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Featured Application: This work is intended to provide additional approaches for analyzing and
interpreting dam monitoring data.

Abstract: Pore water pressure (PWP) response is significant for evaluating the earth dams’ stability,
and PWPs are, therefore, generally monitored. However, due to the soil heterogeneity and its non-
linear behavior within earths, the PWP is usually difficult to estimate and predict accurately in order
to detect a pathology or anomaly in the behavior of an embankment dam. This study endeavors
to tackle this challenge through the application of diverse machine learning (ML) techniques in
estimating the PWP within an existing earth dam. The methods employed include random forest (RF)
combined with simulated annealing (SA), multilayer perceptron (MLP), standard recurrent neural
networks (RNNs), and gated recurrent unit (GRU). The prediction capability of these techniques
was gauged using metrics such as the coefficient of determination (R2), mean square error (MSE),
and CPU training time. It was found that all the considered ML methods could give satisfactory
results for the PWP estimation. Upon comparing these methods within the case study, the findings
suggest that, in this study, multilayer perceptron (MLP) gives the most accurate PWP prediction,
achieving the highest coefficient of determination (R2 = 0.99) and the lowest mean square error
(MSE = 0.0087) metrics. A sensitivity analysis is then presented to evaluate the models’ robustness
and the hyperparameter’s influence on the performance of the prediction model.

Keywords: earth dam; machine learning; artificial neural networks; pore water pressure; monitoring
data

1. Introduction

Dam structure health monitoring plays a crucial role in the dam’s safety. The pri-
mary goal is to gather data concerning the assessment of an earth dam throughout its
entire lifespan. One of the important monitoring parameters in earth dams is pore water
pressure (PWP). It can be obtained by piezometers (PWP cells) installed in the earths. A
proper evaluation of PWP helps to monitor the behavior after construction and indicates
potentially dangerous conditions that may adversely affect the structure stability [1,2].
Inversely, PWP is a prediction factor for damages that can occur in earth dams. Rationally
predicting the PWP could be an effective indicator for evaluating the safety of earth dams.
Monitoring PWP is particularly important for an embankment dam. On the one hand,
an excessive increase in PWP can lead to dam failure through slope failure. On the other
hand, monitoring variations in PWP makes it possible to detect a pathology or anomaly

Appl. Sci. 2024, 14, 4749. https://doi.org/10.3390/app14114749 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14114749
https://doi.org/10.3390/app14114749
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2238-7827
https://orcid.org/0000-0002-4276-7053
https://orcid.org/0000-0002-4720-3572
https://orcid.org/0000-0003-1231-3496
https://orcid.org/0000-0002-2623-1830
https://doi.org/10.3390/app14114749
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14114749?type=check_update&version=1


Appl. Sci. 2024, 14, 4749 2 of 19

in the behavior of the dam. For example, an increase in PWP that is not explained by a
cyclic/reversible variation in the level of the reservoir or the season could be associated
with a pathology, such as the clogging of the drainage system or the initiation of an internal
erosion process.

Initially, PWP prediction models were developed based on the fundamental laws of
fluid mechanics in porous media [3]. Analytical solutions [4,5], numerical simulations [6–8],
statistic models [9,10], and probabilistic models [11,12] have been developed to obtain
the PWP by applying these different methodologies. In practical engineering, due to
inhomogeneous and highly non-linear phenomena in earth soils, these models could not
accurately evaluate the hydraulic behavior by comparing the provided results with the in
situ measurements.

The trend toward automating dam monitoring devices is gaining momentum, en-
abling higher reading frequencies and an abundance of monitoring data [13]. Within the
machine learning (ML) community, sophisticated tools have been developed for construct-
ing data-driven prediction models in geotechnical engineering [14,15] such as to evaluate
soil properties [16], investigate the reliability of excavations [17–19], analyze the deforma-
tions [20,21] and ground settlement [22], as well as predict geotechnical parameters [23].
The significant advantage of the ML methods is that they can fit highly non-linear behaviors.
This is a key factor in their current popularity.

There are several recent works available in the literature on the use of machine learning
methods for the analysis of dam monitoring measurements. More specifically, [13,24–26]
are interested in modeling displacement measurements of arch dams; [27,28] focus on
displacements of gravity and buttress dams; [9,29] deal with pore pressures at the base of
arch dams, and [30] concern settlements of embankment dams.

