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A B S T R A C T

Event based disease surveillance (EBS) systems are biosurveillance systems that have the ability to detect
and alert on (re)-emerging infectious diseases by monitoring acute public or animal health event patterns
from sources such as blogs, online news reports and curated expert accounts. These information rich sources,
however, are largely unstructured text data requiring novel text mining techniques to achieve EBS goals such
as epidemiological text classification. The main objective of this research was to improve epidemiological text
classification by proposing a novel technique of enriching thematic features using a weak supervision approach.
In our approach, we train and test a mixed domain language model named EpidBioELECTRA to first enrich
thematic features which are then used to improve epidemiological text classification. We train EpidBioELECTRA
on a large dataset which we create consisting of 70,700 annotated documents that includes 70,400 labeled
thematic features. We empirically compare EpidBioELECTRA with both general purpose language models and
domain specific language models in the task of epidemiological corpus classification. Our findings shows that
epidemiological classification systems work best with language models pre-trained using both epidemiological
and biomedical corpora with a continual pre-training strategy. EpidBioELECTRA improves epidemiological
document classification by 19.2 𝐹1 score points as compared to its vanilla implementation BioELECTRA.
We observe this by the comparison of BioELECTRA verses EpidBioELECTRA on our most challenging
dataset PADI-Web𝑋𝐿 where our approach records 92.33 precision score, 94.62 recall score and 93.46 𝐹1
score. We also experiment the impact of increasing context length of train documents in epidemiological
document classification and found out that this improves the classification task by 7.79 𝐹1 score points as
recorded by EpidBioELECTRA’s performance. We also compute Almost Stochastic Order (ASO) scores to track
EpidBioELECTRA’s statistical dominance. In addition, we carry out ablation studies on our proposed thematic
feature enrichment approach using explainable AI techniques. We present explanations for the most critical
thematic features and how they influence epidemiological classification task We found out that biomedical
features (such as mentions of names of diseases and symptoms) are the most influential while spatio-temporal
features (such as the mention of date of a given disease outbreak) are the least influential in epidemiological
document classification. Our model can easily be extended to fit other domains.
1. Introduction

Epidemic Intelligence systems monitor varying channels for early
warning signs to detect and alert on novel and re-emerging infectious
diseases. These systems automate the early warning signs detection-
and-alerts framework formally defined by the World Health Organiza-
tion (WHO) under Early Warning and Response (EWAR) standards for
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1 WHO’s International Health Regulations IHR-2005 Article 9 on informal sources opened up opportunities for informal epidemic data collection for monitoring

purposes and Article 5 on surveillance allows for surveillance using these collected information.

acute public or animal health events (WHO, 2014). This is either done
through monitoring of formal sources such as routine prepared medical
reports (e.g., weekly or monthly medical reports prepared by clinicians)
or through monitoring informal sources such as blogs, hotlines, social
media posts and web news articles. These subdivisions leads to two
broad classifications of epidemic surveillance systems; Indicator Based
Surveillance (IBS) and Event Based Surveillance (EBS) (WHO, 2008).1
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Event based surveillance (EBS) monitors informal sources contain-
ing real world events and reports on possible public or animal health
emergencies. This approach to epidemic surveillance is subtly challeng-
ing but far more practical than the classical indicator based approach
which monitors formal sources. Informal epidemiological data sources
carry more real time information, which when mined, can lead to
timely reporting on infectious disease outbreaks way before patients
begin flooding health centers for diagnostics. Simply put, EBS does not
wait for a gaggle of patients to flock health centers for a health risk
alert to be generated. This is especially advantageous for monitoring
health events in remote and underdeveloped regions where health care
is primarily accessed via informal channels.

Informal source monitoring gives EBS surveillance systems the abil-
ity to capture extremely rare but high impact disease outbreaks as well
as capturing emerging yet unknown infectious diseases. However, these
sources contains unstructured data which proves more challenging to
mine in order to produce relevant infectious diseases alerts. In addition,
such informal sources are susceptible to rumors, hearsay, fake-news,
or even irrelevant reports containing information simply indirectly
related to infectious disease such as reports of economic or political
consequences that follows the announcing of a disease outbreak. These
kinds of (mis)information co-exists alongside genuine epidemiological
information that directly reports on disease outbreaks making difficult
the task of differentiating between relevant and irrelevant documents.

Contemporary EBS systems follow the five phases of epidemic intel-
ligence namely detection, triage, verification, risk assessment and commu-
ication as captured in Fig. 1. Interests to automated text-based EBS
ystems mainly covers automation of triage (Arsevska et al., 2018;
rownstein & Freifeld, 2007; Woodall, 2001). Detection is by collection
f raw online news articles, social media posts, blogs or emails while
riage aims at filtering relevant versus irrelevant articles. A relevant
rticle is one which corresponds to genuine acute public or animal
ealth events.2 In a manual EBS systems, signaling task is handled by
vent assessment team of experts who are tasked with the responsibility
f assessing each reported public or animal health event after which
hey can trigger responses (WHO, 2008). In automated EBS systems
uch as the Platform for Automated extraction of Animal Disease In-
ormation from the web (PADI-Web) and HealthMap, this signaling
ask is automated and handled by an epidemiological corpus classifier
ngine trained to classify informal corpus sources as either relevant or
rrelevant (Brownstein & Freifeld, 2007; Valentin et al., 2021). In other
utomated EBS systems, such as the Program for Monitoring Emerging
iseases (ProMED), signaling task has traditionally remained a human
xpert signaling approach to maintain high standards in their alerting
ystem (Woodall, 2001).

Several challenges align with these modern EBS structures. Firstly,
here is always a limited number of event assessment human experts to
anually classify incoming signals as either relevant or irrelevant such

s seen in Woodall (2001) approach to EBS. This challenge lead to a
arge ratio of the number of reported public or animal health risk events
o the size of event assessment unit team of experts, this negatively
ffects both efficiency and accuracy of event classification. Secondly,
lassification accuracy for the digital EBS systems is quite challenged by
he unstructured nature of source data. These EBS classifiers are trained
sing informal corpora from varied sources. We observe from Valentin
t al. (2021) how poor classification accuracy leads to false alarms
n event outbreaks when the system is finally deployed. Thirdly, the
pproach of training EBS classifiers on informal corpora sourced online
eads to bias challenges especially in countries with limited freedom
f speech issues (such as restricted or censored communication media)
here the amount of data available for training and detection of public

2 We coin this definition of a relevant article since past digital epidemio-
ogical surveillance research have varying definitions depending on the task
t hand.
2

Fig. 1. Epidemic intelligence framework flow.

or animal health events is limited. These luck of quality regional data
leads to poor and inaccurate event classifiers (WHO, 2008). Given
these challenges, the aim of modern day digital biosurveillance is
thus focused on improving efficiency and accuracy of both triage and
signaling activities. This aims at avoiding false positives (errors that
fails to trigger early disease outbreak alerts) and false negatives (errors
that ignores emerging health emergencies).

To achieve these improvements of EBS, various approaches have
been suggested. For instance, PADI-Web introduced both keyword
based bag of words approach and machine learning document clas-
sification techniques (Arsevska et al., 2018). PADI-Web 1.0 used a
keyword-based classification approach where epidemiological corpora
are classified based on existence of one or more predefined list of
disease outbreak-related keywords (Arsevska et al., 2018). PADI-Web
2.0 by Valentin et al. (2020) further enhanced this classifier by incor-
porating a multilingual module and machine learning techniques based
on bag-of-words and Term Frequency-Inverse Document Frequency
(TF-IDF) approaches (Jones, 1972; Luhn, 1957). Later, Valentin et al.
(2021) proposed PADI-Web 3.0 with a fine-grained classification of
sentences in order to identify specific classes (e.g. Descriptive epi-
demiology, Preventive and control measures, Economic and political
consequences, etc.).

Further improvement has been introduced using deep learning tech-
niques. EpidBioBERT uses a pre-trained biomedical language model to
enrich epidemiological thematic features to enhance its classification
approach (Menya et al., 2022). This kind of technique is uniquely
attributed to great advances in deep learning text mining approaches
based on word embeddings and language models. In this paper, we im-
prove EBS classification to State-Of-The-Art (SOTA) levels by extending
the works of Menya et al. (2022) and improving model description.
In this extended approach, we propose EpidBioELECTRA, a mixed-
domain language model for learning epidemiological thematic features
to improve classification in disease surveillance. EpidBioELECTRA is an
improved EBS classifier trained on a large dataset one hundred times
more compared to EpidBioBERT. EpidBioELECTRA achieves SOTA per-
formance compared to competing language models on the epidemi-
ological classification task. In addition and we carry out in depth
study on our thematic-feature approach using explainable AI from our
vast dataset. We discover the best pre-training strategy for improving
epidemiological classification and the most critical thematic features in

epidemic surveillance tasks.
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Table 1
Systematic Literature review on early disease surveillance corpus classification systems.
Study Dataset Origin Classification

algorithms
Main findings

Earley EBS Systems

ProMED (Woodall,
2001)

OnlineNews, OIE,
ProMED curated
articles

None (human
experts)

Vast number of human
experts and longer periods
of time needed for corpus
classification.

HealthMap
(Brownstein &
Freifeld, 2007;
Freifeld et al., 2008)

OnlineNews, OIE,
ProMED curated
articles

N-Gram Parser
algorithm with
Dictionary
matches

Classifier automation speeds
up EBS early alert systems,
however its accuracy needs
improvement.

BIOCASTER (Collier
et al., 2008)

OnlineNews SVM Use of machine learning
algorithms improves
detection and
classification of public
health rumors in EBS.

MedISys (Jens et al.,
2010)

OnlineNews Dictionary based
boolean word
combinations

Study showed that MedISys
and more generally media
information from publicly
available sources, can
contribute to an integrated
monitoring effort in EBS.
The rest of the paper is organized as follows: Section 2 outlines
elated works in animal disease surveillance majorly reviewing PADI-
eb, EpidBioBERT, HealthMap and ProMED document classifiers; Sec-

ion 3 presents the formal discussion on thematic features within our
odel’s theoretical framework and pipeline; Section 4 discusses our

xperiment set up and preparation steps performed on both data and
odel; Section 5 presents empirical results from our experiments com-
aring our model with baselines and other competitive models followed
y ablation study findings on thematic feature contributions to our
mproved classifier; Section 6 discusses the limitations of the proposed
ethods in light of the contributions; Section 7 summarizes the entire
aper and recommends future works.

