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Abstract
We consider a dense aggregate of elastic, frictional particles isotropically compressed and next uniaxial strained at constant 
pressure. We show how failure can be predicted if fluctuations in the kinematics of contacting particles are introduced. We 
focus on the second order work and the possibility that at some stressed states it becomes negative under proper perturba-
tions. Our analysis involves both a theoretical model and numerical simulations based upon the distinct element method 
(DEM). The theoretical model deals with contacting particles with incremental relative displacements that deviate from the 
average deformation in order to ensure their equilibrium. Because of this, the macroscopic stiffness tensor of the aggregate, 
that relates increments in stress with increments in strain, does not have the major symmetry. Consequently, in the harden-
ing regime, we predict stressed states in which the second order work vanishes. The model seems transparent, and it makes 
clear and illustrative the role played by the fluctuations introduced in the kinematics of contacting particles in relation to 
the vanishing of second order work in an aggregate of compressed particles. The comparison with numerical simulations 
data supports the model.

Keywords Granular materials · Micromechanics · Fluctuations · Discrete element method · Failure

1 Introduction

Among complex systems, granular materials have attracted 
much interest in the past few years in materials sciences. 
Granular materials can be encountered in a variety of engi-
neering contexts, such as pharmaceutical engineering, food 

particle storage, geological mass-driven hazards, and civil 
engineering. It is well recognized that granular materials can 
exhibit a wide spectrum of emergent properties that have 
received much interest [1–6]. Such properties appear at the 
specimen scale, whereas they cannot be observed at smaller 
scales. As an illustration, granular materials are dissipative 
structures [7, 8]. Thanks to their disordered microstructure, 
such materials can adapt themselves through microstructural 
reorganizations to resist against a given external loading on 
the specimen scale. Such reorganizations mostly entail dis-
sipative mechanisms through grain sliding and rolling at the 
inter-granular contacts. They act as elementary, microscopic 
events that are responsible for the whole system to be in 
mechanical equilibrium. It is worth emphasizing that the 
notion of mechanical equilibrium should not be confused 
with that of thermodynamic equilibrium. Indeed, thermo-
dynamic equilibrium means that any fluctuation that takes 
place stays bounded and eventually vanishes. On the other 
hand, mechanical equilibrium imposes that the external trac-
tions applied on the boundary of the system are balanced by 
the internal stress field developing within the system. When 
a system is in thermodynamic equilibrium, it is automati-
cally in mechanical equilibrium which is a less restrictive 
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equilibrium type. Thus, even at mechanical equilibrium, a 
given material system can be out of thermodynamic equilib-
rium. In that case, some fluctuations are expected to develop 
within the system, making it evolve in an irreversible way 
from a given state toward another state. Irreversibility means 
that the system cannot return spontaneously to the previ-
ous states without any external exchange, mainly because 
of internal dissipative processes. Fluctuations at the micro 
scale, instead of vanishing, can be amplified. In some cir-
cumstances, the system can then bifurcate towards a new 
response mode, with a new topological organization of the 
energy dissipation. This is what happens on dense granular 
assemblies under a shear loading (as a drained triaxial load-
ing, for example). It is repeatedly observed that the devia-
toric stress reaches a peak value after a monotonous increase 
(so-called hardening regime), followed by a decrease (so-
called softening regime) until the critical state regime takes 
place. Furthermore, the specimen is no longer homogeneous 
once the deviatoric stress peak is reached, as a localization 
pattern (with a single or multiple shear bands) develops. It 
was recently shown that the development of a shear band pat-
tern during the softening regime corresponds to a phase tran-
sition, marked by a break in symmetry in the kinematic field, 
consisting in a microstructural reorganization to optimize 
the inter-granular, frictional dissipation processes (optimal 
dissipative structure), and make the specimen able to resist 
against the external loading. The appearance of shear bands 
within granular materials, patterning of the material in sev-
eral structured zones, has received much attention over the 
past decades. It is worth mentioning that such features can 
be observed irrespective of the scale considered: along faults 
during earthquakes, in large rocky cliffs, or in laboratory test 
specimens. Focusing on the lab scale, the occurrence of such 
events is well predicted by the Rice-Mandel criterion [9, 
10]. This criterion was shown to be a subset of the second-
order work criterion introduced in the middle of the past 
century by Hill [11]. More recently, the second-order work 
theory was formalized [12], by relating the occurrence of an 
outburst in kinetic energy, regarded as a quasi-unbounded 
fluctuation, and the vanishing of the second-order work. This 
vanishing corresponds to the loss of the positive definitive-
ness of the symmetric part of the constitutive operator relat-
ing both incremental stress and strain operating on the mate-
rial point scale. Along a given loading path, all mechanical 
states corresponding to the non-ellipticity of the symmetric 
part of the constitutive operator thus define the bifurcation 
domain. In such a domain, an effective failure of the material 
can occur according to the loading direction applied, and to 
the loading control adopted [13].

