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A new paradigm for global sensitivity analysis

Gildas Mazo*

Abstract

Current theory of global sensitivity analysis, based on a nonlinear func-
tional ANOVA decomposition of the random output, is limited in scope
(for instance the analysis is limited to the output’s variance and the in-
puts have to be mutually independent) and leads to sensitivity indices the
interpretation of which is not fully clear, especially interaction effects. Al-
ternatively, sensitivity indices built for arbitrary user-defined importance
measures have been proposed but a theory to define interactions in a sys-
tematic fashion and/or establish a decomposition of the total importance
measure is still missing. It is shown that these important problems are
solved all at once by adopting a new paradigm. By partitioning the inputs
into those causing the change in the output and those which do not, ar-
bitrary user-defined variability measures are identified with the outcomes
of a factorial experiment at two levels, leading to all factorial effects with-
out assuming any functional decomposition. To link various well-known
sensitivity indices of the literature (Sobol indices and Shapley effects),
weighted factorial effects are studied and utilized.

Keywords: interactions; main effects; Sobol indices; factorial experiment;
global sensitivity analysis.

1 Introduction

Global sensitivity analysis is an important step in model checking, understand-
ing, and calibration [30]. To do the global sensitivity analysis of a given model
f , the main task is to calculate sensitivity indices. With each input or com-
bination of inputs one associates a value supposed to represent how sensitive
the output of the model is with respect to that input or combination of inputs.
What “sensitive” means depends on the mathematical definition of the index
used, but the idea is that the output is sensitive to some input if a change in
the input’s value leads to a change in the output’s value; the bigger the change
in the output’s value the more sensitive.

Let f : Rd → R be mathematical function representing a numerical or
machine learning model or algorithm, or any system that takes inputs and re-
turns outputs. These are assumed real for simplicity and clarity. In classical
global sensitivity analysis, the uncertainty about the inputs is represented by a
distribution P on the input space. Since they are uncertain, the inputs are rep-
resented by a random vector X = (X1, . . . , Xd) with distribution P ; the output
f(X) is, therefore, a random variable with distribution P ◦ f−1.
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Current theory of global sensitivity analysis is based on a nonlinear func-
tional ANOVA decomposition of the output [9, 29, 26], namely

f(X)−E f(X) = f1(X1) + · · ·+ fd(Xd) + f12(X1, X2) + · · · ,

where, by construction, all the 2d−1 terms in the right-hand side are statistically
independent. This decomposition, known as the Sobol or Sobol-Hoeffding de-
composition, is attributed to Hoeffding [13] (see [36]), although it was Sobol [33]
who, after rediscovering it, applied it to calculate sensitivity indices.

By independence of the terms in the right-hand side, the variance of the sum
is the sum of the variances, yielding

Var f(X) = Var f1(X1) + · · ·+ Var fd(Xd) + Var f12(X1, X2) + · · ·

The variance of the output has been broken into a sum of smaller variances,
called the Sobol indices. Sobol indices associated with singletons are called
main or first-order effects, and the others interaction or higher-order effects. In
applications, a sensitivity analysis mainly consists of reporting estimated Sobol
indices. The functional decomposition that led to these indices seems to be
there solely to justify the existence of the indices themselves.

That the Sobol indices arise from the functional decomposition has limita-
tions. First, the inputs have to be mutually independent, de facto excluding
interesting applications [6, 17, 28]. Second, the interpretation of the higher-
order Sobol indices lacks clarity, and, as a matter of fact, these are rarely stud-
ied [21]. Finally, the sensitivity analysis is necessarily restricted to the analysis
of the variance, which may be insufficient to give a complete account of uncer-
tainty [3, 7, 8, 10, 11, 32].

It was noticed in [15, 21] that a decomposition of the variance and more
generally arbitrary user-defined variability measures can be obtained directly
from those measures applied to the input combinations through Möbius inver-
sion, thus obviating the functional decomposition and the limitations it imposes.
In the two references above the decomposition of the variability measure was
assumed to be something desirable. But even that can be questioned.

The problem we propose to address, therefore, runs thus: can we construct
sensitivity indices such that

� any arbitrary distribution can be assumed for the inputs;

� sensitivity analysis is not restricted to the analysis of the variance and can
be performed for arbitrary measures of variability;

� main and interaction effects are well-defined, independently of any decom-
position;

� decompositions of the total output variability can still be obtained?