. Related works on animal disease event based surveillance cor-
us classification

In the EBS field, several studies on epidemiological document clas-
ification exists and we review them in relation to ours. However, EBS
rocesses have been majorly studied under public health domain a
ot more than in animal health domain. In this section we thus study
tate of the art (SOTA) related systems and we contrast them with our
roposed contributions in animal health domain. Previously, animal
isease surveillance has been studied within a one health context
i.e. in relation to both public health surveillance and environmental
urveillance) and in different approaches such as keyword-based (Cen-
re et al., 2011; Chanlekha et al., 2010; Steinberger et al., 2010),
achine-learning based (Carter et al., 2020; Collier et al., 2008) and
ultilingual (Mutuvi et al., 2020; Sahnoun & Lejeune, 2021). We

tart our literature review by studying classification domain of early
BS systems, followed by contemporary EBS systems and finally EBS
ystems focused on animal health.

.1. The corpus classification modules of early EBS systems

Epidemiological corpus classification has been a key module in EBS
ystems from the very onset. In this section we review two SOTA
ystems and summarize the rest in Table 1.

.1.1. ProMED classifier
The program for monitoring emerging diseases (ProMED) is one of

he earliest digital biosurveillance system (Woodall, 2001). ProMED cu-
ates information from both formal and semi-formal systems inclusive
3

of official reports such as those produced by clinicians, formal websites
such as ministry of health or local health department websites, media
news reports, social media posts and ground observer reports. These
varied information is reviewed, vetted and commented on by a team
of expert epidemiologist moderators to create signals in the ProMED
network. Infectious disease articles are color-coded as either red, yellow
or green ranging from relevant to irrelevant. A key challenge with these
approach is the vast number of epidemiologist and long periods of time
needed to mine through the vast pool of infectious disease data. These
elements are known to affect quality of alerts and signals which are
generated to trigger mitigation measures in case of a public or animal
health emergencies requiring early response (Yu & Madoff, 2004).

2.1.2. HealthMap classifier
HealthMap is a semi-automatic biosurveillance event based sys-

tem (Brownstein & Freifeld, 2007). HealthMap collects epidemiological
corpora from diverse sources namely; online news articles, World Orga-
nization for Animal Health (OIE) data, national health authorities and
ProMED curated articles. The early signaling capabilities of HealthMap
classifier was built around human moderators rating incoming docu-
ments on a scale of 1 to 5 ranging from less relevant to most relevant
disease outbreaks of international concern (Brownstein et al., 2008).
However, the need to introduce automation led to algorithm driven
classification engine which demonstrated significant usefulness in man-
aging large volume of information processed by HealthMap (Freifeld
et al., 2008). This classification engine used parser algorithms with
dictionary databases to find keywords of interest that are used to
determine the relevance of an epidemiological article. Furthermore,
fine grained classes were introduced corresponding to the 1 to 5 scale
are breaking news, warning, old news, context and not disease related as
captured in Fig. 2. However, even though this early introduction of epi-
demiological classification using keywords was a major breakthrough
towards EBS automation, the key challenge was achieving competitive
accuracy scores with solely using keywords and the limitation of dic-
tionary vocabularies. Also, handling the ever increasing fast number of
online article sources was a major challenge (Brownstein et al., 2008).
In our approach, we propose a model that uses deep contextualized
models which uses entire document sentences as (opposed to simple
keywords) to learn patterns in an epidemiological document which
significantly improve classification accuracy.
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Fig. 2. HealthMap classifier pipeline.
Table 2
Systematic Literature review on current disease surveillance corpus classification systems.
Study Dataset Origin Classification

Algorithms
Statistical test Main findings

Current EBS Systems

GRITS (Huff et al.,
2016)

Social media, online
news outlets,
ProMED-mail reports,
blogs

TF-IDF None Monitoring digital disease
signals for infectious disease
threats means that EBS
capacity can be extended to
areas where public health
infrastructure is inadequate.
The use of binary relevance
algorithm combined with
enriched features mined
using NLP models improves
ensembled logistic regression
classifier.

VGCN+BERT (Mutuvi
et al., 2020)

ProMed News Articles BERT, VGCN None Models based on both
fine-tuned language models
and graph convolution
networks achieve very good
performance on the
classification of multilingual
epidemiological texts.

DANIEL (Mutuvi
et al., 2020b;
Sahnoun & Lejeune,
2021)

ProMed News Articles Language-agnostic
text-level features
extraction using
multinomial naive
Bayes, random forest,
neural network
classifiers and BERT

None Use of both Open
Information Extraction (OIE)
and extendend
Ontologies.enhances
epidemiological text
classification and related
tasks such as named entity
extraction.
2.2. The corpus classification modules of modern EBS systems

In order to improve EBS classification task beyond classical machine
learning approaches, new classification systems focusing on using lan-
guage processing techniques were later introduced. We review them in
this section and provide a summary in Table 2.

2.2.1. GRITS classifier
Global Rapid Identification of Threats System for Infectious Diseases

in Textual Data Sources (GRITS) Huff et al. (2016) is a biosurveil-
lance system that uses binary relevance method to predict the disease
referred to by a body of text. GRITS uses ensemble learning with
logistic regression classifiers and having each classifier estimates the
probability that a text passage is associated with a given disease.
GRITS’ classification engine also extracts vector features from textual
4

documents using NLP algorithms and uses these to enrich their features
obtained through binary relevance in order to improve classification.
A key challenge with GRIT classification approach is that use of NLP
extracted vector features combined with ensemble-learnt features does
not enrich thematic features enough to improve classification. Our
proposed approach advances this aspect by using pre-trained language
models to enrich features beyond machine learning techniques such as
logistic regression.

2.2.2. DANIEL classifier
The Data Analysis for Information Extraction in any Language

(DANIEL) Sahnoun and Lejeune (2021) system is multilingual news
surveillance system that mines for journalistic writing style patterns in
order to classify an epidemiological document (Mutuvi et al., 2020b).
DANIEL system performs classification by tracking key questions about
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Table 3
Systematic Literature review on current disease surveillance corpus classification systems focused on Animal Health.
Study Dataset Origin Classification

Algorithms
Statistical test Main findings

Animal Health Current EBS Systems

PADI-Web (Valentin
et al., 2021)

Google News SVM None Use of Machine learning
algorithms specifically SVM,
improves epidemiological
document classification as
compared to Logistic
regression.

APHA
(Arguello-Casteleiro
et al., 2019)

Google News Unified Medical
Language System
(UMLS)
Metathesaurus

None Relevant veterinary medical
terms can be automatically
identified in the free-text
summaries entered by
Veterinary Investigation
Officers (VIOs) in clinical
reports using NLP techniques
to mine Metathesaurus.

EpidBioBERT (Menya
et al., 2022)

Google News BERT, BioBERT None Use of attention based
pre-trained networks,
specifically domain specific
language model,
significantly improves
epidemiological document
classification.
how news is reported and linking this with patterns in news to improve
classification (e.g. how the beginning and ending of an epidemiological
news article are written). In our proposed approach, we learn such
patterns in epidemiological news documents using pre-trained language
models. We compare how different language models enrich features
and improve classification by setting up experiment involving language
models with differing pre-trained strategies and from different domains.

2.3. Contemporary EBS focused on animal health and their corpus classifi-
cation modules

Finally in this section, we review EBS systems focused on animal
health and provide a summary in Table 3.

2.3.1. PADI-Web classifier
PADI-Web is an event based biosurveillance system that monitors

the emergence and spread of infectious animal diseases by monitoring
online news sources in order to detect and alert on (re)-emerging
epizootics (Valentin et al., 2020, 2021). The system has collected over
500,000 news articles since 2016 and has evolved over three versions
starting with PADI-Web 1.0 (Arsevska et al., 2018). This early version
of PADI-Web was a keyword-based classification-approach system that
used a predefined list of disease outbreak keywords and classified input
epidemiological corpora based on existence of one or more of these pre-
set keywords as found in the document. This technique combined both
rule-based and data-mining approaches to mine for epidemiological
keywords over 352 English news articles collected from google news.
This version of PADI-Web introduced corpora collection via Really
Simple Syndication (RSS) feeds. Google News RSS feeds are mined
based on disease names search and terms describing clinical signs of
hosts of a given disease. These raw corpora are then cleaned and classi-
fied as either relevant or irrelevant. After this process, epidemiological
information extraction of disease names, event location, event date, and
disease host names are carried out over relevant articles as tagged by
the system. A Support Vector Machine (SVM-RBF) engine trained over a
set of curated rules is used to achieve the corpora classification process.
We capture this pipeline in Fig. 3.

PADI-Web 2.0 extends surveillance from four animal diseases in
its initial version to monitoring nine infectious animal disease out-
breaks and eight syndromes in five animal hosts. Its classification
module uses supervised machine learning techniques to identify rel-
5

evant corpora. As of its main model, PADI-Web 2.0 converts news
corpora to bag-of-words and Term Frequency-Inverse Document Fre-
quency (TF-IDF) features sets (Jones, 1972; Luhn, 1957) and relevant
news corpora are further classified into five fine-grained categories
namely; confirmed outbreak, suspected or unknown outbreak, preparedness
and impact (Valentin et al., 2020). PADI-Web 3.0 improves the Fig. 4
classification process by introducing sentence classification with bag-of-
words sentences representations. This presents a more fine grained ap-
proach to improve the overall document classification by highlighting
fine-grained epidemiological information such as risk events, preventive
and control measures. A dedicated annotated corpus is built for training
purposes (Valentin et al., 2019). A domain-specific biomedical model
is built for epidemiological information extraction to replace generic
approaches used in prior PADI-Web versions. For further terminology
extractions and annotations, both Brat and BioTex (Lossio-Ventura
et al., 2016) are incorporated.

2.3.2. EpidBioBERT classifier
This work majorly extends PADI-Web 1.0 (Arsevska et al., 2018),

PADI-Web 2.0 (Valentin et al., 2020) and PADI-Web 3.0 (Valentin et al.,
2021) introducing enrichment of deep thematic embeddings to improve
over PADI-Web infectious animal disease news article classification.
EpidBioBERT adopts BioBERT(+PubMed) by Lee et al. (2019) as it
is pre-trained biomedical language model and fine tunes it for the
task of epidemiological document classification (Menya et al., 2022).
EpidBioBERT classifier takes inputs in the form of [CLS]𝑇ℎ𝑒𝑚𝑇 𝑜𝑘11,… ,
𝑇 ℎ𝑒𝑚𝑇 𝑜𝑘𝑁𝑀 [EOS] representing 𝑁 thematic feature tokens from 𝑀 sen-
tences in the annotated train corpus. The deep thematic based model
then learns a probability distribution over document classes relevant
and irrelevant represented as {𝑐1, 𝑐2} as shown in Fig. 5.