In Nicot and Darve [14], two material failure modes 
in granular material are presented: one associated with 

localization and the other associated with a diffuse mode. 
Localization has been clarified through the contribu-
tions made by Rudnicki and Rice [10] and Vardulakis 
[15, 16] in which the vanishing of the determinant of 
the acoustic tensor occurs when a shear band develops. 
They use an elasto-plastic model with a non-associative 
plastic flow. More recently, La Ragione et al. [17], based 
upon a micro-mechanical approach, predict shear band 
in stressed granular material with a macroscopic stiff-
ness tensor that does not have the major symmetry, con-
sequently with a similar structure of that introduced in 
[10, 18]. The other failure is associated with a diffusive 
mode that can anticipate the localization band when the 
second order work vanishes (e.g. [19]).

Here we focus on the second order work and the possibil-
ity that at some stressed states, during the loading path, it 
becomes negative under proper perturbations [20, 21]. Our 
analysis involves both a theoretical model and numerical 
simulations. The merit of the simulations, based upon the 
distinct element method (DEM), is to reproduce the proper 
kinematics and statics of every single grain of the sample 
while both force and moment equilibrium are satisfied at 
each applied incremental macroscopic strain [22]. In so 
doing, it is possible to follow the behavior at contact level 
of the aggregate, including particle deletion, sliding and 
rolling.

The novelty of our work is the introduction of fluc-
tuations in particles deformation that allows to predict a 
stressed state in which the second order work vanishes. 
Following the DEM analysis, it is possible to employ the-
oretical models that reproduce the behavior of the aggre-
gate as seen in the simulations. The simplest hypothesis 
is that contacting particles move according with an aver-
age deformation. The resulting macroscopic response of 
the aggregate seems reasonable from the qualitative point 
of view. Particle sliding and deletion are predicted as 
well as the deviatoric stress and the volume strain along 
a monotonic triaxial test (e.g. [23, 24]). On the other 
hand, the comparison with numerical simulation shows 
a quantitative difference that is solved by relaxing the 
kinematics with the introduction of a fluctuation field 
along with equilibrium [25]. The kinematic of contacting 
particles with fluctuations also leads to a qualitative dif-
ference with respect to the average strain, under particu-
lar loading condition: the macroscopic stiffness of the 
aggregate, Aijkm , that relates the increments in stress with 
the increment in strains, �̇�ij = AijkmĖkm , can be character-
ized by the loss of the major symmetry. This represents a 
necessary condition to predict localization.

Following this idea, we focus our investigation on a tri-
axial test conducted at constant pressure conditions. As 
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emphasized in [17], under specific conditions, the incre-
mental response of the aggregate tends to be frictionless on 
average, resulting in a non-symmetric elasto-plastic stiffness 
tensor. Within this framework, we show that the second-
order work linked with stressed states can vanish.