It is shown that the questions above can be answered positively all at once
by considering a new paradigm for global sensitivity analysis. The key is to
notice that sensitivity indices, because they can be seen as maps defined on the
set of all subsets of the input combinations, can be identified with a factorial
experiment at two levels where each input combination is a point in a factorial
design and the outcome is the variability of the output given that some inputs
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are fixed and some are not. Main and interaction effects are then naturally
defined, with no resort to any functional decomposition. Arbitrary measures of
variability are permitted, as long as they satisfy three posited axioms.

The rest of the manuscript is organized as follows. The sensitivity maps
are defined in Section 2. Here two large classes of sensitivity maps are given.
The correspondence between sensitivity maps and factorial experiments is made
in Section 3. In Section 4, factorial effects are extended to weighted factorial
effects, allowing us to recover known sensitivity indices. Some properties of
weighted factorial effects are derived in Section 5. It is shown in this section
how decompositions of the total output variability can be obtained by choosing
appropriate weights. Known sensitivity indices of the literature are recovered
as examples in Section 7. A Discussion section closes the paper. All proofs are
available in the Appendix.

Throughout, we shall assume that the distribution P is a probability distri-
bution on the measurable space (Rd,Bd), where Bd is the σ-field comprising
the d-dimensional Borel sets. The function f is of course assumed to be Borel
measurable, as shall be every function in the present manuscript. All random
variables are defined on the same arbitrary probability space endowed with
probability measure P and are assumed to have a sufficiently large number of
finite moments. Recall that X has distribution P , denoted by X ∼ P . (That
is, P = P ◦X−1.) All equality statements between random variables are meant
with probability one, that is, almost surely (a. s.).

2 Sensitivity maps

To define sensitivity maps, three axioms are posited in Section 2.1. Two general
classes of sensitivity maps are given in Section 2.2.

2.1 General sensitivity maps

Let us introduce some notations. If A is some subset of {1, . . . , d} =: D then
we let XA denote the subvector with components indexed by A. For instance if
d = 3 and A = {3, 1} then XA = (X1, X3). By convention X∅ is some arbitrary
constant. We denote the set of all subsets of D by 2D. We use “⊂” in the weak
sense so that A ⊂ A. (Remember that the empty set is a subset of every set,
including a subset of itself.) Singletons {i} are sometimes simply written i.

It is a tautology to say that sensitivity of a function f to its arguments is the
extent to which it depends on them. Thus if f is unsensitive to its arguments
indexed by some subset A of D then, whatever the value of the other arguments,
the value of f must be constant with respect to a change in the arguments in
A. In other words, f is a function of its arguments in D \A only. This leads to
Definition 1.

Definition 1. A map τ : 2D → R is a sensitivity map for f with respect to P
if, for each A ⊂ D,

(i) τ(A) ≥ 0

(ii) τ(∅) = 0
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(iii) τ(A) = 0 if and only if there is a map gA : R|D\A| → R such that X ∼ P
implies f(X) = g(XD\A) almost surely.

Remark 1. Without loss of generality we can take gA(XD\A) = E(f(X)|XD\A)
in Definition 1.

Definition 1 agrees with common sense: (i) sensitivity cannot be negative;
(ii) if there are no arguments then f must be unsensitive; (iii) a function is
unsensitive to some of its arguments A if it does not depend on them The
phrase “for f with respect to P” in Definition 1 is important. Indeed, a map
τ can be a sensitivity map for some choice of f and P but not for some other.
For instance, let f(X) =

∑d
i=1 ciXi, where X1, . . . , Xd are independent random

variables with mean zero and variance one. Define τ(A) = ‖cA‖2, where cA
denotes the subvector of c with components indexed by A. If τ(A) = 0 then
ci = 0 for all i ∈ A and hence f(X) =

∑
i 6∈A ciXi =: gA(XD\A). Conversely, if

f(X) = E(f(X)|XD\A) then
∑
i∈A ciXi = 0 and hence ‖cA‖22 = 0. Therefore,

τ is a sensitivity map for f but it is clear that τ fails to be a sensitivity map
in general. Similarly, if f(X) = X2

1 + X2; P(X1 = −1) = P(X1 = 1) = 1/2;
X2 ∼ N(0, 1) independent of X1; τ(A) = E Var(f(X)|X{1}∪(D\A)), then τ is a
sensitivity map for the above mentioned f and P but is not a sensitivity map
with respect to X1 ∼ N(0, 1).