Advancements have been made in utilizing machine learning (ML) techniques for
predicting pore water pressure (PWP) in diverse geotechnical fields like slope stability.
Mustafa et al. (2013) [31] investigated the effectiveness of different training algorithms
within ANN for PWP prediction. Their study highlighted the Levenberg Marquardt (LM)
algorithm as particularly efficient and rapid in modeling the dynamics of soil pore water
pressure changes in response to rainfall patterns. Mohammed proposed a “grey model” that
integrates the finite element method (FEM) with the ANNs [32], aiming for a more accurate
forecast of PWP variations. Tayfur et al. (2005) [33] conducted a comparative analysis
between FEM and ANNs for flow seepage through the Jeziorsko earth-fill dam in Poland.
Their discussion touched upon the suitability and competitiveness of ANNs against FEM in
predicting seepage through the dam. Wei et al. [3] showcased the enhanced precision and
robustness of gated recurrent unit (GRU) and Long Short-Term Memory (LSTM) models in
predicting slope seepage/stability under rainfall compared to the standard RNNs. RF has
been applied to the prediction of daily pore water pressure in the embankment [34,35], and
MLP has been used in the case of concrete dam seepage behavior [9]. RNNs and GRU are
applied in pore water pressure prediction of a tunnel boring machine [36] and slope [3].
These elements have been added to the end of the introduction section for each method.

In the previous studies mentioned above, most of the research was limited to the ANN
method but not various ML methods for predicting PWP in earth dams. Moreover, these
studies did not discuss the time effect and irreversible effect, which are important factors in
the safety of earth dams.

This paper deals with the use and comparison of several machine learning methods
for analyzing monitoring data and predicting PWP in earth dams. This type of approach
can be useful for detecting pathology or abnormal dam behavior.

The aim of this study is to forecast PWP in embankment dams using several ML tech-
niques, such as random forest (RF) with simulated annealing (SA), multilayer perceptrons
(MLP), traditional recurrent neural networks (RNNs), and gated recurrent unit (GRU).
This research marks the initial effort to use diverse static and dynamic neural networks to
analyze monitoring data and to compare their accuracy in predicting the evolution of PWP
in earth dams. The case study of this paper is a 36 m high earth dam. It is equipped with
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45 piezometers (PWP cells), and four represented sensors monitoring data are chosen to
build and validate the prediction models. Prediction models show the powerful capacity to
predict PWP, which could make a reference for applying ML methods in non-linear and
time series hydraulic problems in geotechnics.

2. Materials and Methods

ML methods can be classified into supervised or unsupervised techniques based on the
availability of a training dataset. Supervised ML is designed to generate desired outputs in
response to a given set of inputs during training. This technique is commonly employed for
modeling and controlling dynamic systems, classifying noisy data, and making predictions
about future events. On the other hand, unsupervised ML is trained in a manner where
the network continuously adapts to novel inputs. It has the ability to reveal non-linear
relationships within the data and establish classification schemes that adjust to variations
in the added data. In this study, supervised ML techniques are utilized. There are 4 kinds
of supervised ML techniques selected to explore the best suitable methods for predicting
time-series database, i.e., PWP.

Most deep learning methods are good at training time series datasets; two kinds
of them are chosen in this study, including RNNs and GRU. RNNs are neural networks
suitable for processing sequence data that can effectively capture the temporal information
in the sequence. RNNs use the same parameters at each time step, which can effectively
share weights and reduce the complexity of the model and the number of parameters for
training. RNNs can memorize previous information and use it to make predictions or
decisions in subsequent time steps, which is very useful for handling context-dependent
tasks. The disadvantage of RNNs is that they often yield vanishing gradients and gradient
explosions during training.

In order to avoid the drawbacks of RNNs, GRU has been employed in this study. GRU
has a simpler structure compared to LSTM, solves the problem of vanishing gradients
compared to RNNs, and has been shown to be more effective for smaller sequences.

Deep learning suffers from a uniform common problem, i.e., training is inefficient,
time-consuming, and computationally demanding. In order to compare the computation
time and find the most accurate and efficient training method for the case of this paper, the
two most commonly used ML methods, RF and MLP, are selected for this paper.

2.1. Random Forests Combined with Simulated Annealing
2.1.1. Random Forest

Random forest (RF) is an ML technique that groups decision trees for tasks such as
classification or regression. In a random forest, each single tree makes a class prediction,
and the class with the most calls is chosen as the model’s prediction. The architecture of
an RF for regression is established through the four steps [37] stated below and shown in
Figure 1.

