S2 data were also utilized for map-
ping of cover crops with an overall accuracy of over 84% [41].

A significant challenge for optical remote sensing data in
monitoring the seasonal dynamics of crops during winter arises
from the limited availability of cloud-free optical images in
the northern hemisphere. To overcome this limitation, synthetic
aperture radar (SAR) data offer a reliable alternative. SAR is a
remote sensing technology that uses microwave radiation to take
scans of Earth’s surface. During cloudy months, SAR images
enable the study of intra-annual vegetation changes because they
are unaffected by atmospheric conditions [42].

Since vegetation affects the SAR backscattered signal accord-
ing to its density and the geometric structure of its components
(leaves, stems, and fruit), there is a direct link between the SAR
backscattering mechanisms and characteristics of the vegetation
cover [43], [44], [45]. The European Sentinel-1 (S1) SAR data
have a high spatial resolution (pixel spacing of 10 m × 10 m)
and a high temporal resolution (six days revisit time). For crop
monitoring, SAR data could be used in a complementary fashion
with optical images [46], [47], except in regions with persistent
cloud cover (tropical and equatorial zones) where radar data
are exclusively used. In a study proposed by Minh et al. [48],
deep learning techniques were applied for winter crop detection
using the S1 time-series, achieving an overall accuracy higher
than 90%. In their study, they used vertical–horizontal (VH)
and vertical–vertical (VV) polarizations in order to identify the
density of the vegetation cover, without discriminating winter
crops from cover crops. The vegetation was split into five
classes from bare soil to high-density vegetation. They obtain
the best performances in the high-density class and the lowest
performances in the low-density class.

Seeing the potential of SAR in vegetation monitoring and
since optical remote sensing data is not reliably available in
the winter months, the aim of this study is to map cover crop
fields using S1 SAR data. S1 time series were used in order
to extract the radar signal from each agricultural field in the
VV and VH polarizations. In addition to these raw channels,
additional channels based on the mean S1 signal at the grid
scale (5 km × 5 km) were used in order to reduce the soil
contribution from the total S1 signals. The classification method
we developed at the plot scale is a multilevel decision tree that
classifies the fields based on criteria from multiple S1 channels.
The classification method eliminates fields that have other types
of vegetation during the same period as the cover crops (wheat
and rapeseed). The final classification indicates whether the field
had a cover crop or not. Finally, the result of our decision tree will
be compared to the results of the Random Forest (RF) classifier,
which is a commonly used machine learning classifier.

II. MATERIALS AND METHODS

A. Study Sites

We conducted this study in the Charente-Maritime Depart-
ment in the west of France. The arable surface makes up 64% of
the total area in this department. Fig. 1 shows the location of the
two examined sites, the first had an area of around 500 km2
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Fig. 1. Location of our two study sites.

near the city of La Rochelle and the second had an area of
around 900 km2 and is located near the city (commune) of
Saintes in the watershed of Arnoult River, referred to hereafter as
“Arnoult.” The climate in this region is oceanic with around 1000
mm of rainfall and 2000 h of sun annually. The principal crop
types in the area are wheat, maize, sunflower, and rapeseed. For
example, according to the farmer’s declarations of the year 2018
(https://geoservices.ign.fr/rpg), 26.8% of the agricultural field in
the study sites had wheat, 22.1% had maize, 8.9% had sunflower,
and 2.3% had rapeseed. In the two study sites, cover crops
are cultivated either between one summer crop (usually maize
or sunflower) and one winter crop (cereal, usually wheat) or
between two summer crops (maize or sunflower). Generally, in
this region, cover crops are planted by mid-October at the latest
and harvested by mid-November at the earliest. The harvesting
date of cover crops depends on the following crop. If the next
crop is a winter crop, then the cover crops will be harvested early
[from mid-November of the first year (Y1) to end-December of
the next year (Y2)]. However, if the next crop is a summer crop,
then the cover crop will be harvested from the beginning of
February to end-March of the second year (Y2).

B. Sentinel-1 Remote Sensing Data

For this study, we used a time-series of Sentinel 1A and
Sentinel 1B satellite-captured C-band SAR images (5.405 GHz).
All the available acquisitions were utilized consisting of the
“ascending” (evening at 18:00 UT) and “descending” (morning
at 06:00 UT) acquisitions. Fig. 2 shows the extent of the orbits
used in this study.

We used both the VV and VH polarizations from every
acquisition. S1 images have a spatial resolution of 10 m × 10 m.
The data are available freely on the European Space Agency’s
(ESA) website (https://scihub.copernicus.eu/dhus/#/home). We
downloaded and processed S1 data from 2017 to 2021. The
number of orbits used, as well as the number of S1 images,
is detailed in Table I. The data were calibrated using the ESA
S1 toolbox. The radiometric calibration is the first step in the
calibration process; it is the processing of transforming the data

Fig. 2. S1 orbits used in this study.