2  Triaxial loading

We focus on a triaxial test of an aggregate of N identical, fric-
tional, elastic particles with diameter D which deform accord-
ing to a macroscopic average strain, E . After an initial iso-
tropic compression, p0, the aggregate is uniaxial compressed, 
E33 < 0, keeping the pressure constant. We define the shear 
strain � = −1∕2(E33 − E11) , with E11 = E22 , and the volume 
strain, � = −(E33 + 2E11), positive in compression, while �0 
is the volume strain associated with the pressure at the iso-
tropic state. Particles interaction is given by a non central con-
tact force with a normal component that follows the Hertz law 
and a tangential component that has an elasto-plastic response: 
a bilinear relation with an elastic displacement followed by a 
frictional sliding. The incremental force between two contact-
ing particles is given by:

in which ḞN
i

 and ḞT
i
 are, respectively, the incremental normal 

and tangential component of the contact force. Given Ḟ , the 
incremental average stress �̇� may be written as the average 
over all particles in a region of homogeneous deformation 
that is identified with the continuum point [25]:

where Mp is the number of pairs of contacting particles with 
contact vectors (the vector that joins the particle centers) 
within the p-th element of R equal elements ��p of solid 
angle in which the surface of the unit sphere has been par-
titioned, V is the total volume of the aggregate and 

⟨
Ḟi

⟩
d̂
p 

is the average of all the contact forces between pairs whose 
contact vectors, di = Dd̂i, are within a given solid angle cen-
tered at d̂

p
 . We have ��p = 4�∕R and 

∑R

p=1
Mp = 2Nc in 

which Nc is the total number of contacts in the aggregate.
In the monotonic triaxial test, the deviatoric stress is 

q = −1∕2
(
�33 − �11

)
 and its components are qN and qT ; the 

former is the part of the deviatoric stress associated with the 
normal component of the contact force, the latter with the tan-
gential component of the contact force. Therefore, the response 
of the aggregate is characterized by the q − � and the � − � 
curves.

(1)Ḟi = ḞN
i
+ ḞT

i

(2)�̇�ij =
1

2

N

V

Mp∑

p=1

Mp

N

⟨
Ḟi

⟩
d̂
pd

p

j

We investigate the incremental response of the aggregate, 
at given stressed state along the curve q − � ; in particular, we 
look at the second order work, W2 = �̇�ijĖij , and the possibility 
that it may become negative. We do this through numerical 
simulations and a theoretical model.

2.1  Numerical simulation

We employ a numerical simulation based upon DEM on a 
sample made of 10.000 elastic particles with the shear modu-
lus G = 2.9 × 109 Pa, the Poisson ratio � = 0.2 , and radii 9.5 
and 10.5 × 10−2 mm, initially isotropically compressed and 
then sheared. More detailed about the protocol adopted can 
be found in [26]. The initial compression is carried out with-
out friction to generate a very dense state, volume fraction 
� =0.64; next, the aggregate is uniaxial strained at constant 
pressure, p0 = 200 KPa, with friction coefficient � = 0.5 and 
increments of deformation, at every cycle, of the order of 
10−6. Along the loading path, there are intermediate states in 
which no external strains are applied and the aggregate relaxes 
towards the equilibrium. That is, equilibrium is guarantee by 
fluctuation fields that allow particles deformation to deviate 
from the applied average strain.

The response of the aggregate is represented by 
stress–strain and volume strain-strain curves in which the 
deviatoric stress is normalized by the pressure p0 while the 
strains by the volume strain �0.

In Fig. 1 we show the response of the aggregate: the evo-
lution of the normalized deviatoric stress and its partition in 
qN and qT , top; the evolution of the normalized volume strain 
in which dilatancy is present, bottom. As in Jenkins and 
Strack [23] and Thorthon and Antony [27], the contribution 
to the deviatoric stress associated with qN and qT are illustra-
tive. We can distinguish an initial almost elastic response of 
the aggregate, for 0 ≤ �∕�0 ⪅ 0.2 , followed by an elasto-
plastic response in which qT does not vary, essentially. In 
this latter regime, a typical hardening behavior occurs in 
which the incremental deviatoric stress depends only on the 
normal contact force while particles slide/roll and irrevers-
ibility occurs. Here, the incremental tangential component 
is assumed to be approximately zero, so q̇T = 0.

We also consider the network of contact vectors and intro-
duce the fabric tensor (e.g. [27, 28]):

We measure the evolution of the deviatoric fabric, 
�̂� = 𝛷33 − (𝛷11 +𝛷22)∕2 , normalized by the initial fabric 

(3)𝛷ij =
1

Nc

Nc∑

c=1

d̂c
i
d̂c
j
.