This thematic feature enrichment concept towards improving epi-
demiological corpora classification focuses on disease, host, location
and date thematic features as found in epidemiological corpora and
enriches them using a pre-trained word embeddings approach. Menya
et al. (2022) compares builds such embeddings using two approaches;
Bag-of-Words and Term-Frequency Inverse Document Frequency (TF-
IDF) and trains them over classical classification approaches such as
Support Vector Machines (SVM), Long-Short Memory Networks (LSTM)
and Bidirectional LSTM (Bi-LSTM) and current BERT model. These
classifiers are then benchmarked againist EpidBioBERT model. The
deep thematic embeddings approach of EpidBioBERT concludes that
using a pre-trained biomedical language models such as BioBERT enrich

features further thus improving epidemiology document classification.
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Fig. 3. PADI-Web epidemiology document classifier.
Fig. 4. PADI-Web pipeline flow.
In this paper, we further improve this deep thematic feature approach
to epidemiological classification. Our technique experiments enriching
of thematic features over SOTA biomedical language models listed in
the BLURB leader-board (Gu et al., 2022).

2.4. Challenges in modern EBS classification models

Most epidemiological classification models rely on conventional
supervised learning technique which requires human-expertly labeled
datasets which are time consuming and expensive to achieve limit-
ing the amount of data used in training (Delon et al., 2024). For
instance, (Menya et al., 2022; Mutuvi et al., 2020; Valentin et al., 2019)
classifiers are trained using supervised learning. Unsupervised learning
is another technique that can be applied as a potential area to improve
the problem of domain specific text classification and entity recognition
since it requires unlabeled datasets which is always largely available.
For example, G. et al. (2023), uses unsupervised learning approach to
identify thematic named entities in agricultural domain. However, this
is still a challenging area due to the unstructured nature of textual data.
These challenges calls for other current learning techniques such as
weak supervised learning to be explored.
6

On the other hand, deep learning based approaches have been
shown to improve text classification (Bai et al., 2018; Kowsari et al.,
2018; Li et al., 2021). These approaches work by applying a pre-trained
large language model that is fine tuned to a specific text classification
task. This approach has been applied with success in general English
articles but remains challenging in domain specific tasks. Jiang et al.
(2023) for example, explores novel fine tuning techniques for text
classification in plant health domain finding that conventional fine
tuning does not always work in domain specific text classification.
Other related tasks have also employed deep learning with fine tun-
ing (Lample et al., 2016; Mutuvi et al., 2020), however most of these
approaches focus on enriching general named entities and events. In
addition, for most deep learning approaches, even though they improve
classification, model explanation is not usually provided making it
difficult to understand how the classifier improves internally.

In this paper, we propose a deep learning based model using pre-
trained language modeling. We experiment our proposed model on a
large dataset using weak supervision approach and study the underly-
ing thematic feature behaviors in how they improve epidemiological
classification using explainable AI techniques. Our large train set en-
ables our model to generalize well on both precision and recall metrics
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Fig. 5. EpidBioBERT epidemiology document classifier.

nd uncovers novel strategies for epidemiological surveillance shown
hrough in-depth study of thematic feature behavior that we present as
art of our model explainability.

. Epidemiological thematic features

.1. Definition of thematic features

In our approach, epidemiological corpora classification is improved
ith enrichment of epidemiological thematic features. These features

nclude; spatio-temporal, biomedical, and named entities as captured in
ig. 6. Spatio-temporal entities consists of location, date and time of a

reported acute public or animal health event. In this context, location is
the geographical region where the case is originating such as a country,
state or city, where as date and time are the period of reported disease
outbreaks such as days of the week and seasons of the year e.g. last
Tuesday or early summer.

Biomedical entities are names of outbreak diseases, names of dis-
ease hosts and disease symptoms or syndrome. Disease name examples
include Avian influenza and COVID-19 while disease hosts include
names of agents that are infected by a disease such as pigs or chicken.
Finally, symptoms include names of conditions caused by a disease such
as fever, vomiting or death.

Lastly, Named entities are made up of conventional named entities.
Categories of named entities includes names or mentions of key per-
sons, organizations, and number of reported cases. For instance, names
and mentions of entities such as WHO director general or the cabinet
secretary of the ministry of health, and organizations e.g. the World Food
Program are of interest in this study.

3.2. Classical language processing methods for thematic feature representa-
tion

In this subsection we look at the classical language processing
approach to thematic feature representation. We start by a formal
definition to thematic features followed by various techniques for repre-
senting thematic features namely; bag of words and TF-IDF approaches.
7

L

3.2.1. Formal definition of thematic features
Given an epidemiological corpus set of 𝑠𝑖𝑧𝑒 = 𝑁 news articles

denoted as 𝐷 = {𝑑1,… , 𝑑𝑛} and news article 𝑑𝑗 ∈ 𝐷 containing 𝐼
epidemiological thematic features in set 𝑇 denoted as 𝑇 = {𝑡1, 𝑡2,… , 𝑡𝑖}

e define a term-document matrix 𝑋𝑛,𝑖

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑡1 𝑡2 … 𝑡𝑖
𝑑1 𝑓 (𝑡1, 𝑑1) 𝑓 (𝑡2, 𝑑1) … 𝑓 (𝑡𝑖, 𝑑1)
𝑑2 𝑓 (𝑡1, 𝑑2) 𝑓 (𝑡2, 𝑑2) … 𝑓 (𝑡𝑖, 𝑑2)
⋮ ⋮ ⋱ ⋮
𝑑𝑛 𝑓 (𝑡1, 𝑑𝑛) 𝑓 (𝑡2, 𝑑𝑛) … 𝑓 (𝑡𝑖, 𝑑𝑛)

⎤

⎥

⎥

⎥

⎥

⎦

From 𝑋𝑇 we get 𝑡𝑖 = [𝑓 (𝑡𝑖, 𝑑1), 𝑓 (𝑡𝑖, 𝑑2),… , 𝑓 (𝑡𝑖, 𝑑𝑛)] which we
epresent as thematic vector �⃗�𝑖 of thematic feature 𝑡𝑖 represented as
⃗𝑖 ∈ R1∗𝑁 where 𝑁 is the number of documents in our corpus set.
unction 𝑓 (𝑡𝑖, 𝑑𝑛) can be defined in several ways discussed below in
ections 3.2.2, 3.2.3 and 3.3.1.

Epidemiological corpus set 𝐷 is divided into train, test and valida-
ion sets 𝛤 , 𝜏, 𝜈 respectively. Given the set of 𝐾 features where 𝐾 ⊂ 𝑇
nd [𝑡1, 𝑡2,… , 𝑡𝑘] ∈ 𝑑𝑗 having 𝑑𝑗 ∈ 𝛤 , and epidemiological target
lasses 𝐶 = {𝑐1, 𝑐2} where 𝑐1 = 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡, 𝑐2 = 𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡, we learn the
onditional probability distribution 𝑝(𝑐𝑖|𝑑𝑗 ) where 𝑐𝑖 ∈ 𝐶 and 𝑑𝑗 ∈ 𝛤 to
btain vector 𝑦 = [𝑝(𝑐𝑖|𝑑1), 𝑝(𝑐𝑖|𝑑2),… , 𝑝(𝑐𝑖|𝑑𝑛)] where 𝑦𝑇 becomes the
arget vector.

.2.2. Bag of words thematic features
In the bag of words (BOW) approach, every thematic feature is

aken in isolation ignoring its relation with other features and their
espective positions in an epidemiological corpus. In other words, BOW
ssumes that every token feature is not related to other tokens in the
pidemiological domain. Following this definition, function 𝑓 (𝑡𝑖, 𝑑𝑛) ∈

is defined as

(𝑡𝑖, 𝑑𝑛) =

{

1, for 𝑡𝑖 ∈ 𝑑𝑛
0, otherwise

(1)

Eq. (1) follows that thematic feature 𝑡𝑖 ∈ 𝑋𝑇 is represented with
one hot vector �⃗�𝑖 ∈ {W ∶= {0, 1}}1∗𝑁 . The feature matrix 𝑋𝑇 is

hus a high dimensional sparse matrix since most terms 𝑡𝑖 will occur in
ewer documents. This sparse matrix can be decomposed into a dense
atrix that is more efficient and richer using singular vector decompo-

ition (SVD) or principal component analysis (PCA) techniques. Menya
t al. (2022) experiments over SVD and PCA epidemiological thematic
eatures converting 𝑡𝑖 from {�⃗�𝑖 ∈ W ∶= {0, 1}}1∗𝑁 to �⃗�𝑖 ∈ R1∗𝑁 dense
epresentations. Though useful, these types of epidemiological thematic
eatures are not rich enough to improve epidemic intelligence cor-
ora classification mainly due to the BOW assumption aforementioned
hich leads to poor classifier performance.

.2.3. TF-IDF thematic features
Term-Frequency Inverse Document Frequency (TF-IDF) approach

ntroduced by Jones (1972), Luhn (1957), counters the BOW challenge
ntroduced in Section 3.2.2. Instead of generating a one hot represen-
ation of thematic feature 𝑡𝑖, TF-IDF computes function 𝑓 (𝑡𝑖, 𝑑𝑛) ∈ 𝑋 as:

𝑓 (𝑡𝑖, 𝑑𝑛) = 𝑡𝑓𝑡𝑖 ,𝑑𝑛 ∗ 𝑖𝑑𝑓𝑡𝑖 ,

Where 𝑡𝑓𝑡𝑖 ,𝑑𝑛 = frequency of term 𝑡𝑖 in document 𝑑𝑛,

𝑖𝑑𝑓𝑡𝑖 = ln( 𝑁
𝑑𝑓 (𝑡𝑖)

),

Where N = number of documents, 𝑑𝑓 (𝑡𝑖) = count documents

out of N containing 𝑡𝑖

(2)

Both Valentin et al. (2020) and Menya et al. (2022) experimented
ver TF-IDF thematic features. Menya et al. (2022) builds smoothed

2-norm TF-IDF feature sets which avoids the zero word vectors in the
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Fig. 6. Thematic feature classifications.
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(

ase of 𝑡𝑖 ∈ ∀𝑛, 𝑛 ∈ 𝐷 where the term occurs in all documents causing
𝑑𝑓𝑡𝑖 = 0. In smoothed TF-IDF version, the idf formula is updated to:

𝑑𝑓𝑡𝑖 = ln( 𝑁 + 1
𝑑𝑓 (𝑡𝑖) + 1

) + 1 (3)

hile L2-norm is used to normalize the �⃗�𝑖 of 𝑡𝑖 using the euclidean
ormula 𝐿2(�⃗�) = ‖𝑤‖2. The resulting thematic feature is a normalized
ense vector in the {R ∶= {0, 1}}1∗𝑁 space. TF-IDF epidemiological
hematic features are richer than BOW thematic features since they
elate every token to a given document’s context which gives much
eight to rare tokens thus improving discrimination between relevant
nd irrelevant classes.