TABLE I
NUMBER OF ORBITS IN EACH YEAR AND THE TOTAL NUMBER OF

CORRESPONDING S1 IMAGES PER YEAR

Fig. 3. Frequency of S1 images in “ascending” (A) and “descending” (D) for
all orbits covering our study sites. The hatched area represents the period with
no S1 acquisitions.

from a digital number into a backscattering coefficientσ in linear
units. The second type of correction is orthorectification; it is the
geometric correcting of the SAR images using a digital elevation
model at 30 m from the shuttle radar topography mission as a
topographical reference.

All the acquired images were stacked regardless of the acqui-
sition orbit. For each reference field, an S1 acquisition dataset
was built consisting of three orbits. Fig. 3 shows the temporal
distribution of the S1 orbits over our study site. The first acquisi-
tion is a “descending” image belonging to the orbit 81 (D81). The
following image comes 24 h later and is a descending acquisition
as well, this time, from orbit 8 (D8). Then, the third acquisition
comes 36 h later as an ascending acquisition from orbit 30 (A30).

https://geoservices.ign.fr/rpg
https://scihub.copernicus.eu/dhus/#/home
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Six days after the first image, the cycle repeats in the same way
with a new D81 image. The hatched area in Fig. 3 represents the
3.5-day period that separates every bunch of three images (D81,
D8, and A30) from the next. The incidence angles for our study
sites were between 23° and 38° for orbit 81 and between 32°
and 48° for both orbits 8 and 30.

After calibration, every S1 image offers two outputs, an image
of the backscattering coefficient in the VV polarization and an
image of the backscattering coefficient in the VH polarization.
Thus, our times-series of S1 images results in two basic resulting
time-series: the VV time-series and the VH time-series. In
addition, we created a new time-series that is the difference
between the VH and the VV values at every date, called the
VH–VV times-series.

In order to work on the field scale, we averaged the pixels in
each reference field, obtaining a single representative value for
each field. The end results of this process were three time-series
at the field level (marked with a “p”) VVp, VHp, (VHp−VVp).

In addition to S1 images, all cloud-free S2 optical images over
each study site/year were downloaded from the Theia website
(https://www.theia-land.fr/). The S2 images provided by Theia
are corrected for atmospheric interference and so are called
Level-2A products. S2 images were mainly used to calculate
the NDVI time series. Our approach developed in this study
does not use optical data. However, NDVI data calculated from
S2 images were used to better understand the phenological
cycle of the different reference fields visited during the field
surveys.

C. In Situ Data

The in situ database consists of field observations on the type
of crop on numerous reference fields. The field surveys were
performed in the years 2017, 2018, 2019, and 2020 between
October and December of each year. Field observations were
mainly provided from the ReadyNov PollDiff Captages collab-
orative project led by Envilys Dev and financed by European
EAFRD funds and the Occitanie Region (2018–2021). For the La
Rochelle site, 1066 observations were available (one observation
= one field) compared to 919 observations for the Arnoult site.
Around 40% of the dataset is marked as having a cover crop
between two main crops.

The French registry for agricultural fields [Registre Parcel-
laire Graphique (RPG)] was used to correctly delineate the
boundary of all agricultural plots in our study area. It is produced
on a yearly basis. The RPG is available for download on the
French state’s GeoServices website (https://geoservices.ign.fr/
rpg). For each year in the study period, the corresponding RPG
was used.

D. Classification Method

In addition to the S1 time series at the plot scale, VVp, VHp,
and VHp−VVp additional layers calculated from S1 images
were produced. Given that the S1 signal can show strong fluctu-
ations with changes in soil moisture mainly due to rainfall [49],
reducing these fluctuations caused by soil moisture in the S1
signal would be useful in order to better monitor the phenological

cycle of cover crop and extract only the vegetation contribution
in the S1 backscattered signal. In a study by Bazzi et al. [50], they
showed that radar signal averaged at the grid scale (5–10 km2) is
strongly correlated with rainfall events. They demonstrated that
between two consecutive S1 images, the main increase/decrease
in the S1 signal at the grid scale is mainly due to the pres-
ence/absence of rainfall events between these two S1 dates. In
their study, they used the differences between the S1 SAR signal
calculated at grid scale (representing only rainfall effects) and
that calculated at plot scale to remove the rainfall–irrigation
ambiguity and detect irrigation events at plot scale [50], [51],
[52]. Following the same logic, and in order to remove the effect
of rainfall contribution in the S1 backscattered signal at plot sale,
we proposed subtracting the plot scale from the grid scale S1
signal. Thus, the following additional channels were produced
VVp−VVg, VHp−VHg, and (VHp−VVp)–(VHg−VVg) (the
latter channel is called (VH−VV)p−g). The S1 signal at grid
scale was calculated by averaging the backscattering coefficient
of all agricultural pixels with an NDVI value below 0.4 in
each grid cell of 5 km × 5 km. Using agricultural pixels with
NDVI less than 0.4 ensures that the calculated backscattered
signal at 5 km × 5 km is only affected by the soil moisture
variation (mainly rainfall) and has no high vegetation contri-
bution. Thus, for each polarization and grid cell, the average
backscatter coefficient was obtained (marked with a “g”). The
average signal over each grid cell reflects the soil moisture con-
ditions of the cell; therefore, any rainfall events at the grid level
will be detectable. Finally, four new channels were calculated
VVp−VVg, VHp−VHg, and (VHp−VVp)–(VHg−VVg). This
latter channel is called (VH−VV)p−g.