 L. La Ragione et al.68 Page 4 of 12

�iso = �11 = �22 = �33 , during the loading. In Fig. 2, top, 
we show the evolution of the fabric, �̂�∕𝛷iso.

The fabric tensor, �ij , is also identified as the second 
moment of the contact distribution f (d̂) whose approximated 
expression is (e.g. [29]):

with ∫
𝛺
f (d̂)d𝛺 = k and d̂(sin 𝜃 cos𝜑, sin 𝜃 sin𝜑, cos 𝜃) in 

which � is the polar angle with respect to the axis of com-
pression y3 and k is the coordination number, the average 
number of contacts per particle. If we knew the contact 

(4)f (d̂) =
k

4𝜋

[
1 +

15

2
(d̂id̂j −

1

3
𝛿ij)(𝛷ij −

1

3
𝛿ij)

]

distribution we could have determined the second moment 
through the following equation (e.g. [30]):

in which d� = sin �d�d�. In Fig. 2, bottom, we show the 
normalized contact distribution, f̂ (d̂) = f (d̂)∕k , at different 
strain states (for symmetry reason we look at 0 ≤ � ≤ �∕2 ). 
Both Fig. 2, top and bottom, show a development of the 
structural anisotropy during the loading with a region of 
increasing contacts around the pole of compression, about 
� = 0 , and decreasing about � = �∕2 associated with 
deletion.

(5)𝛷ij = ∫
𝛺

f̂ (d̂)d̂id̂jd𝛺

Fig. 1  Uniaxial deformation at constant pressure, numerical simula-
tions: normalized deviatoric stress (top), normalized volume strain 
(bottom)

Fig. 2  Uniaxial deformation at constant pressure, numerical simula-
tions: fabric evolution (top), contact distribution (bottom)
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In Fig. 3 we show the evolution of the coordination 
number k, the average number of contacts per particle, 
whose initial value is k0 ≈ 6 . We also evaluate a best fit 
approximation for the evolution of the coordination num-
ber, with a polynomial function, which offers the following 
relation: k = a�2∕�0 + b�∕�0 + c with a = 0.5 , b = −1.6 
and c = 6.

At this point, incremental probes are applied at given 
stressed states. Because of the uniaxial compression, 
these stressed states are anisotropic and the incremental 
response depends on the magnitude of the perturbation 
[31–33]: we have an elastic response that corresponds to 
an unloading condition with respect to the previous tri-
axial loading, and an elasto-plastic response which corre-
sponds to a forward loading. We are interested to evaluate 
W2 when an elasto-plastic increment is applied because 
we expect to characterize the macroscopic stiffness tensor 
without the major symmetry [17]. In the last section, we 
determine W2 under these particular conditions and test the 
theory against the simulation data.

2.2  Theory

The model is based on the theory of fluctuations proposed by 
Jenkins et al. [34] and developed in case of localization by La 
Ragione et al. [17]. We assume that contacting particles devi-
ate from the applied average strain because of equilibrium. 

We write the kinematic that governs the problem, we assume 
the contact law for contacting particles and solve, approxi-
mately, equilibrium. With a proper statistical hypothesis, we 
move from the local pair interaction to the aggregate in order 
to determine the average stress from which it is possible to 
obtain an expression for the second order work. It is the nature 

Fig. 3  Uniaxial deformation at 
constant pressure, numerical 
simulation: evolution of the 
coordination number with the 
normalized shear strain (solid 
line); polynomial approximation 
(dashed line)

Fig. 4  The pair and its neighboord: particles A and B fluctuate while 
particle n is constrained to move with the average deformation
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of the macroscopic stiffness that relates incremental in strain 
with incremental in stress that provides an explanation of nega-
tive second order work.