In what follows we shall not impose anything on f and P and hence fix
them to some arbitrary Borel measurable function and arbitrary probability
distribution.

2.2 Sensitivity maps based on divergences between out-
puts

Definition 1 is arguably the widest possible but does not lead to any useful
theory. We specialize slightly. Let ψ : R2 → R be a function such that

(a) ψ(x, y) ≥ 0,

(b) ψ(x, y) = 0 if and only if x = y,

for every x ∈ R and y ∈ R. Such a function ψ is called a divergence. Define

τ(A) = Eψ(f(X), f(X\A)), (1)

where above X and X\A are two random vectors such that X ∼ P and

(i) X and X\A are independent and identically distributed conditionally on
XD\A;

(ii) X
\A
D\A = XD\A almost surely.

The generation of two random vectors X and X\A obeying the two conditions
above can be done as follows: first, sample X from P ; then, independently of
X, sample Z from the conditional law of X given XD\A and define X\A by

putting X
\A
A = Z and X

\A
D\A = XD\A. If P is a product measure, that is, if

the components of X are mutually independent, then we can sample X ′ ∼ P

independently of X and put X
\A
A = X ′A.
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Proposition 1. The map τ defined in (1) is a sensitivity map.

The quantity (1) is interpreted as the expected variability of the output
caused by a change in the inputs indexed by A while the others are fixed to
some random values. For instance if d = 3 and A = {1, 3} then τ({1, 3}) =

Eψ(f(X1, X2, X3), f(X
\{1,3}
1 , X2, X

\{1,3}
3 )). We see that the first and third in-

puts fluctuate, while the second input is randomly fixed.
Variability is represented by the divergence function. For instance if ψ(x, y) =

(x− y)2/2 then “variability” literally means “variance”, see Example 1.

Example 1. Put ψ(x, y) = (x− y)2/2. Then τ(A) = E(f(X)− f(X\A))2/2 =
E E(f(X) − f(X\A))2/2|XD\A). Conditionally on XD\A, the random vari-

ables f(X) and f(X\A) are independent and identically distributed, and hence
E(f(X)− f(X\A))2/2|XD\A) = Var(f(X)|XD\A).

If ψ is furthermore a contrast function [10] then there is another method for
constructing sensitivity maps. A contrast function ψ : R2 → R with respect to
the conditional probability P(f(X) ∈ ·|XD\A) and some set Θ ⊂ R satisfies, by
definition,

min
θ∈Θ

E(ψ(f(X), θ)|XD\A) = E(ψ(f(X), g(XD\A))|XD\A)

for some almost surely unique g(XD\A) ∈ Θ. Let us assume that Θ contains
the support of the law of f(X) and define

τ̃(A) := E min
θ∈Θ

E(ψ(f(X), θ)|XD\A) = Eψ(f(X), g(XD\A)). (2)

Then it is immediate to see that τ̃ is a sensitivity map such that τ̃(A) ≤ τ(A).
Some possible choices of contrast functions are given in Table 1, drawn

from [10]. To construct sensitivity maps from this table and formula (2), replace
Y by f(X) and replace the expectation by the conditional expectation given
XD\A. For instance with the median, we get τ̃(A) = E minθ E(|f(X)−θ||XD\A).
If g(t) = t2/2 then formulas (1) and (2) coincide [10].

Remark 2. The definition given in [10] encompasses contrast functions that are
not divergences. One such an example is given by ψ(y, θ) = |1{y≥t}− θ|2, which
corresponds to the probability of exceeding t, that is, arg minθ E |1{Y≥t} − θ|2 =
P(Y ≥ t). We deliberately avoided these cases because they do not lead to
sensitivity maps in general.

ψ(y, θ) arg minθ Eψ(Y, θ)
(y − θ)2 mean
|y − θ| median

(y − θ)(α− 1{y≤θ}) quantile of level α

Table 1: Some contrast functions given in [10].

3 An implicit factorial experiment

A factorial experiment is a map that associates outcomes with factor levels. For
instance if there are d factors each with two levels then there are 2d possible
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combinations of factor levels and hence 2d possible outcomes. The set of all
possible combinations is called a factorial design and its cardinal is called the
size of the factorial experiment. The mathematical study of factorial experi-
ments started between the two world wars with the objective of improving crop
yields with various fertilizers and studying their effects by taking into account
possible interactions between them [38]. See [2, 4, 22, 23, 37] for more about
factorial experiments.