Furthermore, using the difference between channels (e.g.,
VHp−VVp, VHp−VHg, and VVp−VVg) reduces the effect
of incidence angle. In fact, the radar signal depends on the in-
cidence angle, it decreases when the incidence angle decreases.
For example, the radar signal for a given target can be up to 2 dB
weaker with an incidence angle of 48° (the lowest incidence
on our site) than with an incidence angle of 23° (the highest
incidence on our site) [53]. The difference between channels
also highlights the contribution of vegetation and amplifies the
difference between vegetation covers and bare soil by subtract-
ing the effect of the bare soil (represented by the grid-level data).

Smoothing was then applied to every channel using the Gaus-
sian smoothing method, allowing us to detect the maximums
(peaks) and minimums in our time series. The dates of the peaks
were located by following the dynamic of the time series and
retrieving the dates at which the amplitude of the time series at
the date t is bigger than the amplitude at the date t − 1 and also
bigger than that at t + 1. The dates of the minimums are located
by following the opposite strategy, with the amplitude at time t
being smaller than the amplitude that precedes at t − 1 and also
smaller than the one that follows at t + 1.

In order to distinguish rapeseed fields using our classification
approach, we used the main peak that characterizes the rapeseed
between 1 April and mid-June in the S1 time series VHp−VHg
[54], [55]. In fact, during the rapid spring growth of rape-
seed between April and June, a strong increase in VHp−VHg
is observed corresponding to stem elongation, inflorescence

https://www.theia-land.fr/
https://geoservices.ign.fr/rpg
https://geoservices.ign.fr/rpg
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emergence, and fruit development [56]. Thus, normalization
and Gaussian fitting were applied to the VHp−VHg channel
in order to detect the characteristic peak of the rapeseed. First, a
normalization was performed using the min–max normalization
method

N_ (VHp − VHg) (i)

=
(VHp − VHg) (i)− min (VHp − VHg)
max (VHp − VHg) − min (VHp − VHg)

where N_(VHp − VHg) (i) is the ith normalized data. After
normalization, a Gaussian curve fitting was performed on the
N_(VHp−VHg) channel in order to find and register the peaks
(position of Gaussians) as well as the minimums.

Finally, we created a database for all the S1 channels pro-
cessed containing the position and the amplitude of each maxi-
mum and minimum.

Each crop type has an S1 time series with a specific behavior,
depending on its phenological cycle and on vegetation charac-
teristics (e.g., vegetation water content, biomass, structure). This
temporal variability in backscattering coefficients between crops
opens a perspective to identify and classify the crops, based
on their temporal S1 footprint. Thus, the dynamic signature
of the backscattering coefficients of different crops constitutes
the basis of our classification approach, which will use the
decision tree technique. It is a decision tree consisting of simple
“yes” or “no” decisions at every decision node. Each decision
node relies on one of the backscattering characteristics of the
crops. Attributes such as the approximate sowing and harvesting
dates and the date of maximum growth (high biomass), among
others, were used at every node in the decision tree in order to
progressively eliminate crops other than cover crops and reach a
final classification of cover crop and not a cover crop. Each step
in the decision tree leads bifurcated branch; in most cases, one
of these two branches is a limiting pathway, ending the process
and deciding that the plot is not a cover crop.

Fig. 4 is an example of all the S1 time series (6 channels)
used in this study in order to build our classification approach.
Fig. 4(a) shows the dynamic of VHp−VVp over a cover crop
plot through time. Within the red frame, we find one peak of
VHp−VVp and two surrounding minimums, showing the full
development and then the recession of the cover crop, with the
beginning (minimum before the peak), the maximum growth
(peak), and the end (minimum that follows the peak) of the cover
crop life cycle. In our study sites, planting of cover crops usually
begins in mid-August to mid-October of the first year (Y1) and
the harvesting occurs from 1 November of the first year (Y1) to
end-March of the second year (Y2). In order to correctly classify
cover crops, our detection method uses S1 time series between
1 May Y1 and end-June Y2 in order to follow the development
of all crops in the study region not only the cover crops because
we also need to distinguish temporally overlapping and adjacent
crops, such as wheat and rapeseed, from the cover crop.