2.2.1  Kinematics

We phrase the problem incrementally and we restrict our 
attention to the hardening regime in which, as seen in Fig. 1 
(top), the macroscopic response can be approximated as incre-
mentally frictionless. That is, we refer to incremental forward 
loading. In this regime particles slide, so plasticity occurs but 
we only have increments in normal components of the con-
tact forces, approximately. Consequently, we focus only on 
the kinematic of contacting particles related to the motion of 
their centers. The incremental relative displacement between 
contacting particles A and B is given by:

in which ċi is the incremental particle center displacement. 
We allow particles to deviate from the average strain and 
introduce a fluctuation field. So we write

in which we make explicit the average contribution, ċi , and 
the fluctuation, c̃(A)

i
 . A simple way to enrich the kinematics 

is to focus on a pair A − B and its neighborhoods (see Fig. 4) 
and assume that the relative displacement of the contact 
point of a typical pair A − B is given by

while for particle n in contact with A is

in which only particle A fluctuates. So

The difference in fluctuation is

while the sum is

Similar expressions can be employed for particle B and 
its neighborhood. The contact vector is indicated by 
d
(BA)

j
= Dd̂

(BA)

j
.

(6)u̇
(BA)

i
= ċ

(B)

i
− ċ

(A)

i

(7)ċ
(A)

i
= ċi + c̃

(A)

i

(8)u̇
(BA)

i
= Ėijd

(BA)

j
+ �̇�

(BA)

i

(9)u̇
(nA)

i
= ċ

(n)

i
− ċ

(A)

i

(10)u̇
(nA)

i
= Ėijd

(nA)

j
+

1

2
�̇�
(BA)

i
−

1

2
�̇�

(BA)

i
.

(11)�̇�
(BA)

i
= c̃

(B)

i
− c̃

(A)

i

(12)�̇�
(BA)

i
= c̃

(A)

i
+ c̃

(B)

i
.

2.2.2  Statics

We write the increment Ḟ(BA) in the contact force exerted by 
particle B on particle A in terms of the increment u̇(BA) in the 
relative displacement of the points of contact:

in which, in case of incremental frictionless behavior, the 
contact stiffness is

The normal contact stiffness depends on the normal compo-
nent � of the compressive displacement of the centers of the 
particles, the diameter D of the spheres, and their material 
properties:

While the incremental displacement of the centers of con-
tacting particles is given in terms of the averages of the 
increments, the total normal component, 𝛿 = u

(BA)

i
d̂
(BA)

i
 in 

Eq. (15), is given in terms of the average strain by

This is how the stiffness depend upon the existing average 
strain and it represents a measure of the strain level of the 
aggregate along the triaxial loading. Equation (16) can be 
written as:

2.2.3  Equilibrium

We determine the fluctuations that ensure the equilibrium of 
the pair A − B through the following equations. For particle 
A equilibrium is

while for particle B

in which, for example, NA is the number of particles in con-
tact with particle A. Difference of the equilibrium equations 
leads to

(13)Ḟ
(BA)

i
= K

(BA)

ij
u̇
(BA)

j

(14)K
(BA)

ij
= KNd̂

(BA)

i
d̂
(BA)

j
.

(15)K
(BA)

N
=

GD1∕2

(1 − �)
�1∕2.

(16)𝛿 = −d̂
(BA)

i
Eijd

(BA)

j
.

(17)� =
D

3

(
� − 2� + 6� cos2 �

)
.

(18)
N(A)∑

n≠B
Ḟ
(nA)

i
+ Ḟ

(BA)

i
= 0

(19)
N(B)∑

n≠A
Ḟ(nB) + Ḟ

(AB)

i
= 0,
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in which, for example,

and

We employ the conditional average defined over all pairs 
whose contact vector is within an increment of solid angle:

and

because d̂
(BA)

= −d̂
(AB)

. Eq. (20) becomes

with the following representation for the third rank tensor

The coefficients �1 and �2 depend on the coordination num-
ber k. The summation in the conditional averages employed 
in Eqs. (23) and (24) are replaced by an integration over all 
the directions in the neighbors of all pairs characterized by 
a contact vector d̂ within an incremental solid angle, assum-
ing an uniform distribution. With a simple statistical model, 
we obtain

and

(20)�̇�
(BA)

i
= −D

[
A
(BA)−1

ik
J
(BA)

klm
− A

(AB)−1

ik
J
(AB)

klm

]
Ėlm

(21)A
(BA)

ik
=

N(A)∑

n=1

K
(nA)

N
d̂
(nA)

i
d̂
(nA)

k

(22)J
(BA)

klm
=

N(A)∑

n=1

K
(nA)

N
d̂
(nA)

k
d̂
(nA)

l
d̂(nA)
m

.