The formula in the right-hand side of (1) induces a partition of the inputs.
Indeed, the two arguments f(X) and f(X\A) of the divergence ψ differ because
the input vectors X and X\A differ, and, because of (ii), this difference cannot
be attributed to the inputs indexed by D \ A. Thus D is partitioned into A
and D \ A, that is, the inputs are partitioned into those that are allowed to
change and those that are not. The former category is called the category of
fluctuating inputs. This is because, conditionally on XD\A, the input vectors X

and X\A can be written, up to a permutation of their components, (XA, XD\A)
and (X ′A, XD\A), where XA and X ′A are independent and identically distributed
(still conditionally on XD\A); in other words, the inputs indexed by A fluctuate
while those indexed by D \A are kept fixed. By a similar reasoning, formula (2)
also induces a partition of the inputs.

We can identify the sensitivity map τ in (1) with a factorial experiment
at two levels of size 2d. The values of the sensitivity map are the outcomes,
the subsets of D are the treatment combinations or runs, and the presence or
absence of the inputs in the set of fluctuating variables are the factors. An
example with d = 3 is given in Table 2.

Does the input fluctuate?
X1 X2 X3 outcome
0 0 0 τ(∅)
0 0 1 τ({3})
0 1 0 τ({2})
0 1 1 τ({2, 3})
1 0 0 τ({1})
1 0 1 τ({1, 3})
1 1 0 τ({1, 2})
1 1 1 τ({1, 2, 3})

Table 2: The factorial experiment induced by the sensitivity map τ .

Identifying a sensitivity map with a factorial experiment allows us to define
main and interaction effects, collectively refered to as factorial effects, in a
natural way. In experimental design, main effects are defined as averages of
differences of outcomes, second order interaction effects as averages of differences
of differences of outcomes, and so on. More precisely, the main effect of input
i is given by

1

2d−1

∑
A⊂D\i

(τ(A ∪ {i})− τ(A)) (3)

For instance, the main effect of the second input in Table 2 is given by the mean
of the terms

τ({2}), τ({2, 3})−τ({3}), τ({1, 2})−τ({1}), τ({1, 2, 3})−τ({1, 3}).
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All these terms measure the effect of the second input and hence it is natural
to average them.

The same goes for interactions. The interaction effect between i and j is
defined as

I({i, j}) =
1

2d−2

∑
A⊂D\{i,j}

(τ({i, j}∪A)−τ({j}∪A))−(τ({i}∪A)−τ(A)). (4)

Above input j is added to the set of fluctuating inputs to see if it affects the
effect of input i. Note that the interaction effect is symmetric and hence the
notation I({i, j}) is unambiguous.

Interactions of higher-order can be defined in a similar fashion, recursively.
Let T denote the set of all real maps on 2D. If B ∈ 2D then define the operator
∆B : T→ T by (∆Bτ)(A) = τ(A∪B)−τ(A). In particular, ∆Bτ(A) = τ(B|A)
if A ∩ B = ∅. With the above notation, it holds that the main effect of j is∑
A⊂D\j ∆jτ(A) and the interaction between i and j is

∑
A⊂D\{i,j}∆i∆jτ(A).

Since ∆Bτ ∈ T for every B ⊂ D, we can compose the operators as many
times as we please. For instance, if B1 ⊂ D and B2 ⊂ D then ∆B2∆B1τ(A) =
∆B2(∆B1τ)(A) = τ(A ∪ B2 ∪ B1) − τ(A ∪ B2) − τ(A ∪ B1) + τ(A). Note the
symmetry in B1 and B2. In general, we have the following formula.

Lemma 1. If {i1, . . . , in} =: B ⊂ D \A then

∆in · · ·∆i1τ(A) =
∑

A⊂C⊂A∪B
(−1)|B|−|C\A|τ(C) =: ∆Bτ(A). (5)

The above formula is similar to [16]. Note that the operator ∆in · · ·∆i1 is
symmetric and hence the notation ∆B is unambiguous.