Step 1: Generate a dataset with a sample size of N by replacement. Utilize these
selected N samples to train a decision tree, which serves as the sub-sample at the root node
of the tree;

Step 2: At each node of the decision tree, randomly pick m attributes from the total
M attributes of each sample, where m is considerably smaller than M. Next, employ a
specific tactic, such as information gain, from these m attributes to choose one attribute as
the splitting attribute for the node;

Step 3: Throughout the decision tree’s construction, each node must undergo splitting
as described in step 2 until it reaches a point where further division is not possible;

Step 4: repeat steps 1 to 3 to generate a random forest with a significant number of
decision trees.
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Since its introduction by Breiman [37], RF has become a highly popular method for
establishing prediction models. The RF model offers several advantages for prediction: RF
modeling can handle high-dimensional data without the need for dimensionality reduction
or feature selection. It avoids overfitting issues, has fast training speed, and can be easily
combined with parallel calculation methods. Even if a large number of features are missing,
RF can still maintain accuracy. This method has been well applied in the prediction of
PWP [34,35].

2.1.2. Simulated Annealing

The accuracy of RF predictions is highly dependent on the values of the hyperparam-
eters used. It is not practical to test a large number of hyperparameter sets to determine
the best one. A satisfactory model can be obtained by manually adjusting hyperparame-
ters, but it may not necessarily be the best-performing forest. Simulated annealing (SA)
presents a framework for optimization aimed at searching for the best global hyperparame-
ters. Introduced by Kirkpatrick in 1983 [38], SA is an extension of the method proposed
by Metropolis in 1953 [39]. SA is particularly useful for analyzing cases with multiple
parameters to optimize [40].

Simulated annealing serves as a stochastic optimization approach suitable for problems
with extensive parameter spaces. This method begins at a point in the parameter space with
an initial “current” set of parameters and then proceeds with a series of steps. Each step
results in a proposed set of parameters slightly different from the current one. More details
can be found in [39]. This method aims to freely explore the parameter space in initial
iterations, increasing the probability of approaching the global optimum. With decreasing
temperature, the algorithm narrows its exploration, ultimately moving towards a nearby
local mode.

2.2. Artificial Neural Networks

Artificial Neural Networks (ANNs) represent a simplified emulation of biological neu-
ral networks, which offer valuable insights into the potential operations of biological neural
networks. ANNs possess the capability to learn and undergo training to derive solutions,
identify patterns, classify data, and make predictions about future events. Broadly, ANNs
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can be categorized as either static or dynamic learning methods. Numerous studies have
focused on static feed-forward neural networks (FFNNs). These networks react instantly to
inputs since they do not incorporate time delay units. The emergence of dynamic neural
networks (feedback neural networks with loops) has made possible increased computing
capacity with respect to static ANNs. This paper aims to compare static and dynamic
neural networks in terms of their prediction performances.

2.2.1. Static Neural Network: Multilayer Perceptron

In 1958, Rosenblatt introduced the perceptron and provided the perceptron conver-
gence theorem [41]. A widely utilized supervised algorithm within feed-forward neural
networks (FFNNs) is the multilayer perceptron (MLP). In MLP neural networks, the input
parameter (θ) progresses unidimensionally from the input layer to the output layer (output
results δ) via hidden layers [42], as illustrated in Figure 2.
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A typical MLP comprises interconnected neurons nij, as shown in Figure 2, or process-
ing elements. These neurons are organized into the following layers: an input layer; one or
more hidden layers; and an output layer.

The performance of MLP in modeling non-linear relationships depends on the acti-
vation function used, such as ReLU, sigmoid, or Tanh. The ReLU activation function was
employed in this work. ReLU is widely employed to detect the non-linear effect of various
factors, defined as follows: f (x) is zero for x < 1, and f (x) equals x for x ≥ 0.

MLP neural networks are used to generalize a non-linear function yk
j , where j and k

of Equation (1) denote the generic neuron and hidden layer, respectively, in the tasks of
function modeling with one predicted variable. The output is defined by [43]:

yk
j = f (

n

∑
i=1

wk
ijx

k
i + bk

i ) (1)

where wk
ij represents the weight of the connection between the ith neuron of the previous

layer and the current neuron; xk
i is the input from the ith neuron of the preceding layer,

and bk
i stands for the bias linked to the current neuron. The use of MLP allows for the

approximation of non-linear mappings, which is useful in overcoming the issue of the
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non-linear relations among explanatory variables, particularly in the case of concrete dam
seepage behavior [9].

2.2.2. Dynamic Neural Network
The Standard Recurrent Neural Networks

Recurrent neural networks (RNNs) represent a category of ANNs characterized by
their dynamic behavior over time, owing to the interconnections between nodes forming
either a directed or undirected graph across a time series [44]. These networks stem from
feedback neural networks and possess the capability to handle input sequences of varying
lengths by utilizing their internal state (memory), making them a kind of dynamic neural
network. The basic architecture of the RNNs and the transfer processing are illustrated in
Figure 3.
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At each time step denoted as t, the activation a<t> and the output y<t> are defined as
follows:

a<t> = f1

(
Waaa<t−1> + Waxx<t> + ba

)
(2)

y<t> = f2
(
Wyaa<t> + by

)
(3)

Here, Wax, Waa, Wya, ba, and by are coefficients that are shared temporally, while f1
and f2 represent activation functions.

