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Dataset of soil hydraulic 
parameters in the Yellow River 
Basin based on in situ deep 
sampling
Yongping Tong1,2,3,4, Yunqiang Wang   1,2,4,5 ✉, Jingxiong Zhou1,2,4, Xiangyu Guo1,4,6, 
Ting Wang1,4,6, Yuting Xu1,4,6, Hui Sun1,4,6, Pingping Zhang1,2,4, Zimin Li   1,2,4  
& Ronny Lauerwald   3

Soil hydraulic parameters are vital for precisely characterizing soil hydrological processes, which 
are critical indicators for regulating climate change effects on terrestrial ecosystems and governing 
feedbacks between water, energy, and carbon–nitrogen cycles. Although many studies have integrated 
comprehensive soil datasets, data quality and cost challenges result in data completeness deficiencies, 
especially for deep soil information. These gaps not only impede methodological endeavours but also 
constrain soil parameter-based ecosystem process studies spanning from local profiles to global earth 
system models. We established a soil dataset across the entire Yellow River Basin (YRB) (795,000 km2) 
using high-density in situ field sampling. This observation-based dataset contains records of soil 
texture (2924), bulk density (2798), saturated hydraulic conductivity (2782), and water retention 
curve parameters (1035) down to a maximum depth of 5 m. This dataset, which extends the recorded 
data range for deep soil hydraulic parameters, is valuable as a direct data resource for environmental, 
agronomical and hydrological studies in the YRB and regions with similar pedological and geological 
backgrounds around the world.

Background & Summary
Soils serve as a crucial interface between atmosphere, biosphere, hydrosphere and lithosphere1,2, profoundly 
influencing matter and energy cycling within terrestrial ecosystems3–5. In particular, soil hydrological processes 
play a pivotal role in regulating the impact of climate change on terrestrial ecosystems and feedback mechanisms 
between water, energy, and carbon–nitrogen cycles6–10. Soil hydraulic parameters, which are in turn largely 
determined by soil texture and structure, serve as key factors in accurately depicting soil hydrological pro-
cesses11–13. For instance, the saturated conductivity (Ks) is a major control of moisture movement, distribution, 
and fluctuations within the soil profile14,15. The matrix potential, which describes the strength of adhesive forces 
between soil moisture and solid components of the soil, determines the plant-availability of soil moisture. The 
soil water retention curve (SWRC), which defines the relationship between soil moisture content and matrix 
potential16,17, affects a range of processes including evaporation18. Thus, it is one of the fundamental attributes 
that characterise soil hydraulics19.

The main methods for acquiring the aforementioned parameters encompass in situ sampling20 and the use of 
pedotransfer function (PTF)21–23. The considerable costs of in situ sampling has led to a growing interest in the 
establishment and use of PTFs9,24. However, most PTFs are developed for specific regions, and their applicability 
to areas with different soil and climatic conditions is limited, necessitating re-calibration based on field measure-
ments12. The challenges associated with obtaining soil parameters not only impede methodological endeavours, 
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such as up-scaling based on PTFs, but also impose limitations on ecosystem process studies that rely on soil 
parameters25. These limitations affect research at a broad range of scales from site-level profile investigations26,27 
to calibration and parametrization of comprehensive ecosystem models2. Therefore, the accurate measurement 
of soil parameters is highly beneficial for assessing soil hydrological processes not just at local scale, but also for 
up-scaling to regional scales, and thus facilitating multiscale ecohydrological process studies28.