(23)

⟨Aik⟩d̂(BA) =
�

N(A)�

n=1

KNd̂
(nA)

i
d̂
(nA)

k

�

d̂
(BA)

=

�
N(B)�

n=1

KNd̂
(nB)

i
d̂
(nB)

k

�

d̂
(AB)

(24)

⟨Jklm⟩d̂(BA) =
�

N(A)�

n=1

K
(nA)

N
d̂
(nA)

k
d̂
(nA)

l
d̂(nA)
m

�

d̂
(BA)

= −

�
N(B)�

n=1

K
(nB)

N
d̂
(nB)

k
d̂
(nB)

l
d̂(nB)
m

�

d̂
(AB)

(25)
⟨
�̇�i

⟩
d̂
= −2D

⟨
A−1
ik
Jklm

⟩
d̂
Ėlm

(26)

⟨
A−1
ik
Jklm

⟩
d̂
=𝛽1d̂

(BA)

i
d̂
(BA)

l
d̂(BA)
m

+𝛽2

(
𝛿ild̂

(BA)
m

+ 𝛿lmd̂
(BA)

i
+ 𝛿imd̂

(BA)

l

)
.

(27)�1 =
3

k

(
166 − 11k

128

)

(28)�2 = −
3

k

(
k + 14

128

)
.

We are neglecting the contribution of anisotropy through 
the contact stiffness KN so fluctuations depend only on the 
contacts network. Both �1 and �2 decreases as k increases, 
or, equivalently, the fluctuations contribution diminishes as 
the confining pressure increases [35].

Given Eq. (8), we derive:

Therefore, for a given pair orientated along d̂, we write the 
incremental contact force as

or

With respect to the average strain theory, it is the last term 
in the bracket, proportional to the volume strain and �2 , that 
characterizes the new ingredient in the model from the quali-
tative point of view, once fluctuations are included.

2.2.4  Incremental stress

An analytical expression for the stress increment may be 
obtained by employing the continuous analog of Eq. (2). This 
is phrased in terms of the number of particles per unit volume 
n and a contact distribution function f (d̂) . In the pre-peak 
region, range of deformation of our interest, the distribution 
of contacts is assumed to be isotropic, f (d̂) = k∕4𝜋 , where k 
is the coordination number that evolves during the loading. 
Therefore, we account for the induced anisotropy through 
Eqs. (15) and (17) while we ignore the structural anisotropy 
which seems reasonable according to Fig. 2 in which, at most, 
we have, in the region of compression around � = 0 , a slight 
increments of number of contacts with respect to the isotropic 
distribution.

The average stress is:

or, given Eqs. (15), (17) and (31),

(29)
⟨u̇i⟩d̂(BA) =Ėijd

(BA)

j
− 2D𝛽1d̂

(BA)

i
d̂
(BA)

l
d̂(BA)
m

Ėml

−2D𝛽2

�
𝛿ild̂

(BA)
m

+ 𝛿lmd̂
(BA)

i
+ 𝛿imd̂

(BA)

l

�
Ėml.

(30)
⟨
Ḟi

⟩
d̂
= KNd̂id̂j

⟨
u̇j
⟩
d̂

(31)

⟨
Ḟi

⟩
d̂
= DKNd̂i

[
d̂qĖqjd̂j

(
1 − 2𝛽1 − 4𝛽2

)
− 2𝛽2𝛿lmĖml

]
.

(32)�̇�ij =
n

2 ∫
𝛺

f (d̂)
⟨
Ḟi

⟩
d̂
djd𝛺

(33)

�̇�ij =𝜔
(
1 − 2𝛽1 − 4𝛽2

)

×∫
2𝜋

0
∫

𝜃1

0

R1∕2d̂kd̂md̂id̂jĖkm sin 𝜃d𝜃d𝜑

−2𝜔𝛽2 ∫
2𝜋

0
∫

𝜃1

0

R1∕2d̂id̂j𝛿kmĖkm sin 𝜃d𝜃d𝜑
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i n  w h i c h  R = � − 2� + 6� cos2 �  ,  � ≡ nkGD3∕�
4�

√
3(1 − �)

�
 and �1 is the angle of deletion, when � = 0 in 

Eq. (17):

if � − 2� ≥ 0 , otherwise

The upper limit of the integration, �1 , account for deletion 
when the average contact displacement, � , goes to zero.