RNNs are commonly utilized to process sequential data. However, training RNNs can
be challenging due to well-documented issues such as the vanishing and exploding gradient
problems arising from the repeated multiplication of the recurrent weight matrix [45].
Additionally, they can struggle to learn long-term patterns [46]. Despite these drawbacks,
RNNs possess feedback within their network architecture, which gives them the ability
to represent and learn state processes. Due to the drawbacks of the RNNs, in this paper,
advanced RNNs will be introduced to improve the prediction performance.

The Gated Recurrent Unit

The gated recurrent unit (GRU) represents an advanced type of RNN. Figure 4 displays
the general structure of a GRU, depicting inputs for both the reset and update gates within
the GRU architecture. The reset gate and update gate are used as vectors, each with entries
in the range of (0, 1) to enable convex combinations. For example, the reset gate controls
the extent to which the previous state is preserved, while the update gate governs how
much of the new state replicates the old state. The learning rate, a parameter ranging from
zero to one, determines the speed at which the weights are updated [47].
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The input vector at time t is denoted as xt. The output vectors of hidden units at time
t are represented by ht. These inputs are determined by the current time step’s input and
the hidden state from the preceding time step. The outputs of these gates are produced
through two fully connected layers with a sigmoid activation function, and yt depicts the
outputs of the GRU.

The GRU [48] is a gate variant that is more streamlined and often offers comparable
performance while being significantly faster to compute. Unlike MLP, in GRU, adjacent
hidden neurons are connected. The sliding window allows for the sequential transfer
of time-dependent input information through hidden units, enabling consideration of
temporal correlations between events occurring at considerable temporal distances.

2.3. Optimization Methods

The ANNs require an optimizer to adjust the weights and biases based on the loss
between the target and observed values. Stochastic gradient descent (SGD) is utilized
to determine optimal weights to minimize prediction errors. This approach reduces the
computational burden in high-dimensional optimization problems, resulting in faster
iterations but at the cost of a lower convergence rate. Adam optimization serves as an
extension of SGD and offers a more efficient alternative to traditional classical stochastic
gradient descent for updating network weights. It adjusts the learning rate using squared
gradients and incorporates momentum by utilizing a moving average of the gradient,
similar to SGD with momentum. The Adam optimizer is a popular choice in machine
learning. The Adam optimizer was selected in this study due to its applicability to various
problem types, including those with sparse or noisy gradients. Its straightforward fine-
tuning feature allows for quick and effective results.

3. Application Case: Montbel Dam, an Existing Earth Dam
3.1. Description of the Case Study

This case study is a 36 m high earth dam used for irrigation, located in the region of
Occitanie in France. Its reservoir has a volume of 60 million m3, and the normal water
operating altitude level (400 m.a.s.l.) is 33.5 m above the altitude of the reservoir bottom
(366.5 m.a.s.l.). The dam studied is a homogeneous embankment dam made of marl with
very low permeability. The dam was built between 1982 and 1985. The body of the dam is
equipped with a semi-vertical drain extended horizontally by a drainage mat.

Piezometers are used to measure pore water pressure in the soil mass of the dam.
They provide significant quantitative data on the magnitude and distribution of pore
water pressure with time. Forty-five automatic piezometers (PWP cells) were distributed
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at different positions of the dam. They were used to measure PWP inside the dam and
the foundation.

Although the selected monitoring section has 10 sensors, some monitoring data are
in poor regularity, with interrupted monitoring or recording errors. Therefore, the most
representative four monitoring points (with the completed dataset, marked with red points
in Figure 5, including C2 (upstream of the dam body), C5 (downstream of the dam body),
CCF1 (foundation of the dam), and C24 (near the filter) are selected for the building
prediction model.
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3.2. Dataset Preparation

The PWPs have been monitored every month (or twice a month) from 1990 to 2019,
and 450 data sets were available. Different factors are influential for the PWP, such as the
hydrostatic level (H), season (S), and time or irreversible effects (T) [4]. Lagged features are
the classic way to transform a time series prediction problem into a supervised learning
problem. The simplest approach is to predict the f (t + 1) value given the previous value
f (t − 1), which can represent the time effect. The hydrostatic (H) factor is defined by the
hydraulic head, which measures the reservoir level. The seasonal (S) effect is intended to
represent the day of the year (e.g., 1 to 365) corresponding to the measurement. One typical
expression of this factor is given in Equation (4) below, in which the season Si is an angle
equaling to 0 on the 1st of January and 2π on the 31st of December [4].