Currently, a multitude of datasets, including Florida Soil Characterization Data29, WoSIS30, and UNSODA31, 
are dedicated to aggregating a diverse range of soil parameters derived from field measurements, comprising, 
in particular, the essential SWRC parameters. However, a considerable proportion of these data exhibits vague 
sample point coordinates and insufficient data pairs for establishing the SWRC, often lacking the wet end of the 
SWRC (water head ≤ 0.2 m)24. To address the limitations of field measurements, some studies have employed 
integrated PTFs to derive soil hydraulic parameters at national and global scales32,33. As illustrated by Gupta, 
Papritz24, integrated field measurements with PTFs to effectively globally extend the applicability of soil hydrau-
lic parameters by supplementing missing measurement data. However, the extensive datasets mentioned above 
still contain limited information regarding deep soil profiles, particularly regarding the scarcity of soil informa-
tion below a depth of 3 m34. Deep soil water, which is largely mediated by vegetation35, acts an important role 
in enabling vegetation to withstand drought stress36,37 and water is also a key factor affecting the soil’s ability to 
sequester carbon38. Hence, deep soil hydraulic processes play an important role in terrestrial hydrology and soil 
carbon budgets39. Given the potential impact of soil profile heterogeneity on hydraulic parameters9,28, which 
constrains the applicability of shallow soil data, it becomes necessary to broaden the depth of investigation for 
soil hydraulic parameters. The compilation of deep soil profile information and incorporation of detailed field 
records would serve as a valuable complement to existing soil datasets.

Given the limitations of the current datasets outlined above, the objective of this study was to utilise geographi-
cally precise field measurements from deep soil profiles to extend existing soil datasets with reliable deep soil prop-
erty records. Furthermore, we sought to provide a quantitative foundation to facilitate the development of PTFs that 
rely on original data. We conducted in situ sampling across the entire Yellow River Basin (YRB). The YRB is exten-
sive (795,000 km²), irrigating over 15% of China’s cultivated land and sustaining more than 12% of China’s popula-
tion40. Furthermore, this basin encompasses most of China’s important ecological barrier belt41, including the Loess 
Plateau (LP), the world’s largest loess deposition region. Historically, severe soil erosion in this region has led to sub-
stantial loss of soil carbon to the ocean via the Yellow River, profoundly impacting the land carbon budget42–44. Over 
the past two decades, China has been one of the leading contributors to the land greening observed around the 
globe45, with the LP taking a prominent role through the “Grain for Green” program for ecological restoration12,46. 
Given the significance of the YRB for global carbon cycling, climate change, food security, and ecological stability, 
the investigation of soil parameters in this region does not only hold the value for regional environmental and agro-
nomic studies, but also provide some valuable supplementation to the current global pool of soil hydraulic datasets. 
Moreover, our dataset offers more possibilities for ecohydrological studies including observation and modelling 
that focus on deep profiles by providing soil hydraulic parameters down to a profile depth of 5 m.

During three years (2008, 2018, 2019) of fieldwork, we collected a total of 2925 disturbed soil samples and 
2800 undisturbed soil samples throughout the whole YRB. This extensive, and high-density observation grid 
contains measurements of soil hydraulic properties down to a maximum depth of 5 m. The profiles were ana-
lyzed in the laboratory, and measurements were subjected to comprehensive data quality control and cleansing 
processes. Furthermore, we employed the “soilhypfit” package47 in R (4.2.3 version) to fit the SWRC via the van 
Genuchten (VG) model. It should be noted that all SWRC records were derived from 10 pairs of corresponding 
soil matrix potential and moisture content data, covering a broad range of matrix potentials from 0.1 bar to 10 
bars. For our dataset, we finally retained 2924 records of soil texture, 2798 records of soil bulk density (BD), 2782 
records of Ks, and 1035 SWRC records. All records were consolidated into a unified dataset. This dataset further 
provides detailed meta-information for each sample, including sampling time, coordinates, elevation, depth, 
and land use type. We opted to preserved as much of the observed data as possible, but assigned categories of 
data quality which may help users to balance between quantity and quality of data depending on their research 
objectives and requirements. This dataset will be of value as a direct resource for environmental, agronomical 
and hydrological studies, as well as for calibrating PTFs. Although the spatial coverage of this dataset is lim-
ited, it covers the extensive YRB, filling the data gaps in this region and will also provide a useful data resource 
for studying other regions with comparable environmental setting worldwide. Finally, this dataset effectively 
extends the range of recorded data for deep soil hydraulic parameters around the world.