For the detection of cover crops, we will use S1 time series
between 1 May Y1 and end-June Y2. This range of S1 dates
is necessary in order to detect the fields with cover crops while
eliminating other overlapping crops that are shown in Fig. 4

since the VHp–VVp is the channel that follows most clearly
the development of cover crops (the (VV−VH)p−g channel
also well represents the vegetation development but we chose
the VHp-VVp channel because it requires fewer layers). The
first step in our decision tree is to check if we have a peak in
VHp−VVp (a maximum resulting from the smoothing of the
VHp–VVp channel) in our period of interest from 15 September
Y1 to 31 March Y2 (the period within which we have the peak of
the cover crops growth, starting approximately one month after
sowing) in blue in Fig. 4.

If we do have at least one peak, we continue to the next step
in our decision tree. The rest of the decision tree will be applied
to every peak found within this period. Next, our decision tree
is split into two main branches: one for detecting “early” cover
crops with a cultivation period in our study sites between 15
September Y1 and 31 January Y2 and one for detecting “tardy”
cover crops with a cultivation period between 1 February and 31
March Y2. For the early cover crops branch, we will then look
if the peak detected is in January of Y1 and if the difference in
amplitudes between this peak and the minimum before it is less
than 0.5 dB (these two conditions are strongly linked to cereal
crops).

If both of these conditions are met, the field is classified as
not a cover crop [indicating probably wheat, Fig. 5(a)]; if one
or both of these conditions are not met, we proceed to the next
level in the decision tree. For the tardy cover branch, we check
if we have a minimum in the VHp−VHg channel between 1
April and end-June; this condition was used because cereal crops
show a distinctive dip in the VHp−VHg channel during this
period caused by the emergence of heads in these crops. If this
condition is met, the plot is characterized as not cover crops
[indicating probably wheat, Fig. 5(b)]; if this condition is not
met, we proceed to the next level in the decision tree (possible
cover crop). The two branches reunite at the next level in the
decision tree. In the next step in our decision tree, we check the
presence of two minimums in VHp–VVp (the channels that best
follow cover crop development), one minimum before the peak
(from the 1 May to the day of the peak) and also one minimum
after the peak (from the day of the peak to end-June). In fact,
the minimum that is before the peak indicates the end of the
preceding crop (allowing for the planting of the cover crop),
while the minimum that is after the peak signifies the end of
the cover crop cycle. If both of these minimums are present, we
can continue to the next step in our decision tree (possible cover
crop).

For the next and final step in our decision tree, in order to
eliminate any ambiguity with rapeseed, we look for multiple
conditions. First, we look if we have a peak in the normalized
and Gaussian fitted VHp−VHg from 1 April to 15 June Y2 since
that is when the strongest signal from rapeseed in the VHp−VHg
channel is observed (this channel best shows fruit development,
right after the flowering stage). Second, we examine to see if
this peak has the highest amplitude in the time series with a
normalized amplitude that is superior to 0.6 (this condition is
necessary to have for a rapeseed crop). Third, we look for a lack
of a minimum in (VH−VV)p−g between 1 Feb to end-March Y2
(if present, this minimum would indicate that this is not, in fact,
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Fig. 4. S1 time series examples for a cover crop plot showing the raw signal and the smoothed signal. The blue and yellow points are respectively the maximum
“peaks” and the minimum in our S1 time series for (a) VHp−VVp, (b) VVp, (c) VHp, (d) (VV−VH)p−g, (e) VVp−VVg, and (f) VHp−VHg. In addition, NDVI
values calculated from S2 images are plotted.

rapeseed crop) or the presence of a minimum with an amplitude
lower than 0 dB (in this case, the minimum is not considered as
a true minimum and is insignificant). If these conditions were
met, that signals the possible presence of a rapeseed culture [see
Fig. 5(c)]. If one or all of these conditions were not met, then
we classify the field as having a cover crop. Fig. 6 shows the
decision tree, detailing every step.

In addition, we will also use the RF classifier in order to com-
pare the results of our proposed classifier with this commonly
used classifier

E. Accuracy Metrics

In order to measure the reliability of our method, we used
common classification metrics that measure the skill of our
decision tree at detecting the presence of cover crops on one

hand, and our ability to distinguish between cover crops and
temporally intersecting or adjacent crops. For this purpose, we
used the recall, precision, and Kappa metrics, comparing the
results of our classification method to the collected ground truth
data. Table II lists the description and equation of these accuracy
metrics.

III. RESULTS

A. Classification Accuracy

The results of the classification are presented by sites “La
Rochelle” and “Arnoult” and by growing season. For example,
for a given site, during the 2017–2018 growing season, cover
crops can be planted from mid-August to mid-October 2017
and harvested from mid-November to end-March 2018, so we
are classifying cover crops using data from both years (we look
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Fig. 5. S1 time series examples for (a) wheat plot in the VHp−VVp channel showing Delta peak − min < 0.5 dB; (b) wheat plot in the (VH−VV)p−g showing
a minimum between 1 April and end-June, (c) rapeseed plot showing a peak in Normalized and Gaussian fitted VHp−VHg (seen in green) from 1 April to 15 June
Y2.