Si =
2π(ti − t0)

365
(4)

where ti and t0 are, respectively, the day of the currently analyzed measurement and the
initial reference date for the data, with ti also standing for the factor of irreversible effects T.
The dataset is shown in Table 1, and it has been divided randomly into training datasets
(352), validation datasets (44), and test datasets (44). The ML model function is defined by

f (t + 1) = f (H(t), S(t), T, f (t − 1)) (5)

Table 1. Summary of range for input and target output variables (C2).

Parameter Min Max Mean Unit

Hydrostatic (H) 382.42 400.27 394.8 m
Season (S) 0 6.27 3.118 radian
Time (T) 0 10,939 6327 day

Pore water pressure (PWP) 77.3 131.6 100.8 kPa

Pearson coefficients demonstrate that the four factors, T, H, f (t − 1), have a relatively
large effect on the PWP, as shown in Figure 6. Although S has a limited influence on PWP,
in this case, its effect should be considered for building a more general prediction model
in theory [47]. The first histogram, “T”, shows that the frequency of measurements has
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doubled in the last several years, which has an impact (correlation coefficient is −0.743) on
the variable P(t − 1) corresponding to the previous measurement. For most measurements,
P(t − 1) corresponds to the measurement made 1 month before, but for the measurements
of the last several years, P(t − 1) corresponds to the measurement made 2 weeks before.
The value and distribution are shown by yellow histograms, and cloud graphs represent
areas of concentration, trends, and changes in the data (in terms of two kinds of data),
making it easier to discover the structure and patterns of the dataset. For example, in the
cloud graph of T and S (noted as “a1b”), T concentrates more in the latest years, and S has
two peaks, which are approximately symmetrically distributed with a mean value of 3.118.
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Figure 6. Pearson coefficients (C2) between the target (PWP) and influential factors (The numbers
above the diagonal line indicate the correlation coefficients of the parameters corresponding to the
horizontal and vertical coordinates, and the curves on the scatter plot indicate the regression curves
of the two parameters. The cloud graphs illustrate the density of each pair of related parameters:
denser circles indicate more concentrated data points; the height of the yellow histogram and the
curve above it represent the density of data of every single factor). The notations a, b, c, d, e denote
the corresponding rows of the picture; the notations a1, b1, c1, d1, e1 denote the corresponding
columns of the picture, and the combination of the two notations can locate a picture. For example,
the notation b1a denotes the contour cloud of the correlation coefficients of the parameters S and P.
The symbols a1, b1, c1, d1, e1 denote the corresponding picture rows.

Before inputting the dataset, some preprocessing work should be conducted so that
convergence velocity as well as accuracy can be improved drastically. The MinMaxScaler is
a normalization method, which scales each feature to a designated range of [0, 1], utilizing
two parameters: the lower and the upper bounds [49]. Normalization is a basic procedure
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before training the model by any ML method, providing a good ability to decrease the
probability of overfitting and enhance the generalization. The MinMaxScaler is defined by

x(0,1) =
xi − XMin

XMax − XMin
(6)

where xi represents the original data, and x(0,1) is the normalized data; XMin and XMax
denote the minimum and maximum values of the complete dataset, encompassing data for
training, validating, and testing. After training and obtaining the optimized ML model,
the predicted results could apply the inverse normalization method to obtain the observed
PWP value.

3.3. Development of Machine Learning Models

All the ML models utilized in this investigation were developed using the Keras
package of Python, a high-level application programming interface designed for neural
networks. The computations were executed on an Intel(R) Xeon(R) CPU E5-2609 v4
@ 1.70 GHz with 32 G RAM (Intel, Santa Clara, CA, USA). Optimal hyperparameters
were obtained based on the prediction performance, assessed using the coefficient of
determination (R2) and the mean square error (MSE):

R2 = 1 − ∑n
i=1

(
mi − pi)

2

∑n
i=1(mi − m)2 (7)

MSE =
1
n

n

∑
i=1

(
mi − pi)

2 (8)

where mi and pi represent the measurement and prediction of the PWP, respectively; m is
the mean of the measurement. The loss function is also defined by MSE. It is important to
note that the models exhibiting superior performance are those with higher R2 values and
lower MSE values.