.3. Deep learning methods to thematic feature representation

In this subsection we look at the deep learning language processing
pproach to improving thematic feature representation beyond classical
pproaches presented in the previous sections. We start by presenting
ontextualized word embeddings as a model for representing enriched
hematic features, followed by a presentation on pre-trained language
odeling approach to learning thematic feature embeddings.

.3.1. Deep contextualized thematic features
In the deep learning approach to representing thematic features,

nstead of term-document matrix 𝑋𝑛,𝑖 as seen in Section 3.2.1 we shift
o term-term matrix 𝑀𝑖,𝑣 for 𝐼 terms and 𝑉 context-set which is the
ocabulary set defined as the set of all unique words in all 𝑁 documents
n our epidemiological corpus.

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑡1 𝑡2 … 𝑡𝑣
𝑡1 𝑓 (𝑡1, 𝑡1) 𝑓 (𝑡2, 𝑡1) … 𝑓 (𝑡𝑖, 𝑡1)
𝑡2 𝑓 (𝑡1, 𝑡2) 𝑓 (𝑡2, 𝑡2) … 𝑓 (𝑡𝑖, 𝑡2)
⋮ ⋮ ⋱ ⋮
𝑡𝑖 𝑓 (𝑡𝑖, 𝑡1) 𝑓 (𝑡𝑖, 𝑡2) … 𝑓 (𝑡𝑖, 𝑡𝑣)

⎤

⎥

⎥

⎥

⎥

⎦

Function 𝑓 (𝑡𝑖, 𝑡𝑣) is computed as:

𝑓 (𝑡𝑖, 𝑡𝑣) = 𝑝(𝑡𝑖|𝑡𝑣),

Where 𝑡𝑣 is the context word
(4)

Terming the vocabulary set 𝑉 as context, we learn the conditional
probability of term 𝑡𝑖 given context 𝑡𝑣. This property leads to similar
words having similar vectors since similar words are known to co-occur
in similar contexts (Firth, 1957; Harris, 1954; Joos, 1950). Thematic
feature 𝑡𝑖 is now represented as 𝑡𝑖 = [𝑝(𝑡𝑖, 𝑡1), 𝑓 (𝑡𝑖, 𝑡2),… , 𝑓 (𝑡𝑖, 𝑡𝑣)] which
is a vector that encodes information on how 𝑡𝑖 relates to all other
terms in 𝑇 . Various techniques have been introduced of learning this
complicated distribution. For instance, Mikolov et al. (2013) learns:

𝑝(𝑡𝑣|𝑡𝑖) =
𝑒(𝑡𝑣⋅𝑡𝑖)

∑ (𝑡 ⋅𝑡 )
(5)
8

𝑠∈|𝑉 |

𝑒 𝑠 𝑖 i
However this approach requires computing the dot product with
very other word in the vocabulary set making it computationally
xpensive to compute the denominator. In addition, computing 𝑝(𝑡𝑖|𝑡𝑣)

presents a challenge similar to BOW assumption since language is
a sequence that unfolds in time thus any particular term should be
related to every prior term that occurs before it in an epidemiolog-
ical sentence. Thus considering document 𝑑𝑗 ∈ 𝐷 which contains 𝑃
epidemiological sentences represented as set 𝑆 = {𝑠1, 𝑠2,… , 𝑠𝑝} with
𝑠𝑝 = {𝑡1, 𝑡2,… , 𝑡𝑖} we learn 𝑝(𝑡𝑖|𝑡𝑖−1, 𝑡𝑖−2,… , 𝑡1) (also 𝑝(𝑡𝑖|𝑡𝑖+1, 𝑡𝑖+2,… , 𝑡𝑣)
in the Bi-directional approach) where 𝑡𝑖 is our epidemiological thematic
feature and set {𝑡𝑖−1, 𝑡𝑖−2,… , 𝑡1} is the context of 𝑡𝑖. Considering this
complex contextualization in learning word vectors for our thematic
features leads to a language modeling approach. Thematic features
learnt this way are far richer in context as opposed to thematic feature
learnt through the non-contextualized approaches such as BOW and
TF-IDF.

3.3.2. The language modeling approach to thematic features
The language modeling approach of learning contextualized epi-

demiological thematic features leads to context-rich features. However,
these complicated contexts are hard to manage and learn from. To
this regard, several context management approaches have been in-
troduced to learning word embeddings; for instance the use of neu-
ral networks (Bojanowski et al., 2016; Pennington et al., 2014), re-
current neural networks (RNN) (Peters et al., 2018), Long-Short Term
Memory Networks (LSTMs) and Attention based Encoder–Decoder Net-
works (Vaswani et al., 2017). In our approach, we learn epidemiological
thematic embeddings using the Attention Networks approach in which
we train an Encoder–Decoder model to learn the most significant
dimensions of the context {𝑡𝑖−1, 𝑡𝑖−2,… , 𝑡1} that the model pays atten-
tion to with respect to how much these terms contributes to a rich
representation of feature 𝑡𝑖.

𝑡𝑖 =
∑

𝑚≤𝑖 𝛼𝑖𝑚 ⋅ 𝑡𝑚,∀𝑚 ≤ 𝑖

Where 𝛼𝑖𝑚 represents the weight of terms 𝑡𝑚 in representing term 𝑡𝑖 for

example a cosine similarity function between 𝑡𝑚 and 𝑡𝑖

(6)

The attention technique learns parameter 𝛼 using a set of trainable
weights namely query, key and value represented as 𝑊 𝑄,𝑊 𝐾 ,𝑊 𝑉

Vaswani et al., 2017). Thus Eq. (6) becomes:

𝑡𝑖 = (𝑊 𝑄𝑡𝑖 ⋅𝑊 𝐾 𝑡𝑖 ⋅𝑊 𝑉 𝑡𝑖) + (𝑊 𝑄𝑡𝑖 ⋅𝑊 𝐾 𝑡𝑖−1 ⋅𝑊 𝑉 𝑡𝑖−1)+

⋯ + (𝑊 𝑄𝑡𝑖 ⋅𝑊 𝐾 𝑡1 ⋅𝑊 𝑉 𝑡1)

Where 𝛼𝑖𝑚 = 𝑊 𝑄𝑡𝑖 ⋅𝑊 𝐾 𝑡𝑚

(7)

The term 𝛼 is then normalized using softmax and computations done

n matrix form, thus we set up an encoder–decoder attention network
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to learn epidemiological thematic feature representations of 𝑀 as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒(𝑊 𝑄𝑀,𝑊 𝐾𝑀,𝑊 𝑉𝑀) = 𝜎(𝑊
𝑄𝑀,𝑊 𝐾𝑀
√

𝐾𝑑𝑖𝑚
)𝑊 𝑉𝑀

Where 𝜎 is the softmax equation 𝜎(𝑥) = 𝑒𝑥
∑

∀𝑖 𝑒𝑥𝑖

and we normalize with 𝐾𝑑𝑖𝑚 to avoid exploding/vanishing gradients

(8)

In these approaches, we end up with a rich and dense vector
representations of our thematic features. However, two more challenges
exists in this attention based approach of enriching thematic features.
First, the approach is computationally expensive to train from scratch
thus we use pre-trained language model with a transfer learning ap-
proach. Secondly, traditional transfer learning approaches are largely
pre-trained on general English corpora thus using this approach will
mainly only enrich terms mostly used in English (such as named
entities). Such an approach does not significantly enrich thematic terms
such as biomedical and spatio-temporal thematic features since they
fail to exist in pre-training vocabulary. We thus introduce approaches
to enrich epidemiological thematic features using novel techniques
that counter these challenges. Our approach proposes a mixed-domain
language model for enriching epidemiological thematic features.

3.3.3. Deep contextualized epidemiological thematic features
In order to enrich our epidemiological thematic features, our ap-

proach adopts a pre-trained biomedical language model with epidemi-
ological fine tuning. This choice is inspired by the close link between
biomedical domain and epidemiological domain in the study of infec-
tious diseases and how they spreads. As an improvement to Menya et al.
(2022) who introduced the (Lee et al., 2019) BioBERT architecture for
epidemiological corpora classification task, we achieve our architecture
using BioELECTRA (Kanakarajan et al., 2021).

BioELECTRA’s underlying architecture improves over BERT based
language models by introducing replaced token prediction technique that
counters BERT’s masked language model technique allowing BioELEC-
TRA to learn from all tokens in a train set. In addition, BioBERT’s Weak-
ness of word-piece tokenization hampers generalization in downstream
biomedical tasks making it perform lower than BioELECTRA (Gu et al.,
2022). BioELECTRA ranks higher than BioBERT in the BLURB leader-
board’s biomedical tasks including named entity recognition which is
strongly related to our task goal. In Section 5 we compare our approach
with other SOTA language models namely BioBERT (Lee et al., 2019),
SciBERT (Beltagy et al., 2019), ClinicalBERT (Alsentzer et al., 2019),
PubMedBERT (Tinn et al., 2021) and EpidBioBERT (Menya et al., 2022)
over the epidemiological corpora classification task.

4. Experimental setup

In this section we discuss our corpus set and its contents, how it
was generated and prepared. We also specifically discuss our thematic
feature corpus set and its statistical distribution. Finally we outline our
model configurations and hyperparameter settings.