In compact form,

where the stiffness tensor, Aijkm , can be represented through 
the axial vector h = y3 and Kronecker delta, �ij , with

The six coefficients are

with

and

As suggested by La Ragione et al. [17, 36], it is the presence 
of fluctuations in the kinematics of contacting particles that 
leads to �4 ≠ �5 which implies the loss of major symmetry 
for the anisotropic stiffness tensor Aijkm . It is the term pro-
portional to �2 and the volume strain in Eq. (31) that makes 
clear the difference between the simple average strain and 

(34)�1 = �∕2

(35)�1 = arccos
√
(2� − �)∕(6�).

(36)�̇�ij = AijkmĖkm

(37)

Aijkm =�1hmhkhjhi + �2�ij�km + �3
(
�ik�jm + �im�jk

)

+�4�kmhihj + �5hmhk�ij

+�6
(
�ikhjhm + �jmhkhi + �imhkhj + �jkhihm

)
.

�1 =2��
(
1 − 2�1 − 4�2

)
a1,

�2 =2��
(
1 − 2�1 − 4�2

)
a2 − 4���2a4,

�3 =2��
(
1 − 2�1 − 4�2

)
a2,

�4 =2��
(
1 − 2�1 − 4�2

)
a3 − 4���2

(
a5 − a4

)
,

�5 =�6 = 2��
(
1 − 2�1 − 4�2

)
a3,

a1 ≡�
�1

0

R1∕2
(
cos4 � − 3 sin

2 � cos2 � +
3

8
sin

4 �

)
sin �d�,

a2 ≡�
�1

0

R1∕2 1

8
sin

5 �d�,

a3 ≡�
�1

0

R1∕2
(
1

2
sin

2 � cos2 � −
1

8
sin

4 �

)
sin �d�,

a4 ≡�
�1

0

R1∕2 1

2
sin

3 �d�,

(38)a5 ≡ �
�1

0

R1∕2 cos2 � sin �d�.

the presence of fluctuations. Without fluctuations, Aijkm is 
symmetric. The asymmetry in Aijkm is a necessary condition 
for the second order work to vanish at some stressed state, 
under a particular perturbation.

3  Second‑order work

The second order work (e.g. [14]) is

or, with Eq. (36)

Given Eq. (37), we obtain

The coefficients � ’s depend on the relation between the vol-
ume strain � and the shear strain � which are present in 
the contact stiffness KN . Here, following Jenkins and Strack 
[23], we use the simple average strain and determine the 
initial pressure

and then equate it to the pressure when an uniaxial deforma-
tion is applied:

Equation (43) provides a relation between �  and � 
and with the evolution of the coordination number, 
k = 0.5�2∕�0 − 1.6�∕�0 + 6 , previously derived (see 
Fig. 3), we can predict W2. We focus on the increments that 
may provide negative values of W2 , according with Hadda 
et al. [37]. We consider Ė33 < 0 and Ė11 = Ė22 > 0 , so

In particular, in the Rendulic strain plane, see Fig. 5 (strain 
positive in compression), we take Ė33 = 𝜌 sin(𝛼𝜖) and 
Ė11 = Ė22 = −𝜌 cos(𝛼𝜖)∕

√
2 , in which � is a positive con-

stant and �� indicates the incremental strain direction in the 
range 110 ≤ �� ≤ 160 . These are probes that we identify as 
forward incremental loadings for which the theory has been 
developed.

(39)W2 = �̇�ijĖij.

(40)W2 = AijkmĖkmĖij.

(41)
W2 =𝜂1hmhkhjhiĖkmĖij + 𝜂2ĖqqĖqq + 2𝜂3ĖijĖij

+
(
𝜂4 + 𝜂5

)
ĖqqhihjĖij + 4𝜂6hjhmĖsmĖsj.