TABLE II
DESCRIPTION OF THE ACCURACY METRICS USED IN THIS STUDY

for a peak of VHp−VVp from 15 September 2017 to end-March
2018). Table III illustrates the accuracy of our results compared
to ground truth. It shows the Recall, Precision, Kappa, User’s
accuracy, and Producer’s accuracy values of our method for

every growing season from 2017–2018 to 2020–2021 and for
each of our study sites.

For the «La Rochelle» site, the Recall value ranges from
83.5% for the 2017–2018 season to 95.0% for the 2020–2021
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Fig. 6. Diagram of our proposed cover crop mapping approach based on the decision tree. This decision tree is applied to every peak located within the 15
September Y1 to 31 March Y2 time period (cover crop presence period). “peaks” and “minimums” refer respectively to the maximums and the minimums that are
detected in the S1 time series after Gaussian smoothing. Delta amplitude = amplitude of peak − amplitude of minimum. CC: Cover crops.

season, while the Precision ranged from 89.1% for the 2018–
2019 season to 88.3% in the 2020–2021 season and Kappa
ranges from 0.76 in the 2019–2020 to 0.89 in the 2020–2021
seasons.

In the «Arnoult» site, Recall ranges from 84.6% in the 2019–
2020 season to 91.4% in 2018–2019, Precision ranges from
81.5% for the 2018–2019 season to 87.9% in the 2017–2018
season, and Kappa ranged from 0.72 in 2019–2020 to 0.83 in
the 2017–2018 seasons.

The average recall values for all four growing seasons were
around 90.6% for the «La Rochelle» site with an average pre-
cision of around 87.8% and an average Kappa of around 0.83.

While in the «Arnoult» site, the average recall is around 86.9%
with an average precision of 84.8% and an average Kappa
of around 0.78. Overall, for both study sites and all growing
seasons, the average recall value was around 88.9%, the average
precision value was around 86.4%, and the average Kappa value
was around 0.80.

B. Mapping of Cover Crops

In order to monitor and better understand cover cropping
in our study sites, we applied our classification method to all
agricultural fields (except vineyards, orchards, and grasslands)
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TABLE III
RECALL, PRECISION, AND KAPPA VALUES OF OUR METHOD FOR EACH YEAR

OF THE STUDY FOR EACH SITE

TABLE IV
PERCENTAGE OF FIELDS WITH COVER CROPS PER YEAR FOR BOTH STUDY

SITES

Fig. 7. Subset of cover crop maps from the Arnoult site. (a) 2017–2018 season.
(b) 2018–2019 season. (c) 2019–2020 season. (d) 2020–2021 season.

based on the RPG. A subset of cover crop maps from the Arnoult
site is shown as an example of the generated cover crop maps in
Fig. 7 for the four growing seasons.

TABLE V
PROPORTION OF FIELDS WITH COVER CROPS CONTINUITY OF 0, 1, 2, 3, AND 4

TIMES DURING THE FOUR-YEAR PERIOD

TABLE VI
PROPORTION OF FIELDS AS A FUNCTION OF COVER CROP PLANTING PATTERN

Table IV lists the percentage of fields with cover crops in each
growing season for both of our study sites. It varies from 33.3%
in the 2018–2019 season to 54.9% in the 2019–2020 season.

C. Temporal Continuity Analysis of Cover Crops

Following the classification of agricultural fields, we per-
formed an analysis of the temporal continuity of cover crops
within our study period in order to obtain insight into the planting
habits of the farmers. For every classified field, we followed
the temporal distribution and the pattern of cover crops within
our growing seasons. First, we analyzed the recurrence of cover
cropping within our four-year period. Table V lists how many
years of cover cropping we have for each field in our four-year
time span. Most fields had cover crops in one out of the four
years, with 37.8%, whereas only 3.0% of fields had cover crops
in four years in a row.

Second, we studied the temporal patterns of cover cropping in
our sites. That was accomplished by examining three planting
scenarios. The first scenario corresponds to fields having two
consecutive years of cover cropping, the second scenario is fields
with three consecutive years of cover crops, and the last scenario
is year-on year-off cover cropping. As given in Table VI, 29.3%
of fields had two consecutive years of cover cropping, while
9.3% of fields had year years of consecutive cover cropping.
On the other hand, 22.2% of fields in our study sites show an
alternating pattern of cover cropping (one year on, one year off).
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Fig. 8. Cumulative monthly precipitation from 2017 to 2021 (same cumulative
precipitation for the two study sites).