4.1. PADI-Web corpus set

Our experimental data is made up of three sets of corpora. First
we prepare PADI-Web𝑔𝑜𝑙𝑑 which consists of 800 human-expert labeled
corpora which is balanced between relevant and irrelevant articles (Ra-
batel et al., 2017). This first set of corpus is used for strong supervision
testing of our model. Secondly, we derive our main corpora from PADI-
Web dataset by Menya et al. (2023) for a weak supervised learning
approach. Weak supervised learning approach provides large corpus
for improved training and testing beyond gold labeled dataset (Mutuvi,
2022). Our PADI-Web dataset contains automatically annotated news
9

articles collected from google news via RSS feeds. In addition, this t
Fig. 7. Distribution of relevant vs. irrelevant epidemiological news articles in our
collected PADI-Web dataset.

collected corpus set contains relevant (consists of animal epizootics
news articles) and irrelevant (articles that mentions other general topics
or those simply related to epidemiology) article labels. These labels are
automatically assigned by PADI-Web system (Valentin et al., 2020). To
minimize labeling noise from our machine generated data, we use a
human annotator intervention approach to manually walk-through the
data. This intervention leads to text cleaning approaches including
correctly re-classifying the small portion of miss-classified corpus and
the elimination of outlier articles. We thus exclude articles that are
either too short or too long within a given threshold. Outliers are more
prone to causing miss-classification errors (Valentin et al., 2020).

In the next step of data preparation on our main corpus set, we
apply a two step procedure. We first clean the raw PADI-Web articles
(removing hyperlinks, lowercasing) and then perform tokenization us-
ing pre-trained BioELECTRA tokenizer. This main corpus set consists
of 70,707 news articles with a fair relevant to irrelevant distribution
ratio of 48 ∶ 52 translating to 34,015 relevant and 36,692 irrelevant
as shown in Fig. 7. The aim of having a corpus set of this size is
to improve our model training and testing beyond the 800 class-
imbalanced news articles used to train and test EpidBioBERT (Menya
et al., 2022). EpidBioELECTRA is thus trained on almost 100 times
the data of EpidBioBERT. Our prepared corpus set is then subdivided
into train (60%), test (20%) and validation (20%) sets for experimental
purposes as summarized in Table 4.

In addition to the above steps, from our main corpus set we further
prepare a new data segment named PADI-Web𝑡𝑖𝑡𝑙𝑒𝑠 consisting of PADI-
Web article titles with their associated article labels. This new data
consists of shorter corpora length since the average length of news titles
measured from these set is approximately 11 words Fig. 8(a) compared
to the average length of article content Fig. 8(b). We experiment over
PADI-Web𝑡𝑖𝑡𝑙𝑒𝑠 in Section 5.1 and find that it is more efficient to train
from this set though trained models though the resulting classifier
suffers in performance compared to training with longer articles. For
further experimentation’s based on corpus length, we prepare PADI-
Web𝑠ℎ𝑜𝑟𝑡 with maximum length of 128 words per article, PADI-Web𝑙𝑜𝑛𝑔
of length 256 and PADI-Web𝑋𝐿 with 512 words per article as informed
by the average size of most news articles in our original PADI-Web
corpus set Fig. 8(b).

The last portion of our data is termed PADI-Web𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 which is
ollected from the annotated PADI-Web corpus containing labeling
nformation and meta-data about thematic features found in PADI-

eb (Menya et al., 2023). We use this second data portion to study our
hematic features with their labels, distributions and influence that they
ave in our classifier using explainable AI techniques in Section 5.5.
e also use PADI-Web𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 to compute thematic features frequency

istribution in Section 4.2 below. Our model, EpidBioELECTRA uses the
wo prepared portions of data as shown in Fig. 9.



Expert Systems With Applications 250 (2024) 123894E. Menya et al.

4

w
w

Table 4
Overview of PADI-Web dataset showing frequency, train and test percentages (Train : Test), maximum set corpus length (Length) and percentages
of relevant versus irrelevant articles (Rel : Irrel).

Dataset 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑇 𝑟𝑎𝑖𝑛 ∶ 𝑇 𝑒𝑠𝑡 𝐿𝑒𝑛𝑔𝑡ℎ 𝑅𝑒𝑙 ∶ 𝐼𝑟𝑟𝑒𝑙

PADI-Web𝑔𝑜𝑙𝑑 800 80 ∶ 20 – 49 ∶ 51

Titles

PADI-Web𝑡𝑖𝑡𝑙𝑒𝑠 70,707 60 ∶ 40 16 48 ∶ 52

Length

PADI-Web𝑠ℎ𝑜𝑟𝑡 70,707 60 ∶ 40 128 48 ∶ 52
PADI-Web𝑙𝑜𝑛𝑔 70,707 60 ∶ 40 256 48 ∶ 52
PADI-Web𝑋𝐿 70,707 60 ∶ 40 512 48 ∶ 52

Thematic Feature

PADI-Web𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 70,400 – − 100 ∶ 0
Fig. 8. On the left the average number of tokens per title in epidemiological news article in our collected PADI-Web dataset. On the right the average number of tokens per
document in the same dataset.
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Fig. 9. EpidBioELECTRA architecture flow.

.2. Thematic feature distribution in PADI-Web

Our second portion of data, PADI-Web𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 , is richly annotated
ith epidemiological information as contained in PADI-Web corpus
ith information on document id, sentences and positions where a
10
given thematic feature appears. PADI-Web𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 contains 70,400 the-
matic features and their related information, out of the 70,400 we count
9073 uniquely mentioned thematic features. From PADI-Web𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 we
ompute some useful statistics about PADI-Web dataset. We generate
oth bar graph and sankey plots to visualize thematic feature fre-
uencies from both relevant and irrelevant classes of PADI-Web𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 .
rom Fig. 10, we observe that PADI-Web corpus set uniquely mentions
02 diseases, 129 hosts, 2763 named locations and 35 symptoms.

In Fig. 11 we generate a sankey plot of three of the top thematic
eatures of each type (disease, host, keyword, location, symptom, date
nd time) showing how they rank by frequency. We note that PADI-
eb corpus contains african swine fever as the top mentioned disease

n most of its epidemiological news articles, while pig, cases and China
ank as the top host, keyword and location thematic features respec-
ively. Likewise, fever and 2021 are the most mentioned symptom and
ate respectively.

.3. Model configurations and hyperparameter settings

We perform fine tuning on our model maintaining the hyperparam-
ters experimented by Menya et al. (2022) and selected through grid
earch, we thus have hidden embedding size of 768, 12 Attention Heads
nd 12 Transformer blocks for our model and baselines to maintain a
air competition among models. However, different from Menya et al.
2022), we increase our batch size and sequence length depending
n the type of data under experimentation and after performing grid
earch on our held out corpus. For PADI-Web𝑡𝑖𝑡𝑙𝑒𝑠 we set batch size to 64
nd sequence length to 32. For the rest of corpora PADI-Web𝑠ℎ𝑜𝑟𝑡, PADI-
eb𝑙𝑜𝑛𝑔 and PADI-Web𝑋𝐿 we set batch size to 32 and sequence length

orresponding to limits set in 4.1. We then experiment using cross-
alidated models with each running for 50 epochs and we obtain the
veraged metrics. For our decoder model we experiment with dropout
ates of 0.1, 0.2 and 0.3 to control the model’s overfitting tendency. For
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Fig. 10. Frequencies of mentioned thematic features in PADI-Web. Unique counts are recorded as we count every individual feature once without repetition.
Fig. 11. Sankey Plot of top thematic features (on the right) by frequency (captured by arc thickness) and their general types (on the left) computed from PADI-Web annotations.
e observe Disease, Host, Keyword and Location as popular thematic features while Symptom and Date as least popular.
he optimizer, we maintain the AdamW optimizer, which has been re-
orted as the best-performing hyperparameter in previous studies, with
ecoupled weight decay setting 𝛽1 = 0.9 and 𝛽2 = 0.999 (Loshchilov &

Hutter, 2019). We also set 𝜖 = 1e-8 and weight decay = 0.01 for the
optimizer. In addition, we also set small initial learning rates of 1e-5
and 2e-5 balancing this with our cross-validation epochs to favor our
fine tuning approach following (Ruder, 2021).

5. Results and ablations

In this section, we present experimentation results of EpidBioELEC-
TRA compared with other pre-trained baselines experimented on PADI-
Web𝑡𝑖𝑡𝑙𝑒𝑠, PADI-Web𝑠ℎ𝑜𝑟𝑡, PADI-Web𝑙𝑜𝑛𝑔 and PADI-Web𝑋𝐿 corpus sets.
We first discuss overall results for all competitive models and we gold
11
test the most competitive models on PADI-Web𝑔𝑜𝑙𝑑 dataset. Later, we
present and discuss ablation findings on understanding the behaviors
of these classifiers and how thematic features influence classification
improvement.

5.1. Experimentation metrics

In our first empirical step, we apply an extrinsic evaluation ap-
proach where we focus on measuring and comparing model classi-
fication skills as captured by how they balance between recall and
precision. Recall metric is also known as a models’ sensitivity while
precision is known as a models’ positive predictive value (PPV). In
the context of epidemiology surveillance, Sensitivity is defined as the

ability of an EBS system to detect health risks while PPV is defined
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Algorithm 1: EpidBioELECTRA classifier algorithm
Data: Epidemiological news documents 𝐷 = {𝑑1, ..., 𝑑𝑛} with

class labels 𝐷 = {𝑙1, ..., 𝑙𝑛}
Result: Determination of whether 𝑑𝑛 is relevant or irrelevant

1 𝑇 ← {𝑑𝑖𝑠𝑒𝑎𝑠𝑒, ℎ𝑜𝑠𝑡, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑑𝑎𝑡𝑒, 𝑡𝑖𝑚𝑒};
2 𝐷𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 ← {};
3 𝐷𝑔𝑒𝑛𝑒𝑟𝑎𝑙 ← {};
4 for 𝑑𝑛 ∈ 𝐷 do
5 for each word 𝑤𝑖 ∈ 𝑑𝑛 do
6 if 𝑤𝑖 ∈ 𝑇 then
7 𝑤𝑖 ← 𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐;
8 𝐷𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 ← 𝑤𝑖 ; /* This is a thematic

feature */
9 else
10 𝐷𝑔𝑒𝑛𝑒𝑟𝑎𝑙 ← 𝑤𝑖 ; /* This is a general English

word */
11 end
12 end
13 end
14 for 𝑑𝑎 ∈ 𝐷𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 do
15 for 𝑡𝑖 ∈ 𝑑𝑎 do
16 𝑊𝑡𝑖 ← 𝐿𝑀 ;
17 𝑑𝑒𝑚 ← 𝑊𝑡𝑖 ;
18 𝑦← 𝑤𝑥 + 𝑏 ; /* Compute class prediction */
19 𝐿 ← −(𝑐𝑙𝑛(𝑦) + (1 − 𝑦)𝑙𝑛(1 − 𝑦)) ; /* Compute model

loss */
20 𝑊 ← 𝑤 − 𝛼 ∗ 𝜕𝐿

𝜕𝑊 ; /* Update weights for better
prediction */

21 end
22 end

as the probability of a raw signal detected by an EBS to correspond
to a genuine health risk (WHO, 2014, chap. 6). We perform eval-
uation by comparing precision–recall curve (PR) as well as receiver
operating characteristic curve (ROC) of EpidBioELECTRA against com-
petitive classifiers in their skill of performing epidemiological docu-
ment classification by discriminating between relevant and irrelevant
signals.