Methods
Study area and sampling site layout.  The study area comprised the whole YRB (Fig. 1), which covers 
an approximate area of 795,000 km2 (95°53′–119°5′E and 32°10′–42°50′N)2,48. The Yellow River spans a length 
of 5464 km49, ranking as the fifth longest river in the world. We acquired disturbed and undisturbed soil samples 
by conducting large-scale in situ sampling in two phases. The first phase involved high-density shallow-profile 
sampling from April to November 2008. The second phase comprised medium-density deep-profile sampling con-
ducted from September to December 2018 and from October to November 2019. We selected the sampling sites by 
overlaying digital maps of the sampling area by a high-density sampling grid. This grid ensured uniform partition-
ing of the entire basin, with the centre of each grid serving as the initial choice of the sampling site. Subsequently, 
the sampling locations were adjusted based on topography, soil depth, and vegetation type to increase their repre-
sentativeness. Ultimately, 382 sampling sites were established in the first phase and 93 in the second phase (Fig. 1).

Field methods.  In the first phase, we excavated a 40 cm deep profile at each sampling point and collected 
disturbed and undisturbed soil samples from two layers (0–5 cm and 20–25 cm). During this stage, 764 disturbed 
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and 764 undisturbed soil samples were collected. Undisturbed soil cores were placed into metal cylinders after 
collection to facilitate the subsequent measurement of soil hydraulic parameters50.

In the second phase, to facilitate deep undisturbed soil sampling (the targeted depth is 5 m), we employed 
a hand-held drilling machine (CHPD78, Christie Engineering Pty Ltd., Australia). To prevent compression in 
the soil core, a dual-tube setup was used within the drilling pipe, with an inner retrievable tube designed to 
accommodate the soil cores. The core diameter was 37 mm, and the inner tube was replaced every 1 m during 
drilling to ensure the sample integrity. To ensure sample correspondence, two boreholes (with 0.5 m distance) 
were drilled at each sampling point to retrieve the disturbed and undisturbed soil samples (Fig. 2). For the sur-
face layer, the disturbed and undisturbed soil samples were obtained from the depth of 0.05 m. Subsequently, 
the sampling was carried out every 20 cm starting from the depth of 0.2 m. During this phase, 2161 disturbed 
and 2036 undisturbed soil samples were collected. Owing to constraints related to soil depth and the structure 
in certain layers, the number of undisturbed samples was lower than that of disturbed samples. As in the first 
phase, the undisturbed soil samples were placed into metal cylinders after collection. To prevent samples inside 
the metal cylinders from disturbance, we preserved them in a shockproof foam box after sampling and promptly 

Fig. 1  Spatial distribution of soil sampling sites in the Yellow River Basin.

Fig. 2  Schematic of in situ soil sampling using a handheld drilling machine.
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returned them to the laboratory for the storage. Ultimately, a total of 2925 disturbed soil samples and 2800 
undisturbed soil samples were collected in the two phases.

Laboratory methods.  All disturbed soil samples underwent preprocessing, including weed removal, 
air-drying, grinding, and sieving (using a 1 mm mesh), before particle size distribution was analyzed. Mastersizer 
laser particle size analysers (Mastersizer 3000, Malvern Panalytical, UK) were used to determine soil particle size 
distribution. Subsequently, the soil particle sizes were categorised according to the United States Department of 
Agriculture (USDA) standards into clay particles (< 0.02 mm), silt particles (0.02–0.5 mm), and sand particles 
(> 0.5 mm), leading to the classification of soil texture following USDA standards51.