4. Results and Discussion
4.1. Model Performance and Comparison

The results of ML models for C2 are presented in Figure 7. They show the powerful
prediction capability of the four methods. This may be due to a number of factors. Firstly,
the model input variables (hydrostatic, season, time, etc.) explain a large portion of the
variations in PWP, for example, higher PWP for a full reservoir (and lower for a low
reservoir level), higher PWP in winter and lower PWP in summer. In addition, several
values of the hyper-parameters were tested before arriving at a satisfactory model.

These ML models can be useful in detecting pathology or abnormal behavior of the
dam, such as an increase in PWP, that is not explained by a reversible variation in the level
of the reservoir or by the season.

It should be remembered that the case study relates to the prediction of time series.
The dataset has been divided randomly into training data sets (352), validation datasets
(44), and test datasets (44). Table 2 shows the optimized hyperparameters applied in the
RF-SA model. Table 3 presents the prediction performance and efficiency of the ML models
on the training and test datasets. Table 4 shows the performance of the prediction models
on the test datasets.

For the static PWP prediction, there are two types of models: one is established
by the MLP method; the other is obtained by random forest combined with simulated
annealing (RF-SA). Hyperparameters are set before the learning process begins. For the
MLP model, the optimized hyperparameters (learning rate = 0.01, decay = 1 × 10−6, and
momentum = 0.9) used a test size equal to 30% of the dataset. Both the testing and training
R2 values reached 0.98 (as seen in Figure 7a), signifying the robust prediction capability of
the MLP model.
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Table 2. Optimized hyperparameters applied in RF-SA model of C2 piezometer after optimization.

Hyperparameters Meanings Value

n_estimators The number of trees in the forest. 14

max_depth The maximum depth of the tree. 18

min_samples_leaf The minimum number of samples
required to be at a leaf node. 1

random_state
The number of random seeds to ensure

the same results when inputting the
same number.

11

For the RF-SA model, the R2 reaches 0.98, as shown in Figure 7b, which is similar to
the performance of the MLP model. The single RF training time is so rapid that it only takes
several seconds, and commonly, single training results do not seem to be very accurate
(R2 = 0.92). After optimizing the hyperparameters, the model performance improved. All
of the implications and optimal values of the hyperparameters by applying SA in the RF
models are shown in Table 2. The optimized model is a distribution of 14 decision trees,
and every tree would re-split less than 18 times. The SA processing increases the accuracy
(R2 increases from 0.92 to 0.98), while on average, the efficiency of RF-SA is a little lower
than MLP by contrast to the CPU training time shown in Table 3.
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Table 3. Prediction performance and efficiency of ML models (both training and testing datasets).

Method MSE (kPa2) R2 CPU Training Time (s)

MLP
Mean 0.0087 0.9949 8.14
Max 0.0091 0.9935 10.35
Min 0.0066 0.9912 7.12

RF
Mean 0.021 0.9801 52.13
Max 0.0259 0.9878 96.56
Min 0.0194 0.9766 12.34

RNNs
Mean 0.0657 0.9601 7.22
Max 0.0799 0.9623 10.26
Min 0.0511 0.9594 5.54

GRU
Mean 0.0623 0.9689 27.16
Max 0.0746 0.9717 37.22
Min 0.0435 0.9702 19.42

Table 4. The accuracy comparison of prediction model for four piezometers (testing datasets).

Model Sensor MSE (kPa2) R2

1 C2 0.0292 0.9820
2 C5 0.0051 0.9981
3 C24 0.0040 * 0.9034
4 CCF1 0.0073 0.9925

* MSE is relatively low because PWP of C24 has a small variation compared to C2, C5, and CCF1.

The PWP prediction models are also built by the classic RNNs and GRU methods.
The training results show that the accuracy of RNNs and GRU models could achieve
0.96 and 0.97, respectively. Comparing all ML models, the MLP model can predict PWP
most accurately. The reason why deep learning methods perform inadequately is that the
database consists of 440 groups, which is not enough for training a deep learning model. It is
evident that the larger the number of databases, the more accurate the deep learning model,
which has powerful robustness for both interpolation and exploitation. The convergence
efficiency of MLP is much better than that of RF-SA in terms of similar accuracy, which
indicates that the architecture of MLP is more suitable for the small time series database,
and the corresponding optimization method is more economical and robust. Some of
the studies indicate that RF is good at classification issues based on high-dimensional,
small-size databases [50].

Therefore, the PWP prediction models of the other three sensors (C5, C24, CCF1)
are built with MLP, as shown in Table 4. Measurements from earlier decades are still
influenced by the PWP dissipation processes caused by dam construction, and this aspect
is well-represented in the four prediction models.