Precision and Recall performance measures are inspired by the
expected practicality of EBS systems. An effective EBS system must
report epidemiological events before official sources detect such cases.
By taking this approach, we are measuring the added value of an EBS
system over conventional methods of epidemic surveillance. A clear
balance has to be struck between timeliness and accuracy of digital
epidemic surveillance classifiers. WHO (2014, chap. 4) advise is to
prioritize sensitivity (recall) above PPV (precision) when detecting for
emerging and novel epidemics while evoking a vice-versa prioritization
when detecting for common re-emerging diseases. In-line with this,
we monitor 𝐹1 scores of EpidBioELECTRA and competitive classifiers
in their ability to balance sensitivity and PPV as captured by 𝐹1
core. These monitored 𝐹1 scores inform our experimentation on how
killed a model is in discriminating between relevant and irrelevant
pidemiological corpora.

We compute Almost Stochastic Order (ASO) 𝜖𝑚𝑖𝑛 scores (Del Barrio
t al., 2018; Dror et al., 2019) of EpidBioELECTRA versus all the com-
etitive models using the implementation of Ulmer et al. (2022) and
e present these results in Section 5.4. These ASO 𝜖𝑚𝑖𝑛 scores quantifies

he level of confidence in the difference among all competitive models.
SO computes a specific metric that informs how far a given algorithm

s from being significantly better than another. When ASO 𝜖𝑚𝑖𝑛 = 0 then
t means the algorithm is stochastically dominant over the comparative
lgorithm, while ASO 𝜖 = 0.5 stochastic is undefined. On the other
12

𝑚𝑖𝑛 e
and, when ASO 𝜖𝑚𝑖𝑛 = 1 then the algorithm in question is considered
ot stochastically dominant to the competitive algorithm.

.2. Experimentation results

We present our first experimental findings in Table 5. In this table,
e note that EpidBioELECTRA performs better than competitor classi-

iers on 𝐹1 score in both PADI-Web𝑡𝑖𝑡𝑙𝑒𝑠 and PADI-Web𝑠ℎ𝑜𝑟𝑡 datasets also
utperforming competitor models in recall score in PADI-Web𝑠ℎ𝑜𝑟𝑡. Per-
ormance improves almost ten-fold in PADI-Web𝑠ℎ𝑜𝑟𝑡 which has longer
ontext compared to PADI-Web𝑡𝑖𝑡𝑙𝑒𝑠. This improvement is recorded by
ll competitive models except the baseline models BioELECTRA and
ERT though we note that BioELECTRA makes a slight improvement
bove BERT on 𝐹1 score. We note that increasing the number of words
more sentences) in the train set benefits the performance of all models.
his performance improvement can be attributed to the increases in
ontext on which the classifiers make their decision. This context is
uch longer in long documents compared to short ones. However,

hough the improvement is true on all models, it is EpidBioELECTRA
hat records the highest improvement of +7.79% points on 𝐹1 score. This
pidBioELECTRA’s improvement is +0.76% higher than EpidBioBERT’s
hich comes second in PADI-Web𝑠ℎ𝑜𝑟𝑡 dataset.

However, still in Table 5, we can see that BioELECTRA, a model
hat is not fine tuned on epidemiological classification task, records
he highest recall values in both datasets with the none fine tuned
ERT coming in second. This means that these two none fine tuned
odels, perform best at avoiding false negatives thus they do well

n sensitivity. On the contrary, the two baselines perform the poorest
t committing false positives errors thus have the lowest precision
alues (PPV) meaning they are more prone to sounding false alarms
n acute health events. This underlies the key goal of fine tuning
pidBioELECTRA which is to balance the model’s sensitivity and PPV
s normalized by having a better 𝐹1 score thus avoiding both missing
ut on epidemiological emergencies and triggering of false alarms (see
igs. 12–14). We also note that PubMedBERT, a biomedical language
odel, is also competitive in this task as it only falls short by −0.81%

f EpidBioELECTRA on 𝐹1 score.
Following the results recorded in Table 5, we make a critical ob-

ervation that; in enriching features for effective epidemiology surveil-
ance three strategies stand out. First the data used in pre-training
he language model, secondly, the pre-training strategy and finally the
ine-tuning technique used contribute a lot to a model’s performance.

e track the pre-trained data used in all our competitive models in
able 6. From this table we note that, building disease surveillance
ystem (such as epidemiology text classifier in our case) works best with
anguage models trained using biomedical corpora such as BioELECTRA
nd PubMedBERT followed by fine tuning them with epidemiological
ata. Models pre-trained on other domain corpora, such as SciBERT
nd ClinicalBERT, tend to suffer in epidemiological task performance.
hese pre-training strategies tend to enable the base model to learn
orphological, syntactical and semantic information from the pre-

rained corpus and transfers these knowledge to downstream tasked
ine-tuned models. Our fine-tuned model thus learns domain specific
hematic features such as names of diseases, hosts and symptoms from
he biomedical corpora which is a major contributor to enriching our
lassification. We study these aspects further in Section 5.5.

Consequent to our observations (in EpidBioELECTRA’s context) it
ollows that it was a benefiting empirical step to use BioELECTRA
ase model since epidemiological news sources such as PADI-Web
orpus have a lot of biomedical information vis-à-vis normal English
nformation. The data used in pre-training BioELECTRA i.e. PubMed-
bstracts, and PMC Fulltexts, benefits our downstream classification
rocess by reducing cases of out-of-vocabulary (OOV) instances. OOV
s where many words in the train set are not found in the underlying
odel’s vocabulary thus they are assigned a shared none-discriminative
mbedding. Also we note that deep Event Based Surveillance systems
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Table 5
Results Table comparing EpidBioELECTRA performance against the baseline models in PADI-Web𝑡𝑖𝑡𝑙𝑒𝑠 and PADI-Web𝑠ℎ𝑜𝑟𝑡
datasets with best scores in Bold. Prec%, Rec% and 𝐹1% refer to precision percentage, recall percentage and 𝐹1 score
percentage respectively.

PADI-Web𝑡𝑖𝑡𝑙𝑒𝑠 PADI-Web𝑠ℎ𝑜𝑟𝑡

Model Prec% Rec% 𝐹1% Prec% Rec% 𝐹1%

PubMedBERT 82.21 84.12 83.15 89.55 91.12 90.31
BioELECTRA 48.58 99.64 65.32 55.83 99.92 71.64
BERT 50.53 98.67 66.83 55.85 97.86 71.12

SciBERT 81.7 84.6 83.0 89.71 90.2 89.95

EpidBioBERT 81.04 85.32 83.08 89.71 91.11 90.36
EpidBioELECTRA 81.23 85.65 83.33 89.93 92.35 91.12
ClinicalBERT 79.94 84.85 82.28 88.2 89.0 88.59
Fig. 12. EpidBioELECTRA’s confusion matrices.
Table 6
Corpora used for pre-training strategies of competitive models. GenEnglish, BioMed,
Epid, Clinical, CompSci refer to general Eglish domain, biomedical domain,
epidemiological domain, clinical domain and computer science domain respectively.

Model Pre-trained Corpus
Category (𝐺𝑒𝑛𝐸𝑛𝑔𝑙𝑖𝑠ℎ1

𝐵𝑖𝑜𝑀𝑒𝑑2 , 𝐸𝑝𝑖𝑑3 ,
𝐶𝑙𝑖𝑛𝑖𝑐𝑎𝑙4 , 𝐶𝑜𝑚𝑝𝑆𝑐𝑖5)

Corpora

Domain Specific
PubMedBERT
(Abstracts)

2 PubMedAbstracts

PubMedBERT
(Abstracts+PMC)

2 PubMedAbstracts,
PMC Fulltexts

BioELECTRA 2 PubMedAbstracts,
PMC Fulltexts

General Purpose
BERT 1 English Wikipedia,

BookCorpus
Mixed Domain
SciBERT 2, 5 SciERC, JNLPBA,

GENIA, SciCite,
BC5CDR,

NCBI-disease,
EBM-NLP, ChemProt,

Paper Field,
ACL-ARC

Continual Pre-trained
EpidBioBERT 1, 2, 3 Wikipedia,

BookCorpus, PubMed
Central, PADI-Web

EpidBioELECTRA 1, 2, 3 Wikipedia,
BookCorpus, PubMed
Central, PADI-Web

ClinicalBERT 1, 4 Wikipedia,
BookCorpus, MIMIC

III
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tend to work best with domain specific language models as opposed to
general purpose language models such as BERT. However we observe
that this domain specific language model has to be fine tuned further
with a continual pre-training approach. Such an approach means that
we initiate the fine-tuning step to pick up from where the pre-training
step left of and we train further to make our model skilled in a
related downstream task. This is the approach we take with EpidBio-
ELECTRA.

This observation on choosing a suitable base model is quite inter-
esting since it seems to underscore that though related, epidemiology
surveillance is different from biomedical surveillance given the nature
of train datasets. Those of epidemiology surveillance blend a mixture
of general English and biomedical terms for example epidemiological
news articles contains reporting of disease outbreaks in a news reading
context. Models based on none biomedical training corpora such as
ClinicalBERT perform below the rest on epidemiological classification
task.