IV. DISCUSSION

A. Climatic Zone

Our classification method was applied to all suitable agri-
cultural plots (all agricultural fields except vineyards, orchards,
and grasslands) in our study sites (obtained from RPG data).
Using the SAR backscatter time series, we aimed to detect the
presence of a cover crop at the plot scale. The results show that
the classification was successful with an average Recall value
of 90.6% on the La Rochelle site and 86.9% on the Arnoult site.
The average precision values were 87.8% in the La Rochelle site
and 84.8% in the Arnoult site. Finally, the average Kappa scores
were 0.83 and 0.78 for La Rochelle and Arnoult, respectively.
This shows that there is great potential for cover crop detection
using S1 remote sensing data.

Nevertheless, there are some limitations that we will discuss
in this section. This cover crop detection method can be used in
an agricultural context that is similar to that of our two study
sites. In fact, although we do not assume that our approach
could be directly applied in all climatic conditions or in sites
that are much different from ours, the date intervals selected for
each branch of the decision tree are large enough to allow for
any shifts that may occur due to local climatic factors. Fig. 8
shows the monthly cumulative precipitation over our study sites
for each year from 2017 to 2021. We can see that there is a
high interyear variability in precipitation; however, the results
of our decision trees remained consistently high throughout the
different growing seasons in our study.

However, region-specific adaptation of the thresholds and the
intervals of dates used in the decision tree might be required
when applied to other regions with different climates, different
crop types than those of our study sites, different crop calendars,
and different cover cropping practices. For example, dissimilar
planting and removal dates of the cover crop in other regions
might obligate a shift in the searching window of the minimums
and peaks used in the decision tree. However, the signature shape
of the S1 signal for the cover crop is expected to remain the same.
In addition, in other zones where certain crops (other than wheat
and rapeseed) could intersect heavily with the growing season
of cover crops, the decision tree should account for those new
crops and further levels should be added to filter out those crops.

TABLE VII
MAIN REASONS FALSE POSITIVES WITH THEIR CORRESPONDING PERCENTAGE

OUT OF ALL THE FALSE POSITIVES

B. Comparison Between Our Proposed Method and the
Random Forest Classifier

Compared to other classification methods, such as RF or other
machine learning classifiers, our approach based on a decision
tree requires no training data before application over a given
study site. That being said, comparing our method to RF is
important in order to assess the performance of our decision
tree.

First, we trained our RF classifier using data from a given
study site and growth season and then tested the classifier using
another growth season from the same or from another study site.
Next, we trained our classifier using all the data from one site
(multiyears) and tested it for each growth season in the second
study site (see Table VII).

When we use the same study site but at different growing
seasons for training and testing (e.g., training La Rochelle 2017–
2018 and testing La Rochelle 2018–2019), Recall values ranged
between 52.6% and 88.7% for the La Rochelle study site (see
Table VI). For the Arnoult site, the Recall values were between
25.3% and 83.8% (see Table VI). As given in Table VI, the best
results for the RF classifier arose from using the same site in the
test and in the training datasets. In these cases, Recall remained
generally high (although in one case it dipped strongly to 25.3%
for Arnoult and 43.3% for La Rochelle). When we used different
study sites for training and testing (e.g., training La Rochelle
2017–2018 and testing Arnoult 2018–2019), Recall values were
between 5.4% and 76.6%. In fact, for these combinations of
datasets used in the training and testing, the Recall scores
were generally low, with a high variability in the Recall scores
between the different combinations. These results indicate an
inconsistency in the classification using the RF classifier. In
addition to the recall values, Tables VIII and IX list the precision
and Kappa values for the RF classifier. Both the precision and
Kappa follow the same trend as that of the recall regarding the
inconsistency of the RF classifier as well as the high variability
of the scores among the different growing seasons and sites.

Second, Table VII also lists the RF classification result when
using all the data (multiyears) from each of our two sites as
training, then applying it for each growing season of the other
study site. The results show recall scores between 44.7% and
73.1%. These scores indicate an improvement in recall score
stability over using only one growing season as training.

Comparing the RF classifier’s results with the results of our
decision tree shows that more often than not, our proposed
method yielded better results compared to the results of the
RF classifier. In fact, other than in a few results of RF, where
we used the same site as train and test, our decision tree-based



1456 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE VIII
PRECISION RESULTS FOR RF CLASSIFIER USING DIFFERENT COMBINATIONS AS TRAIN-TEST

TABLE IX
KAPPA RESULTS FOR RF CLASSIFIER USING DIFFERENT COMBINATIONS AS TRAIN-TEST

classification consistently outperforms RF by a wide margin and
does so without the need for a priori information, lending it even
greater importance.