The dynamic neural networks can memorize the characters inputted by time step,
and especially GRU can remember the effects more intelligently by gate units. Several
gates allow us to select the most important properties and sensitively evaluate the weight
sensitivity. Then, the accuracy of the model could achieve 0.97, and the MSE is less than
0.007 kPa. The ability to predict depends not only on the hyperparameters but also on the
architecture. These analytical procedures and the results obtained from them are described
in the next section. A higher number of epochs refers to the model completing more
iterations of both forward and backward passes across all training batch sizes. This allows
the model to capture more information and adjust weights from the dataset. The most
proper hyperparameters (with underline) in the GRU model are shown in Table 5, which
are obtained from the loop algorithm.
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Table 5. Optimized hyperparameters applied in GRU of C2 piezometer after optimization.

Hyperparameters Meanings Value

n_neurons The number of neurons in hidden layer. 50, 100, 150, 200, 250, 300

n_layers The number of layers in network (hidden layer and
output layer). 2, 3, 4, 5, 6, 7

n_epochs The times of the one forward pass and one backward pass
of all the training examples. 10, 20, 30, 40, 50, 60, 70, 80, 90

learning_rate
The learning rate is a hyperparameter that controls how
much to change the model in response to the estimated

error each time the model weight is updated.
0.01, 0.001, 0.0001

batch_size The number of training examples utilized in one iteration. 2, 4, 8, 16, 32, 64

The underlined values correspond to the optimal values among the tested values.

Because of the random training mechanism, the model is different every time. There-
fore, the hyperparameters should be validated at least 10 times. The maximum, minimum,
and statistic mean of R2, MSE, and CPU running times of different models are shown in
Table 3, which demonstrates the accuracy and efficiency of the prediction capability.

The testing results are shown in Figure 8. The accuracy of the RF and MLP models is
similar; however, the MLP is slightly more efficient than the RF-SA. From the histogram,
the residual density distribution is normal, with a mean equal to zero. They both have a
powerful ability to predict the PWP, which is validated by the testing simulation perfor-
mance. In the feedback neural networks, the GRU model is more robust than the standard
RNNs. That is because GRU is better for long-term memory than the standard RNNs. Hy-
draulic behavior is not only decided by recent hydrostatic events but also by the structure’s
evolution over several decades. For example, in the case study, early decade measurements
are still affected by the PWP dissipation process from the dam construction, and this aspect
is well-reproduced by the different models used in this paper.
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Figure 8. The distribution of the prediction PWP (testing set) and the residual contrast with the
following measurements: (a) MLP (R2 = 0.9947); (b) RF (R2 = 0.9878); (c) GRU (R2 = 0.9131); (d) RNNs
(R2 = 0.9213). The points represent the residual value, and the histogram on the right and top of the
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Static ML models perform better for interpolation rather than extrapolation. Therefore,
the accuracy of the static ML training model is reliable for the ranges of values of H, S, and
T, f (t − 1), previously given in Table 1. When the training set is large enough, dynamic
neural networks perform better on inputting extrapolative datasets. In the other case [3],
the RNNs and GRU have a higher accuracy than static ANNs in predicting PWP. However,
due to the frequency of PWP measurement in this study case, which is not enough for
dynamic neural networks to study the features accurately, the accuracy seems worse than
for the static ML models.

From the comparison results, it is summarized that when the database is small and
low-dimensional in size, employing classical MLP is more efficient and accurate. When
the database is small and has high dimensions, the RF seems more capable. When the
database is large enough, with thousands or more datasets, deep learning techniques
perform better and can learn more non-linear relationships from the inputs and target
outputs. Consequently, for different case studies, the different ML methods should be
attempted to make a comparison.

4.2. Sensitivity Analysis

The speed of convergence and expressive power of ML predictive models are affected
not only by the architecture of the model but also by the choice of hyperparameters. In the
case of the neural network series of ML, the architectural parameters are the number of
hidden layers and the number of neurons in the hidden layers. The hyperparameters are
learning rate, number of epochs, and number of samples (batch size) per learning.

In this part, the GRU method is used to investigate the impacts of the hyperparameters
in neural network architecture. These parameters are tunable and can directly affect how
well a model performs. The values of hyperparameters are listed in Table 5; among them
is the value, which is bolder and underlined, selected as the fixed value when one of the
parameters changes, as shown in the variables. Every set of hyperparameters is validated
10 times.