To understand how longer context improves epidemiological clas-
sification, we train and test all models on two more datasets; PADI-
Web𝑙𝑜𝑛𝑔 and PADI-Web𝑋𝐿, and we present results in Table 7. We ob-
serve from this table that EpidBioELECTRA benefits the most from this
long corpus training as recorded in its +1.69% (in PADI-Web𝑙𝑜𝑛𝑔) and
+2.34% (PADI-Web𝑋𝐿) improvement in 𝐹1 score from PADI-Web𝑠ℎ𝑜𝑟𝑡.
EpidBioELECTRA also improves its recall from 93.49% in PADI-Web𝑙𝑜𝑛𝑔
to 94.62% in PADI-Web𝑋𝐿 which is +0.33% ahead of PubMedBERT’s
improvement on the same metric. With longer contexts corpus in
Table 7 experiment results, we still make observations on importance of
biomedical domain in epidemiology surveillance. Longer context tend
to simply amplify model benefits recorded in Table 5. This explains
the simultaneous improvements of the top three models (EpidBioELEC-
TRA, EpidBioBERT and PubMedBERT) on precision as captured by
their shared metric score of +92.33%. ClinicalBERT suffers the most in
performance compared to the other models falling short −3.08% below

EpidBioELECTRA in 𝐹1 score (see Table 8).
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Fig. 13. Plots of EpidBioELECTRA skill on balancing sensitivity and PPV compared to EpidBioBERT and baseline models over PADI-Web𝑙𝑜𝑛𝑔 .
Table 7
Results Table comparing EpidBioELECTRA performance against the baseline models in PADI-Web𝑙𝑜𝑛𝑔 and PADI-Web𝑋𝐿 datasets
with best scores in Bold. Prec%, Rec% and 𝐹1% refer to precision percentage, recall percentage and 𝐹1 score percentage
respectively.

PADI-Web𝑙𝑜𝑛𝑔 PADI-Web𝑋𝐿

Model Prec% Rec% 𝐹1% Prec% Rec% 𝐹1%

PubMedBERT 91.36 92.72 92.03 92.33 93.52 92.92
BioELECTRA 56.42 99.95 72.14 60.33 96.57 74.26
BERT 56.36 98.27 71.63 56.64 99.91 72.32

SciBERT 90.35 91.65 90.99 91.46 91.82 91.63

EpidBioBERT 90.95 92.95 91.93 92.33 93.28 92.8
EpidBioELECTRA 92.15 93.49 92.81 92.33 94.62 93.46
ClinicalBERT 89.09 91.65 90.99 89.96 90.82 90.38
Fig. 14. EpidBioELECTRA’s confusion matrices.
Table 8
Fine tuning memory and time requirements of all models in all our datasets.

Model PADI-Web𝑡𝑖𝑡𝑙𝑒𝑠 PADI-Web𝑠ℎ𝑜𝑟𝑡 PADI-Web𝑙𝑜𝑛𝑔 PADI-Web𝑋𝐿
GPU Memory
Usage (GB)

Runtime (s) GPU Memory
Usage (GB)

Runtime (s) GPU Memory
Usage (GB)

Runtime (s) GPU Memory
Usage (GB)

Runtime (s)

PubMedBERT 5.5 10 405.6 13.1 170 389.9 21.5 304 893.7 27.15 617 733.6
BioELECTRA 2.8 6439.6 10.3 126 758.1 18.3 250 125.6 25.3 399516.0

BERT 1.5 5593.8 11.5 108 742.6 18.8 269 003.1 20.2 412350.3

SciBERT 3.8 9483.5 12.4 112 678.3 28.3 283 706.0 24.6 415002.8

EpidBioBERT 3.5 9732.4 14.5 130 212.8 20.5 315 668.2 27.4 609533.3
EpidBioELECTRA 3.6 9936.3 16.4 144 863.0 23.5 335 634.4 28.3 614746.1

ClinicalBERT 3.2 8769.4 15.7 126 488.3 19.7 295 124.6 26.8 528368.9
14
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Fig. 15. Almost Stochastic Order (ASO) scores expressed in 𝜖𝑚𝑖𝑛 with a confidence interval of 𝛼 = 0.5 adjusted as per the Bonferroni correction (Bonferroni, 1936). Bold shades
shows stochastic dominance showing that one algorithm (row) is better than the other (column). E.g. in (a) EpidBioELECTRA (row) is stochastically dominant over BioELECTRA
(column) 𝜖𝑚𝑖𝑛 = 0.38.
Table 9
Performance of EpidBioELECTRA classifier on PADI-Web𝑔𝑜𝑙𝑑 compared to two
competitive models. Best scores are in bold.

Model 𝐹1𝑆𝑐𝑜𝑟𝑒 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

Competitive Models

PubMedBERT 95.01 94.31 95.73 95.84
EpidBioBERT 95.61 95.33 95.89 96.13

Ours

EpidBioELECTRA 97.6 97.29 97.92 96.91

5.3. Strong supervision performance testing for EpidBioELECTRA

In this subsection we provide test results of testing EpidBioELEC-
TRA on our small gold labeled dataset PADI-Web𝑔𝑜𝑙𝑑 which is made
up of 800 humanly labeled articles. We take this approach in order
to ascertain that the weak learning approach benefited our model.
Gold labeling a dataset is a slow and expensive process that hampers
strong supervision training, as a results weak supervision helps mod-
els generalize well as the amount of data is larger. For this testing
approach, we track accuracy of competitive models (as trained using
PADI-Web𝑋𝐿) in that the best model should achieve an accuracy closer
to 100% meaning it has well captured the human-expert’s labeling
decisions in PADI-Web𝑔𝑜𝑙𝑑 . We also set PADI-Web𝑔𝑜𝑙𝑑 length to 512
to match PADI-Web𝑋𝐿 used for training the competitive models. We
present results in Table 9 from where we note that EpidBioELEC-
TRA achieves both the highest classification accuracy and 𝐹1 score
compared to the closest competitive models. The accuracy perfor-
mance of EpidBioELECTRA is respectively +1.11 and +2.91 above those
recorded by EpidBioBERT (Menya et al., 2022) and PADI-Web classifier
system (Valentin et al., 2019) on PADI-Web𝑔𝑜𝑙𝑑 .

5.4. Confidence levels for competitive models

In order to verify that EpidBioELECTRA’s performance does not sim-
ply benefit from statistical chance, we compute Almost Stochastic Order
(ASO) 𝜖𝑚𝑖𝑛 scores. We present confidence level values as measured
by statistical dominance in Figs. 15(a) and 15(b) where we compares
our models’ classification performance confidence against competitive
models in PADI-Web𝑠ℎ𝑜𝑟𝑡 and PADI-Web𝑙𝑜𝑛𝑔 datasets respectively. We
observe statistical dominance of EpidBioELECTRA over competitive
models recorded in both instances interpreted as 0.00 => 𝜖𝑚𝑖𝑛 <= 0.1
along the row as compared to competitive models along the column.
Fig. 15(a) shows that EpidBioELECTRA (row) is stochastically dominant
with significance over BioELECTRA, BERT and ClinicalBERT (column).
We also note from the same table that EpidBioELECTRA is dominant
compared to SciBERT, PubMedBERT and EpidBioBERT with a margin.
Fig. 15(b), we observe the same pattern of EpidBioELECTRA’s statistical
15
dominance over competitive models with significance uniformity. This
improvement can be attributed to the longer context length of the
PADI-Web𝑙𝑜𝑛𝑔 test dataset.

5.5. Thematic feature influence

As an improvement to Menya et al. (2022) approach of measur-
ing thematic feature importance in epidemiological classification, we
employ an explainable AI approach to understand how much impact
each thematic feature has in our epidemiology corpus classifier model.
To this regard, we compute SHapley Additive exPlanations (SHAP)
values on our test set corpus. SHAP values introduced by Lundberg and
Lee (2017) are SOTA explainable AI computations for explaining the
individual impact of every feature in a black box model. For example
Fig. 16 shows a document in the test set where some key high value
SHAP points are highlighted in color.

From the SHAP values we also learn feature directionality i.e. whe-
ther a feature point towards relevant or irrelevant directions in a
classified document. For example in Fig. 17, we plot the feature di-
rectionality of thematic features in Fig. 16 based on their SHAP values
(SHAP values have boht magnitude and direction). We further exper-
iment on SHAP values of complete epidemiological phrases beyond
single unigrams. For example, Fig. 18 plots most popular phrases of
the corpus from Fig. 16 and the directionality of the phrases.

5.6. EpidBioELECTRA SHAP computations

As outlined in Section 4.1, our test set i.e. PADI-Web𝑡𝑒𝑠𝑡 covers (20%)
of our corpus set. These consists of 14,400 documents that we use not
only to test all models in Section 5.2, but also in computing our shap
explanations. PADI-Web𝑡𝑒𝑠𝑡 contains 10,900 thematic features out of
these we count 1300 unique features which we study in this section
and present recorded results in Table 10.

We modify the approach of Lundberg and Lee (2017) from which
we compute probabilistic shap values. These computed values answer
the question of how much probability mass does one thematic feature
contribute in influencing classification decision of a given corpus. We
compute them based on Eq. (9). Given a corpus 𝑑𝑗 in PADI-Web𝑡𝑒𝑠𝑡
denoted as 𝜏 and containing 𝑛 thematic features 𝐹 = {𝑓1, 𝑓2,… , 𝑓𝑛}
influencing classification decision 𝑝(𝑐𝑖|𝑑𝑗 ) where 𝑐𝑖 ∈ 𝐶 and 𝑑𝑗 ∈ 𝜏 with
𝐶 = {𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡, 𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡} we compute 𝑆𝐻𝐴𝑃𝑓𝑛 (𝑝(𝑐𝑖|𝑑𝑗 )) the shap value
of feature 𝑓𝑛 in influencing 𝑝(𝑐𝑖|𝑑𝑗 ) for document 𝑑𝑗 ∈ 𝜏 as:

𝑆𝐻𝐴𝑃𝑓𝑛 (𝑝(𝑐𝑖|𝑑𝑗 )) =
∑𝑛=1
𝑁+1[𝑛

(𝑁
𝑛

)

]−1𝜓𝑓𝑛 (𝑝(𝑐𝑖|𝑑𝑗 ))

Where 𝜓𝑓𝑛 (𝑝(𝑐𝑖|𝑑𝑗 )) computes the marginal contribution of 𝑓𝑛
in classification decision 𝑝(𝑐𝑖|𝑑𝑗 ) and [𝑛

(𝑁
𝑛

)

]−1 computes its weight
(9)
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Fig. 16. An example of an epidemiological document of class relevant from PADI-Web𝑡𝑒𝑠𝑡 with thematic features tagged by EpidBioELECTRA. The shades of green represents shap
values and their magnitude (captured by shade opacity) as used by the model to classify this document.
Fig. 17. Plot showing how thematic features shap values are impacting both relevant and irrelevant decisions by EpidBioELECTRA model on document shown in Fig. 16. Green
hades represents relevant class and blue shade irrelevant class. The arrows point on the directional of shap pull with the classification value settled at the demarcated 𝑦-axis line.
Table 10
Impact of each Thematic Feature on influencing our classifier results as captured during EpidBio-
ELECTRA training. Features with the most information contribute the most to both relevant and
irrelevant classes, we show their scores in bold.