The factorial effects can now be defined as

I(B) :=
1

2d−|B|

∑
A⊂D\B

∆Bτ(A). (6)

Setting B = {i} and B = {i, j} above yield (3) and (4), respectively. If we set
B = {i, j, k} then we get the difference between, on the one hand, the interaction
between i and j in the presence of k, and, on the other hand, the interaction
between i and j in the absence of k. That is, we get the average of the quantities

(τ({i, k}|{j, k} ∪A)− τ({i, k}|A ∪ {k}))− (τ({i}|{j} ∪A)− τ({i}|A))

over all A ⊂ D\{i, j, k}, where above τ(B|A) := τ(A∪B)−τ(A). It is important
to note that the factorial effects can be expressed with the alternative formula

I(B) =
∑
A⊂D

(−1)|B\A|τ(A)
1

2d−|B|
.

This formula is implicit in, e.g. [37]. It is a particular case of a result given in
the next section.

4 Weighted factorial effects

Here we extend factorial effects by taking weighted averages. General formulas
are given in Section 4.1. Examples of weights are given in Section 4.2.
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4.1 General formulas

For each B ⊂ D let pB : 2D\B → R be a weight function such that pB(A) ≥ 0
for all A ⊂ D \B and ∑

A⊂D\B

pB(A) = 1. (7)

Each weight function pB can be seen as a function on 2D\B or as a function on
2D by imposing pB(A) = 0 if A 6⊂ D \B. We shall define the weighted factorial
effect of B as

I(B) =
∑

A⊂D\B

pB(A)∆Bτ(A), (8)

where ∆Bτ(A) was given in (5). Comparing with (6), we see that weighted
factorial effects are obtained by multiplying ∆Bτ(A) with pB(A). For instance,
if

pB(A) =

{
1/|2|D\B|| = 1/2d−|B| if A ⊂ D \B

0 otherwise,
(9)

then (8) coincides with standard factorial effects (6). Note that I(∅) =
∑
A⊂D p∅(A)τ(A)

is not zero in general.
Similarly to factorial effects, weighted factorial effects can be expressed as a

linear combination of the values of the sensitivity map.

Proposition 2. For every B ⊂ D, it holds

I(B) =
∑
A⊂D

(−1)|B\A|pB(A \B)τ(A). (10)

Standard factorial effects correspond to pB(A \B) = 1/2d−|B| for all A ⊂ D
and B ⊂ D.

4.2 Examples of weights

Three examples of families of weights are given below.

Möbius transform

Let

pB(A \B) =

{
1 if A ⊂ B
0 otherwise,

pB(A) =

{
1 if A = ∅
0 otherwise.

(11)

This family of weights satisfies (7). It yields

I(B) =
∑
A⊂B

(−1)|B\A|τ(A) (for every B ⊂ D). (12)

The map I that with each B ⊂ D associates I(B) above is known as the Möbius
transform of the map τ : 2D → R, see, e.g. [12]. An important property of the
Möbius transform is that (12) is equivalent to

τ(B) =
∑
A⊂B

I(A) (for every B ⊂ D).

See, e.g. [1, 27, 35]. Two maps τ and I as above are sometimes called the Möbius
inverses of one another [5].
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Shapley value

Let

pB(A) =

{
1

(|D\B|+1)(|D\B|
|A| )

if A ⊂ D \B

0 otherwise,
(13)

pB(A \B) =
1

(|D \B|+ 1)
(|D\B|
|A\B|

) (for every A ⊂ D and B ⊂ D).

The weights (13) satisfy the condition (7) and yield

I(B) =
∑

A⊂D\B

1

(|D \B|+ 1)
(|D\B|
|A|

)∆Bτ(A).

In the particular case B = {j}, we have

I({j}) =
1

d

∑
A⊂D\{j}

1(
d−1
|A|
) (τ(A ∪ {j})− τ(A)).

The map I : D → R which with each j ∈ D associates I({j}) as above is known
as the Shapley value corresponding to the map τ . The Shapley value appears in
cooperative game theory for redistributing an overall payoff earned by a finite
set of cooperative players [20, 31]. In cooperative game theory the set D is
called the grand coalition, the map τ the characteristic function of the game;
each A ⊂ D is called a coalition. The value I({j}) is interpreted as the “fair”
share attributed to player j and τ(A) the payoff of the coalition A. The map
τ : 2D → R is assumed to satisfy 0 = τ(∅). One property is that

d∑
i=1

I({i}) = τ(D),

that is, the sum of the individual payoffs is equal to the overall payoff.

5 Decomposing the total output variability

The total output variability τ(D) can be decomposed using appropriate choices
of weight families. Two decompositions are recovered: a Sobol-like decom-
position (or Möbius-like, recall Section 4.2) decomposition and a Shapley-like
decomposition.