The undisturbed soil samples were initially immersed for 24 h to achieve full saturation. Subsequently, we 
performed the determination of Ks using the constant-head method52, which involves in maintaining a constant 
water head infiltration through the Mariotte bottle until a stable infiltration rate is reached. Then, the amount of 
water passing through the sample within a fixed time were measured to calculate the Ks. Each sample was meas-
ured three times to ensure the accuracy. Centrifuge and pressure plate instrument methods are the most widely 
used methods for SWRC in the laboratory53. The distinction between the two methods is as follows: In the 
low-suction range, the pressure plate method yields fewer data points and leads to a lower precision, whereas the 
centrifuge method provides relatively higher precision. However, the centrifuge method can be notably affected 
by density changes in soils with coarser textures, potentially resulting in lower precision. In the high-suction 
range, the pressure plate method may yield less accurate results for soils with high clay and silt contents because 
of inadequate drainage during the measurement process. In this case, the centrifuge method is more suitable. 
Considering the high silt content of most samples in this study and the time costs of pressure plate instrument 
method, the centrifuge method is more suitable for determining the SWRC. Utilising a centrifuge (CR21N, 
Hitachi, Japan), we set a series of different rotate speeds to correspond to different suction conditions (as being 
outlined in Table 1). After implementing each centrifugation process corresponding to different rotate speeds 
under a constant temperature of 20 °C, we removed the metal cylinders from the rotor, weighed, and recorded 
the total mass of the metal cylinders and the internal soil sample. Then, using the final measurement of the 
metal cylinders and dry soil mass, we calculated the gravimetric soil water contents corresponding to different 
suctions. Prior to measuring the SWRC, the soil saturation water content (θs) was initially tested. Subsequently, 
the BD was assessed after oven-drying (at 105 °C for 10 h), enabling the conversion of gravimetric water content 
to volumetric water content.

SWRC fitting and parameter acquisition based on the VG model.  Upon obtaining soil water suc-
tion and volumetric moisture content data for each sampling point, we employed the “soilhypfit” package in R 
for fitting the SWRC using the “fit_wrc_hcc” function, in line with existing research24. “soilhypfit” is an R pack-
age designed for the parametric modelling of soil water retention and hydraulic conductivity data. This func-
tion allows the estimation of SWRC parameters based on the van Genuchten (VG) model17, with the constraint 
m = 1-1/n. The VG equation (Eq. 1) is as follows:

ψ
ψ

( )
[1 ( ) ] (1)

s r
n m rθ

θ θ
α

θ=
−

+
+

where θ(ψ) (m3/m3) denotes the volumetric soil water content at matric potential ψ, and θs (m3/m3) and θr (m3/m3) 
represent the saturated and residual water contents, respectively. The α (m−1) is a parameter related to the inverse 
of air entry pressure, and n is a dimensionless shape parameter of the VG model. During the prediction process, 
the “fit_wrc_hcc” function estimates parameters of the SWRC from respective measurements using the maximum 
likelihood method, optionally subject to physical constraints on the estimated parameters, and utilises the optimi-
sation algorithm from the NLopt library54 or the Stochastic Complex Evolution (SCE) algorithm55. According to 
existing research24, we constrained n within the range from 1.0 to 7.0 and α within the range from 0 to 100 (m−1) 
during the fitting process. Field capacity (FC) and permanent wilting point (PWP) are two key parameters that 
determine the soil water availability for plants and the maximum soil water-holding capacity56. Hence, utilising 
the SWRC curves derived from the fitted VG models at each point, we projected the volumetric water content 
corresponding to FC (−1/3 bar, −3.37 mH2O) and PWP (−15 bar, −152.96 mH2O) for these sampling 
locations57.

Data Records
After collating the measured and predicted soil parameters, a comprehensive soil hydraulic parameter dataset 
for the YRB was established. This dataset encompasses sampling points spanning the entire basin in terms of 
horizontal spatial distribution, with 382 shallow profile points at a resolution of 40 × 40 km and 93 deep profile 
points at a resolution of 100 × 100 km. The dataset has been uploaded and can be accessed via the link of https://
doi.pangaea.de/10.1594/PANGAEA.96500458.