Cumulative
Impact

Impact Per
Mention

Thematic feature Freq rel irrel rel irrel

Keyword 26 21.3157 0.1053 0.8198 0.004
Disease 33 23.9848 0.0207 0.7268 0.0006
Host 46 9.2895 0.2456 0.2019 0.0053
Symptom 20 3.5717 0.1873 0.1785 0.0093
Organization 337 29.394 1.769 0.087 0.005
Cases 246 15.7584 0.3192 0.064 0.0012
Location 264 16.5104 1.117 0.062 0.0042
Date 387 15.9813 1.4973 0.0412 0.0038
Time 28 0.2989 0.3304 0.0106 0.0118
t
t
c

d
c
t

In this our approach we can track the computations of Eq. (9)
sing Table 11. We notice that to compute the probabilistic shap value
f 𝑛 thematic features we have to construct 2𝑛 test models to cover
ll possible combinations of feature-sets in order to study how each
ombination influences the model’s classification decision. The first
onstructed model is made up of no features (an empty feature set
) and is also known as the base model. On the other extreme, the
omplete model is made up of a full feature set 𝐹 which is equivalent
16

|

o the complete model versions tested in Section 5.2. In between these
wo model extremes, we form all possible feature combinations and
ompute individual probabilistic shap values.

As an example, if we are computing the probabilistic shap value of a
isease thematic feature namely african swine fever, we can track the
omputations as captured by Fig. 19. Following this approach, we get
he probability shap value for token african i.e. 𝑆𝐻𝐴𝑃𝑎𝑓𝑟𝑖𝑐𝑎𝑛(𝑝(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡
𝑑 )) using Eq. (11). The term 𝜓 (𝑝(𝑐 |𝑑 )) is known as the marginal
𝑗 𝑓𝑛 𝑖 𝑗
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c
(

Fig. 18. Most popular phrases by shap value and their class directions in the entire document presented on Fig. 16.
Table 11
Tracking shap computations in 2𝑁 EpidBioELECTRA test models for
thematic features in document 𝑑𝑗 . The first row represents a test model
constructed with an empty feature set while the last row represents the
complete model with a full feature set.

Iteration Thematic set Model prediction

0 𝜙 𝑝(𝑐𝑙|𝑑𝑗 )1
1 𝑛𝐶1 𝑝(𝑐𝑙|𝑑𝑗 )1 ,… , 𝑝(𝑐𝑙|𝑑𝑗 )3
2 𝑛𝐶2 𝑝(𝑐𝑙|𝑑𝑗 )1 ,… , 𝑝(𝑐𝑙|𝑑𝑗 )3
⋮ ⋮ ⋮
𝑁 𝑛𝐶𝑛 𝑝(𝑐𝑙|𝑑𝑗 )1

ontribution of feature 𝑓𝑛 in the classification’s probability mass
𝑝(𝑐𝑖|𝑑𝑗 )).

𝜓𝑓𝑛 (𝑝(𝑐𝑖|𝑑𝑗 )𝑥,𝑦) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[𝑝(𝑐𝑖|𝑑𝑗 ){𝑥,𝑦}−

𝑝(𝑐𝑖|𝑑𝑗 ){𝑥−1,𝑦}], for 𝑓𝑛 ∉ 𝑝(𝑐𝑖|𝑑𝑗 ){𝑥−1,𝑦}∀𝑦

0, otherwise

Where 𝑥, 𝑦 are co-ordinates of current cell by row and column

and 𝑥 − 1, 𝑦 are the cells in preceding row

(10)

In Fig. 19, we track marginal contribution of token african along the
edges leading to nodes where african is involved in local calculation.
We calculate the overall contribution of token african by summing
up its weighted marginal contributions in all models where the token
appears in the model’s thematic set. This visualization is achieved by
considering the edge connecting parent to child node with the condition
that the parent node does not contain feature african while the child
node contains this feature in order to measure the effect of adding token
african to a thematic feature set. We compute marginal contribution
of a feature using Eq. (10) and finally these values are weighted and
summed. Lundberg and Lee (2017) proposed weightings that follows
two key rules; all weights must sum to one and weights at any given
row must be equal to each other, thus we adopt [𝑛

(𝑁
𝑛

)

]−1 weight
index.

𝑆𝐻𝐴𝑃𝑎𝑓𝑟𝑖𝑐𝑎𝑛(𝑝(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑑𝑗 )) = [1
(3
1

)

]
−1
𝜓𝑎𝑓𝑟𝑖𝑐𝑎𝑛(𝑝(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑑𝑗 ))+

[2
(3
2

)

]
−1
𝜓𝑎𝑓𝑟𝑖𝑐𝑎𝑛(𝑝(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑑𝑗 ))+

[2
(3
2

)

]
−1
𝜓𝑎𝑓𝑟𝑖𝑐𝑎𝑛(𝑝(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑑𝑗 ))+

(3) −1

(11)
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[3 3 ] 𝜓𝑎𝑓𝑟𝑖𝑐𝑎𝑛(𝑝(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑑𝑗 ))
Beyond shap values of an individual thematic feature, we study
the overall impact of each broad class of thematic features over both
relevant and irrelevant classes in the 1300 features in PADI-Web𝑡𝑒𝑠𝑡. To
understand which features contribute the most to an epidemiological
document being classified as either relevant or irrelevant, we sum up
all computed probabilistic shap values for both relevant and irrelevant
classes in a metric which we term cumulative impact computed as
in Eq. (12). Since its trivial that a high frequency feature will have a
higher cumulative impact mass, we compute a secondary metric termed
impact per mention (IPM) which is as the norm value of cumulative
impact of a feature divided by its frequency computed as in Eq. (13).
We present these results in Table 10 and we rank features as per their
IPM value over the relevant class.

𝐶𝑢𝑚𝐼𝑚𝑝𝑓𝑛 (𝑝(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑑𝑗 )) =
∑

∀𝑓𝑖∈𝐹 𝑆𝐻𝐴𝑃𝑓𝑖 (𝑝(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑑𝑗 ))
(12)

𝐼𝑃𝑀𝑓𝑛 (𝑝(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑑𝑗 )) =
𝐶𝑢𝑚𝐼𝑚𝑝𝑓𝑛
𝐶𝑜𝑢𝑛𝑡𝑓𝑖

(13)

From Table 10, we note the ranking of thematic features Keyword,
Disease, Host and Symptom as the most influential respectively. These
features significantly contribute to the relevance of an epidemiological
corpus as concluded from our test set. We interestingly note that the
least useful feature, in this case Time (a spatio-temporal feature), is
the most contributing to the irrelevance of an epidemiological docu-
ment. From this our study, biomedical features are shown to be more
influential while spatio-temporal features are the least influential in
epidemiological classification task. We further study this interesting
observation by plotting sankey diagrams of Disease Fig. 20 compared
to that of Time Fig. 21 over their shapely values.

We note that presence of keyword feature followed by disease
feature in a document contributes more to its relevance while presence
of time feature splits between relevant and irrelevant decisions meaning
the model losses its discriminative skill. We finally plot the overall
thematic classes in Fig. 22 and we note that class relevant has the
highest impact mass from all thematic features, this is key since it
signifies that enriching thematic features improves epidemiological
classification task.

6. Discussion

In this section we discuss the constraints and assumptions inherited
in our approach in light of key improvements of our approach to the
EBS architecture.

Our approach to epidemiological document classification focused on
improving accuracy in discriminating between relevant and irrelevant
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Fig. 19. Demonstrating the calculation of shap value for disease thematic feature african swine fever. The bold edges contain weights used while the bold-colored vertices show
the nodes active when computing the shap value for token african. Each vertex represents an individual model and its feature set.
Fig. 20. Sankey Plot of Disease thematic feature shap scores over PADI-Web𝑡𝑒𝑠𝑡.
labels in such documents. In order to achieve better accuracy, we
have proposed the use of mixed-domain pre-trained language models
which are used to enrich thematic features that are fed into a neural
network classifier architecture. To train our model using a large dataset,
we created a machine labeled dataset out of a previously humanly
labeled dataset in a semi-supervised learning fashion. Our approach
thus achieves two key goals towards improving EBS; first our approach
improves the quality of classification, secondly it improves the ex-
planability of classification in EBS in order to understand how key
thematic features influence this task. Two key concerns are plausible in
our approach to improve EBS classification task; first using other pre-
trained language models could impact the classifier in different ways.
Secondly, even though using a semi-supervised approach with machine
labeled dataset increases accuracy of our classifier, it does introduces
label bias in the train and test sets. Future works could investigate ways
to further de-bias our dataset.
18
Using explainable AI, we investigate EpidBioELECTRA’s internal
workings by the computation of probabilistic shap scores. We show that
EpidBioELECTRA classifies epidemiological documents by focusing on
relevant thematic features such as disease and symptom names while
giving less focus to irrelevant features such as date and time of disease
outbreaks. This approach towards explainability opens ground towards
further understanding of epidemiological thematic features and how
they affect text-based epidemiological surveillance tasks.

7. Conclusion and future work

This paper presents epidemiological thematic feature enrichment
as a technique for improving epidemiological document classification.
Our approach is based on the continual fine-tuning of a mixed domain
language model using curated epidemiological datasets that is partly
hand labeled and partly automatically labeled using weak supervision.
Our model (EpidBioELECTRA) acquires significant thematic features
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Fig. 21. Sankey Plot of Time thematic feature shap scores over PADI-Web𝑡𝑒𝑠𝑡.
Fig. 22. Sankey Plot of thematic features and their types showing how they are contributing to both relevant and irrelevant classifications over the test set.
nowledge from our fine-tuning steps improving the downstream tar-
et task of epidemiological document classification. EpidBioELECTRA
ecords a 19.2 𝐹1 score points improvement on our most challenging
ataset PADI-Web𝑋𝐿 compared to BioELECTRA. Also in this paper,

we improve experimentation beyond EpidBioBERT model by testing
EpidBioELECTRA on a hundred times the data used in EpidBioBERT.
We experiment the ability of our model improving on epidemiological
document classification by training using long context documents. We
found out that this improves the classification task by 7.79 points
compared to training using shorter context documents.

In future works, we propose investigating other robust language
models with varied pre-training strategies, such as generative pre-
trained approaches (GPT) in addition to investigating varied cross-
domain training data sets to further improve text-based epidemiological
surveillance tasks. Effects of epidemiological events duplication in cor-
pora and text-quality effects can also be investigated in an attempt to
understand thematic features further.
19
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