C. False Negative Detections of Cover Crops

Although we did not have a large proportion of false negatives
(11.1% with a recall of 88.9%), it is still important to understand
the limitations of our proposed method. By analyzing the S1 time
series of false negatives as well as their corresponding NDVI
time series, the main reason for not detecting a field with a
cover crop was found to be the weak vegetation density of the
cover crop (based on ground truth and shown by NDVI data).
Weak vegetation density means that the vegetation development
was not important enough to have a sufficient contribution
to the total SAR backscattered signal. The first example [see
Fig. 9(a)] shows that the peak was not important enough to be
considered a true peak as the deltas were too small (<0.5 dB).
The second example [see Fig. 9(b)] shows that the S1 signal
was not responsive to the presence of the vegetation cover (the
vegetation exists but it is not detectable in the SAR signal). Thus,
no peak was detected, and it was not possible for the decision
tree to successfully detect the cover crop relying solely on the
S1 time series’ dynamics. By analyzing the NDVI values of the
false negative crops during the peak growing season, Fig. 10
shows that around 85% of the undetected cover crop fields

attained a maximum NDVI value that is smaller than 0.42 in the
mid-September to end-March period. In contrast, fields that were
successfully detected as having cover crops showed an average
NDVI value of around 0.8 for the same period with more than
90% of these fields having a maximum NDVI higher than 0.52.
Furthermore, around 85% of fields that had a false detection
were marked during the field visit as having a weak vegetation
cover, and 15% were marked as having medium vegetation by
the ground survey team.

D. False Positive Detections of Cover Crops

Three main reasons for false positives (13.6% of the cases
with a precision of 86.4%) were observed (a false positive
occurs when we classify a field as having cover crops when it
does not actually have a cover crop). Table X lists the causes
of the false positives, where the main reason is vegetation
residues (mulching) accounting for 80.2% of false positive cases.
Mulching is a land preservation technique where farmers cover
the ground with vegetation in order to prevent excessive water
evaporation and to increase soil fertility and ecosystem services.
Farmers use it as a type of locally sourced mulch and fertilizer.
The presence of vegetation residues postharvesting, mainly from
maize and sunflower was the reason behind most false positives.
In fact, when there is mulch on the field, it could strongly reflect
the SAR signal because of its geometric characteristics, leading
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Fig. 9. Examples of S1 time series of false negative fields with their corre-
sponding NDVI showing, (a) weak cover crop with little effect on the S1 time
series, (b) weak cover crop with no effect on the S1 time series.

Fig. 10. Histogram showing the percentage of fields as a function of NDVI
classes for (a) plots with cover crops that were not successfully classified as
such and (b) for successfully detected cover crop fields. The green vertical line
shows the mean NDVI value of the distribution.

TABLE X
TOP FIVE MOST COMMONLY CULTIVATED CROPS BEFORE AND AFTER COVER

CROPS USING DATA FROM ALL THE YEARS IN OUR STUDY

Fig. 11. Examples of S1 time series for false positive detected fields due to
(a) residual vegetation, (b) deep plowing, and (c) abnormal rapeseed crop.

to a time series that resembles that of a cover crop field and
hence a possible false positive. As shown in Fig. 11(a), after
the sunflower harvest in July, the S1 signal stayed at a high
magnitude, even when there was no cover crop being grown in
the month of October (as shown by the NDVI time series and in
situ data).
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Fig. 12. Distribution of the date of the maximum development of cover crops.
DoY = 1 refers to January 1st of year 1, since our study stretches over two
calendar years, values above 365 belong to Y2 of every growing season.

The second reason is the increase in soil roughness post
plowing. Since the SAR signal is also correlated with soil
roughness as shown by Baghdadi et al. [58], deep plowing before
sowing also entrains an increase in the reflectance of the SAR
signal, which in turn could also lead to a false positive. As shown
in Fig. 11(b), an increase in the S1 time series is observed in
September caused by an increase in soil roughness following
a possible deep plowing. Another 4.7% of false positives were
caused by an abnormally weak rapeseed. In these cases, the
rapeseed crop was weak enough to be confused with a cover
crop (we see the weakness demonstrated in the drop in NDVI
in the month of March where it decreased to below 0.4). In that
case, the rapeseed filter would not be capable of filtering the
rapeseed field, thus resulting in a false positive [see Fig. 11(c)].

E. Maximum Development Date of Cover Crops

With the aim of better understanding the distribution of the
date of maximum development of cover crops, Fig. 12 shows this
distribution of the day of year (DOY) of the date of maximum
growth of every detected cover crop. To detect the maximum
growth DOY, we used the peak (maximum growth, detected in
the VHp−VVp channel) as a marker. The histogram of Fig. 12
shows that 94.6% of maximum development peaks are between
mid-September Y1 (DoY = 260) and mid-January Y2 (DoY
= 380). In addition, the distribution of the dates of maximum
development shows that about 32.4% of peaks are between mid-
September and mid-November (DoY = 320), 62.2% of peaks
are between mid-November and mid-January, and less than 10%
of peaks are after mid-January Y2.