No. 1 2 3 4 5 6 7 8 9 10

Ψ (bar) 0.01 0.10 0.30 0.60 0.80 1.00 3.00 6.00 8.00 10.00

h (mH2O) 0.10 1.02 3.06 6.12 8.16 10.20 30.59 61.18 81.58 101.97

Table 1.  Soil matrix potential and corresponding water head range when measuring the soil water retention 
curve based on centrifugation.
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All the data in the dataset, excluding the SWRC curve parameters, were derived from direct measurements. 
According to USDA classification, the soil texture in the dataset falls into two major categories: loamy and sandy 
soils (Fig. 3).

The loamy soil category includes sandy loam, loam, silt, silty loam, silty clay loam, and clay loam. The sandy soil 
category includes sand and loamy sand. Among them, silty loam constituted the highest proportion (74.53%), fol-
lowed by sandy loam (9.40%). The remaining soil texture classes constitute less than 5% of sampling point (Fig. 4).

The original data for the SWRC curve of each sampling point was also derived from direct measurements 
by fitting a VG model to derive the θs, θr, and shape parameters (α and n). According to the kernel density plot, 
it can be observed that the fitted VG model parameters are generally distributed within a reasonable range 
(Fig. 5). We applied the necessary data cleaning and quality control procedures (see Technical Validation). To 
preserve the integrity of the original measurement data, we introduced the relative error range information 
(θs_RE_range) into the dataset to describe the quality of the SWRC parameter fitting.

Ultimately, 2925 disturbed field soil samples and 2800 undisturbed field soil samples were collected, and 
most profiles covered a depth down to 5 m. This dataset comprises 31 variables and 2925 records, and ultimately 
contains 2924 records for soil texture, 2798 records for soil BD, 2782 records for Ks, and 1035 records for SWRC 
parameters after data quality control and cleaning. A detailed description of each variable is provided in Table 2. 
Furthermore, a graphical representation (Venn diagram) illustrates the overlap among the different measure-
ment indicators (Fig. 6).

Technical Validation
Data verification and cleaning.  Prior to analysis, all field-collected samples underwent a preliminary 
inspection to ensure the integrity and non-mixing of the disturbed samples, and the undisturbed samples in 
the metal cylinders were free from vibration-induced cracking or any damage. Subsequently, the original 

Fig. 3  Soil texture classification of samples from the Yellow River Basin. Classification was based on USDA soil 
texture classification standards.

Fig. 4  Soil texture proportion of samples from the Yellow River Basin. Sa, Sand; LoSa, Loamy Sand; SaLo, Sandy 
Loam; Lo, Loam; SiClLo, Silt Clay Loam; SiLo, Silt Loam; Si, Silt; and ClLo, Clay Loam.
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measurement data were subjected to thorough validation and data cleansing procedures. Regarding the BD, we 
eliminated the sample results with BD > 2.65 g/cm3 during the quality control process59. Regarding the particle 
size distribution data, by comprehensively referring to the existed national measurement standards and litera-
tures24, we directly excluded the samples (11 records, denoted as “Error” in dataset) when the sum of particle size 
class contributions (clay + silt + sand) was not within 100 ± 3%. Subsequently, samples were classified based on 
the absolute difference between the sum of particle size class fractions and 100% as follows: Level A (< 1%), Level 
B (1% ≤ difference < 2%), and Level C (2% ≤ difference < 3%).

Constraints on VG fitting.  In order to assess the quality of SWRC fitting based on the VG model using the 
“soilhypfit” package, we computed the coefficient of determination (R2) for each model fit. As the “soilhypfit” 
package lacks a built-in function for directly calculating R2, we employed the following approach (Eq. 2):

= −R SSE
SST

1
(2)

2

where SSE represents the sum of squared errors obtained from the “ssq_wc” output of the “fit_wrc_hcc” func-
tion, while SST represents the total sum of squares total calculated based on the variances of the measured data 
at each point. All VG model fits yielded R2 values above 0.9, indicating very high fitting performance.