The batch size determines the number of samples that pass through the network
during training. In an entire epoch, the overall N samples are divided into N/batch_size
datasets. The learning is taken from the first dataset to the last one. Smaller batch sizes
require less memory since the network is trained on fewer samples, reducing the overall
memory demand during training. This is important, especially if the whole dataset is
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so enormous that it cannot be trained using an ordinary computer. Since the memory
of the computer is always set as a power series of 2, the batch size is also defined as the
same as the memory value. Figure 9a illustrates that the accuracy on testing datasets
increases with smaller batch sizes, up until a batch size of 16, beyond which it sharply
declines. Typically, networks are trained faster with mini-batches. This is because the
networks update the weight after each propagation. Therefore, the batch size set of 16 is
more efficient in modeling the PWP of this case study.
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The layers and neurons are seen as the basic model properties, which are determined
by the model complexity. No hidden layers are needed if the data are regularly linearly
distributed. For less complex data with fewer features, neural networks with one to two
hidden layers are sufficient, as shown in Figure 9b. If data have large features, it will be
necessary to use three to five hidden layers to obtain an optimum solution [13]. One or two
hidden layers can be enough because the raw data have few features and reveal some kind
of non-linear behavior. The larger the neurons, the more complicated the model. What
stands out in Figure 9d is that 70 neurons are enough for the prediction of C2 PWP (when
the number of neurons increases from 70 to 80, R2 becomes smaller).

The learning rate stands out as a crucial hyperparameter in configuring neural net-
works. Choosing a proper learning rate is a delicate balance, as too small a value could lead
to a lengthy training process with potential stagnation, while a value that is too large might
result in rapid learning of sub-optimal weights or an unstable training process. Therefore,
it is essential to examine the impact of the learning rate on model performance and gain
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practical insights into how it influences the model’s behavior. In this GRU model, the
number of R2 is likely to continue decreasing with the fall of the learning rate, as shown in
Figure 9c. What can be clearly seen in this figure is that the R2 rises to a high point and
peaks when the learning rate equals 0.001.

As seen in Figure 10, the loss (MSE) decreases with epoch times increase. However,
more epochs do not mean that the model is more accurate, as shown in Figure 9e. The
overfitting phenomenon may happen when the epochs are exaggerated in neural networks.
Such a phenomenon could occur in the MLP model as well. When it happens, the training
epoch needs to be decreased so as to learn less noise and detail of the dataset evolution. It
can be noticed that the impact of varying batch sizes and epochs on model performance
is not as pronounced as the effects of varying the number of hidden layers, learning rate,
and neurons.
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The training results of ANNs could be improved greatly by optimizing the hyper-
parameters, especially the value of hidden layers and neurons. In the case of this study,
the optimization of learning rate, batch size, and epochs did not significantly improve the
accuracy of the model. These sensitivity analyses of hyperparameters offer a reference
tutorial for the ANNs tuning.

5. Conclusions

In this paper, four different ML methods have been applied to build the PWP prediction
models. It has been highlighted that both the static and dynamic neuron networks have a
good ability (R2 = 0.99) to predict the monitoring PWP in an earth dam. The findings of
this study suggest that among four different ML methods, the MLP and RF-SA are more
intelligent and accurate for predicting the PWP response. GRUs have a better prediction
performance than RNNs in dynamic neural networks. Because the monitoring frequency
of PWP in this study case is not enough for dynamic neural networks to study the features
accurately, the accuracy of RNNs (which is appropriate for time-series prediction) is worse
than that of the static ML models. Therefore, for different case studies, an attempt should
be conducted to compare different ML approaches in order to select the best prediction
method. In summary, the machine learning methods have some significant advantages in
predicting the PWP of hydraulic response. In this case study, early decade measurements
are still affected by the PWP dissipation process from the dam construction, and this aspect
is well-reproduced by the different models used in this paper. These models can also
demonstrate the soil’s non-linear properties. The models established by ML methods
are very flexible and do not need additional physical assumptions. They can be used in
different earth dam positions, even in different dams.

The architecture of the RF model could be optimized by the SA method efficiently, and
the R2 could be improved from 0.92 to 0.98. The architectures of ANN models, including
MLP, RNNs, and GRU, could be optimized by the Adam method and loop algorithm.
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The optimizing processes reveal that different batch sizes and epochs do not affect model
performance as significantly as different numbers of hidden layers, learning rates, and
neurons. The sensitivity analysis of these hyperparameters provides a reference for the
tuning of ANNs for other machine learning applicators. By optimizing the hyperparameters
(especially the value of hidden layers and neurons), the training results of ANNs can be
greatly improved.

The weaknesses of ML methods should also be noted. These methods rely on a large
number of training datasets in which the input and output should be highly correlated.
Most of the study cases do not have enough datasets, and there is a large uncertainty in the
influence of the actual measured data. Therefore, an adequate amount of data is the basis
for successful modeling in this study case.
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