(42)p =
nGD2k0

27
√
3(1 − �)

�
3∕2

0

(43)∫
�1

0

R3∕2 sin �d� −
k0

k
�

3∕2

0
= 0.

(44)
W2 =𝜂1Ė

2

33
+ 𝜂2

(
2Ė11 + Ė33

)2
+ 2𝜂3

(
2Ė2

11
+ Ė2

33

)

+
(
𝜂4 + 𝜂5

)(
2Ė11 + Ė33

)
Ė33 + 4𝜂6Ė

2

33
.
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We predict a negative value for W2 when �∕�0 = 0.93 , 
with � = 150◦ (see Matlab code in Appendix). This angle is 
close to what also seen in numerical simulations [37].

We also evaluate W2 through our numerical simula-
tions. At each stressed states, along the triaxial test, we 
apply probes to calculate the second order work through 
Eq. (39). The value of � is crucial as we consider probes 
associated with an elasto-plastic response [38]. So, we 

apply � ≈ 10−6 as in the triaxial test. In Fig. 6 we plot 
the normalized second order work, 

(
�̇�ijĖij

)
∕(|�̇�|𝜌) . A first 

negative value for W2 occurs at �∕�0 = 0.55 and �� = 130◦ . 
Both the strain and the angle are smaller than those pre-
dicted by the theory. From simulations, we note an indi-
cation of the preferential angle of failure since the first 
stressed states.

Fig. 5  Rendulic strain plane 
(positive in compression) and 
the angle ��

Fig. 6  Circular diagrams of the 
normalized second order work. 
Focus on the second quadrant. 
First negative W

2
 at �� = 130

◦ 
when �∕�

0
= 0.55 according to 

numerical simulations
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The evolution of the asymmetry of the stiffnnes tensor 
Aijkm , in the hardening regime, is visualized in Fig. 7.

A possible way to improve the theory is to employ fluctua-
tions in the stiffness, Eq. (16), that will lead to a more com-
plicated relation between � and � , now given by Eq. (43), and 
other terms in the coefficients of the macroscopic stiffness 
tensor Aijkm , without changing the structure of the tensor. It 
is also possible to include fabric and structural anisotropy in 
both fluctuations, through Eq. (25) and stress, through Eq. (32). 
However, we think that the present model is more transparent, 
and it makes clear and illustrative the role played by the fluc-
tuations in relation to the vanishing of the second order work.

Finally, we take Eq. (44) and dived it by Ė2

11
 and, with 

𝜒 = Ė33∕Ė11 , we obtain

or

with

The discriminant is A2

2
− 4A1A3 and it is zero at �∕�0 = 0.93.

(45)

W2

Ė2

11

=𝜂1𝜒
2 + 𝜂2(2 + 𝜒)2 + 2𝜂3

(
2 + 𝜒2

)

+
(
𝜂4 + 𝜂5

)(
2𝜒 + 𝜒2

)
+ 4𝜂6𝜒

2

(46)
W2

Ė2

11

= A1𝜒
2 + A2𝜒 + A3

(47)A1 =�1 + �2 + 2�3 + �4 + �5 + 4�6,

(48)A2 =4�2 + 2�4 + 2�5,

(49)A3 =4(�2 + �3).

4  Conclusion

We have employed a model that characterizes the second work 
with respect to failure. We have introduced a kinematics of con-
tacting particles that deviates from the average strain and written 
an explicit but approximate equations of equilibrium for pairs of 
contacting particles in the aggregate. Because of fluctuations, it 
is possible, in the hardening regime, to predict a macroscopic 
stiffness tensor without the major symmetry which is essential 
to have a stressed, anisotropic state in which W2 goes to zero. 
That is, in the context of a simplified model, we have linked the 
extend kinematics of contacting particles with fluctuations to 
the asymmetry of the macroscopic stiffness tensor, and to the 
possibility that the second work W2 vanishes. The present model 
overpredicts the angle of failure and the value of the strain when 
the second order work vanishes. On the other hand, the theory 
exhibits the important ingredients from the microscopic point 
of view that may explain failure of the aggregate.

Appendix
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