To further assess the fitted data quality, we attempted to retrieve field surveys of soil hydraulic parameters 
from the same research area for the comparison. After filtering, we selected and plotted the spatial distribution 
of the mean hydraulic parameters within 0–5 m of the LP, which is the main body of the YRB (Fig. 7). The results 
show that the spatial distribution of θs, θr, α, and n all have zonal characteristics, exhibiting obvious spatial het-
erogeneity. Moreover, θs, α, and n have similar spatial distribution characteristics with existed investigation 
results60 in most areas within the LP, which validates the reliability of our survey to some extents.

Fig. 5  Kernel density plots of van Genuchten (VG) model parameters distribution. θs represents the saturated 
water content (a); θr represents residual water content (b); α (c) and n (d) are the shape parameters of the VG 
model.
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Header Description Unit

site_id Number of the sampling site —

sample_id Number of samples at each sampling site —

longitude Longitude coordinates based on the WGS84 system —

latitude Latitude coordinates based on the WGS84 system —

elevation Elevation of the surface of the sampling site m

land_use Land-use type of the sampling site —

sampling_year The year in which the soil sample was collected —

sampling_depth The depth at which the soil sample was collected m

clay Clay (< 0.02 mm) content in soil samples %

silt Silt (0.02–0.5 mm) content in soil samples %

sand Sand (> 0.5 mm) content in soil samples %

method_particle Method for measuring soil particle composition —

soil_texture_quality Quality level of soil particle composition measuring, the levels of “A”, “B” and “C” represent high, 
medium and low data quality, respectively —

soil_texture_class1 Soil texture classification based on USDA (broad categories) —

soil_texture_class2 Soil texture classification based on USDA (subclasses) —

BD Bulk density of soil g/cm3

method_BD Method for measuring soil bulk density —

Ks Soil saturated water conductivity cm/min

method_Ks Method for measuring soil saturated water conductivity —

method_SWRC Method for measuring soil water retention curves —

meaured_θs Measured saturated soil water content from soil samples m3/m3

fit_θs Fitted saturated soil water content based on “soilhypfit” package in R m3/m3

fit_θr Fitted residual soil water content based on “soilhypfit” package in R m3/m3

fit_α Fitted shape parameter of van Genuchten model based on “soilhypfit” package in R m−1

fit_n Fitted shape parameter of van Genuchten model based on “soilhypfit” package in R —

fit_m Fitted shape parameter of van Genuchten model based on “soilhypfit” package in R —

fit_FC Field capacity predicted by fitted SWRC curve based on “soilhypfit” package in R m3/m3

fit_PWP Permanent wilting point predicted by fitted SWRC curve based on “soilhypfit” package in R m3/m3

fit_r2 Coefficient of determination when fitting SWRC based on “soilhypfit” package in R —

θs_RE Absolute relative error of fitted and measured saturated soil water content %

θs_RE_range
Quantile range of absolute relative error of fitted and measured saturated soil water content. “Q1”, “Q3”, 
“Min”, and “Max” represent the “first quartile”, “third quartile”, “Q1 minus 1.5IQR”, and “Q3 plus 1.5IQR”, 
respectively. “-” is a symbol used to represent the range of values.

—

Table 2.  List of 31 variables in the Yellow River Basin soil hydraulic parameter dataset and their descriptions 
and units.

Fig. 6  Venn diagram illustrating the number of various measurement indicators derived from soil samples 
in the Yellow River Basin. BD represents the soil bulk density, Ks represents the soil saturated hydraulic 
conductivity, and vg Parameters represents the van Genuchten model parameters.
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Fig. 7  Spatial distribution of the averaged soil hydraulic parameters within 0–5 m in the Chinese Loess Plateau. 
θs represents the saturated water content (a); θr represents residual water content (b); α (c) and n (d) are the 
shape parameters of the van Genuchten model. The green dots represent our sampling sites.