F. Preceding and Following Crops

In this section, we investigated what crops (top 5) are most
likely to precede cover crops and which crops are most likely to
follow cover crops using the crop cover classification performed
data for all the studied years. Table VIII lists the crops that usu-
ally precede (preceding crop) and that usually follow (following
crop) a cover crop. It shows that wheat is the most recurrent crop

Fig. 13. Matrices showing (a) percentage of Y2 crop as a function of the total
of every Y1 crop using data from all classified fields and all the years in our
study, (b) percentage of each Y1 crop as a function of the total of every Y2 crop
using data from all the years in our study. ALF: alfalfa, WHE: wheat, MAI:
maize, BAR: barley, PEA: peas, and SUN: sunflower. (a) reads horizontally and
(b) reads vertically.

before cover crops with 40.5% of the total classified fields while
maize was the most recurrent crop after cover crops with 34.1%.

Next, and in order to better understand the crop patterns for
the classified fields with cover crops, we determined which two
crops are commonly paired together in our study period (before
and after cover crops). Fig. 13(a) shows the percentage of every
Y2 crop in function of the total of every Y1 crop for fields having
cover crops. For example, out of all the fields that have sunflower
as the Y1 crop, 4.1% of these fields will have alfalfa in Y2, 72.2%
will have wheat, 13.0% maize, 8.0% barley, 1.0% peas, and 1.7%
sunflower. In addition, Fig. 13(b) shows the percentage of every
Y1 crop as a function of the total of every Y2 crop. For example,
out of all the fields that have sunflower as the Y2 crop, 0.6% of
these fields had alfalfa in Y1, 64.7% had wheat, 4.0% maize,
29.8% barley, 0.2% peas, and 0.7% sunflower.

In Fig. 13(a), we see that when the Y1 crop is alfalfa (ALF),
the Y2 crop was mostly alfalfa as well (87.2%). When wheat
(WHE) is the Y1 crop, the Y2 crop was more distributed with
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the biggest percentage going to sunflower (SUN) with 30.9%
and next maize (MAI) with 29.0%. When maize is the Y1 crop,
86.5% of the time the Y2 crop is maize as well. When barley
(BAR) is the Y1 crop, sunflower was the most common Y2 crop
with 42.9% followed by maize with 27.2%. When the Y1 crop
is peas (PEA), 82.2% of Y2 fields had wheat. Finally, when the
Y1 crop is sunflower, wheat is the most common Y2 crop with
72.2%.

On the other hand, Fig. 13(b) shows that when the Y2 crop is
alfalfa (ALF), the Y1 crop was mostly alfalfa as well (82.8%).
When wheat (WHE) is the crop in Y2, Sunflower (SUN) was
the Y1 crop most of the time with 48.3%. When maize is the Y2
crop, 53.7% of the time the Y1 crop is maize as well, and when
barley (ORG) is the Y2 crop, wheat was the most common Y1
crop with 77.4%. When the Y2 crop is peas (PEA), 68.1% of Y1
fields had wheat. Finally, when the Y1 crop is sunflower, wheat
is the most common Y2 crop with 64.7%.

V. CONCLUSION

Cover cropping is essential in order to capture nitrates and
reduce their infiltration into the groundwater. Previous studies
have analyzed the potential of optical remote sensing for the
mapping of cover crops but very few have utilized SAR remote
sensing. The fact that S1 data are available at high temporal and
spatial resolutions lends importance to this study by evaluating
the potential of SAR remote sensing data in detecting cover
crops, especially since it is unaffected by bad weather conditions
that are a major limiting factor for optical remote sensing during
the growth period of crop cover.

Our classification method is based on the decision tree using
the S1 time series data. The decision tree proposed in this study
performed well in detecting cover crop fields with recall values
ranging from 83.5% to 95.0%. In addition, a high Precision was
achieved with values ranging between 81.5% and 89.2% as well
as high Kappa values ranging between 0.72 and 0.89. These
results show that we are capable of mapping cover crops with
high accuracy using solely remote sensing data from SAR S1,
whereas most other classification methods are based either on
optical remote sensing data alone or on a combination of optical
and SAR remote sensing data. Some limitations in detecting
cover crops using S1 data were identified. First, although our
decision tree method is designed to accommodate a variety of
planting times, strategies, and types of cover crops (by using
wide windows), this type of classifier might need to be adapted
based on the agricultural context in each region and planting
strategies (only for regions that are much different from our
own). Second, false negatives (failing to detect a cover crop)
were found to be due to the low density of the cover crop,
resulting in a low vegetation contribution in the total signal.
False positives (detecting cover crops where it does not exist)
were due mainly due to the existence of vegetation residues
in the case when farmers leave the vegetation of the soil af-
ter the harvest (used as mulch) and due to increased surface
roughness caused by deep plowing after harvesting the principal
crop.

The results of our study present two main findings: the first is
that we are capable of remotely monitoring cover crops, without
the need for expensive ground campaigns, in order to see if
farmers are applying healthy agricultural practices or not which
is a step forward toward macromanagement of agricultural areas
and an important tool when dealing with large-scale agricultural
strategies and goals. Second, the mapping of cover crops can be
used alongside other agriculture databases such as the RPG in
France in order to better understand the prevalence of cover
cropping within a certain area.
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