Fig. 8  Boxplot of the absolute relative error (|RE|) between the saturated water content (θs) fitted using the 
“soilhypfit” R package and measured θs (a); the distribution of measured and fitted θs for all data records (b); 
and the distribution of measured and fitted θs after removal of outliers of |RE| (c). The red line in the figures 
represents a 1:1 ratio.
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It should be noted that finding an investigation that perfectly matches our dataset in terms of survey range, 
depth, and number of sample sites still presents a challenge, limiting the quantitative comparison in space. 
Therefore, the quality of the fitted data needs to be further assessed. Besides, the inherent limitations of the VG 
model for fitting to soils with high sand/clay content also need to be considered. Hence, we further calculated 
the relative errors between fitted θs and measured θs to quantitatively evaluate the fitting quality of each sample 
point. The calculation method of |RE| is as follows:

θ θ

θ
| | =

−
×RE 100%

(3)
sfitted smeasured

smeasured

Subsequently, we identified the distribution characteristics of |RE| by calculating the quartiles of these rela-
tive errors (Fig. 8a). The first (Q1) and third (Q3) quartiles were 1.20% and 6.44%, respectively. The Q3 + 1.5IQR 
was 14.23%, and the Q1 – 1.5IQR was 4.95E-4%. The results indicated that there were no |RE| values lower than 
Q1 – 1.5IQR. Upon comparing the fitted θs and measured θs before and after outlier removal, it can be observed 
that the points after outlier removal are largely distributed along the 1:1 line (Fig. 8b,c). Therefore, in the final 
dataset, we further classified the SWRC parameters according to the quartile range of |RE|, and marked the 
sample points where |RE| exceeds the range of Q3 + 1.5IQR as “outliers”. To retain as much of the original data 
as possible, we included all the RE levels in the dataset.

By comparing the soil hydraulic parameters of the two main soil types in our datasets (loamy soil and 
sandy soil) after the outlier removal, we observed that for the loamy soil, all θs, θr, PWP, and FC were higher 
than those for sandy soil. In contrast, α, n, BD, and Ks for loamy soil were lower than those for sandy soil 
(Fig. 9). Furthermore, following the study by Goldberg et al.61, we further removed points with FC > 48% and 
PWP > 36%.

Usage Notes
Considering that all data in this dataset originated from measurements of in situ samples, we strived to preserve 
the maximum number of sample test records and provided a grading system based on our quality assessment 
of soil texture measurements and SWRC fitting. Our intention was to allow researchers to freely choose which 

Fig. 9  Boxplots of the distribution of hydraulic parameters for major soil texture categories. θs represents the 
saturated water content, θr represents the residual water content, PWP represents the permanent wilting point 
and FC represents the field capacity (a); α (b) and n (c) represent the shape parameters of the van Genuchten 
model; BD represents the bulk density (d); and Ks represents the saturated hydraulic conductivity (e).
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data to use, and choose between quantity and quality of data according to their requirements. For soil texture 
measurements, we suggest to use the data at Level A (< 1%) with confidence, while to use the data at level 
B (1% ≤ difference < 2%) and C (2% ≤ difference < 3%) selectively based on their specific requirements. For 
SWRC data, despite our efforts, some parameters still exceeded the predefined validity range, which included: 
one n parameter reached 7 and ten α parameters reached 100 m−1 (comprising 0.09% and 0.96% of the total 
valid SWRC count, respectively). Moreover, 236 θr were predicted as zero due to their inherently small actual 
values and 116 |RE| of θs were listed as outliers (comprising 22.8% and 11.2% of the total valid SWRC count, 
respectively). We recommend cautious utilisation of these records. Constrained by sampling costs, the volume 
of the dataset remains limited. Nonetheless, we believe that this dataset, entirely based on measured data from in 
situ samples and encompassing soil hydraulic records down to a profile depth of 5 m, can effectively address the 
gaps in the pool of existing observational data, and the absence of deep soil information in particular.

Code availability
The code used to calculate SWRC parameters can be found on Github (https://github.com/TONGYP1116/
SoilHydraulicParameter.git).
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