5.1 Sobol-like decomposition

A feature of classical global sensitivity analysis, inherited from the Sobol-Hoeffding
functional decomposition, is the ability to decompose the total output variance
into a sum of main and interaction effects. We seek conditions on the weights
to get a similar decomposition of the total output variability. That is, we seek
weights such that ∑

B⊂A
I(B) = τ(A) (for every A ⊂ D). (14)
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By the Möbius inversion formulas given in Section 4.2, we see that this problem
is equivalent to finding the Möbius transform of τ . In other words, decomposing
the total output variability amounts to finding its Möbius transform.

Proposition 3. If I(B) is the weighted factorial effect (8) then there is a unique
set of weights such that (14) holds for all maps τ : 2D → R with τ(∅) = 0. These
weights are those given in (11).

5.2 Shapley-like decomposition

We are now interested in characterising the weight families such that, for every
sensitivity map τ ,

d∑
i=1

I({i}) = τ(D) (for every sensitivity map τ). (15)

A necessary and sufficient condition is given below.

Proposition 4. If I(B) is the weighted factorial effect (8) then a necessary and
sufficient condition for (15) to hold is that

∑d
i=1 pi(∅) = 1∑d

i=1(−1)1−|A∩{i}|pi(A \ {i}) = 0 for every A ∈ 2D \ {∅ ∪D}∑d
i=1 pi(D \ i) = 1.

(16)

An example of weight family that satisfies (16) is of course given by (13),
since Shapley effects satisfy (15), see Section 4.2. But there are more than one
family that satisfiy (16). See Example 2.

Example 2. Let d = 3. Let the weights

p{1}(∅ \ {1}) p{2}(∅ \ {2}) p{3}(∅ \ {3})
p{1}({3} \ {1}) p{2}({3} \ {2}) p{3}({3} \ {3})
p{1}({2} \ {1}) p{2}({2} \ {2}) p{3}({2} \ {3})
p{1}({2, 3} \ {1}) p{2}({2, 3} \ {2}) p{3}({2, 3} \ {3})
p{1}({1} \ {1}) p{2}({1} \ {2}) p{3}({1} \ {3})
p{1}({1, 3} \ {1}) p{2}({1, 3} \ {2}) p{3}({1, 3} \ {3})
p{1}({1, 2} \ {1}) p{2}({1, 2} \ {2}) p{3}({1, 2} \ {3})
p{1}({1, 2, 3} \ {1}) p{2}({1, 2, 3} \ {2}) p{3}({1, 2, 3} \ {3})



=



0 0 1
0 1 1
0 0 0
1 1 0
0 0 0
0 0 0
0 0 0
1 0 0


.

These weights satisfy (7) and (16) but differ from those given in (13).
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6 The dual sensitivity map

Remember from Section 3 that the set of inputs is partitioned into a set of
fluctuating variables A and a set of fixed variables D \A. Suppose we add a set
of inputs B to the set of fluctuating inputs A. The set of fluctuating inputs is
now A ∪B, and we can measure the effect of adding more inputs by

τ(B|A) := τ(B ∪A)− τ(A).

Above it is assumed that A and B are disjoint. We call this effect the conditional
effect of B given A, or the effect of B in the presence of A.

Remark 3. Conditional effects can be defined for arbitrary subsets A and B
(not necessarily disjoint) through τ(A|B) = τ((A ∩Bc) ∪B)− τ(B).

Remark 4. Since there is a one-to-one correspondence between conditional
and unconditional effects, we could have well defined conditional effects before
unconditional effects.

Observe that τ(A), since it is equal to τ(A∪∅)−τ(∅), is in fact the conditional
effect of A given no inputs, that is τ(A|∅), the effect of letting the inputs in A
fluctuate while all where fixed. Let

τ∗(A) := τ(D)− τ(D \A).

The map τ∗ is called the dual of τ and τ(A) is interpreted as the effect of fixing
the inputs in A while all were fluctuating (compare to preceding interpretation).
The following properties hold:

(i) τ∗(A) ≤ τ∗(D) for all A ⊂ D, with equality if and only if f depends
on its arguments indexed by A only—that is, if and only if f(X) =
E(f(X)|XA)—, in which case τ∗(B) = τ∗(D) for every B such that A ⊂ B;

(ii) τ∗(A) < 0 if and only if τ(D \A) > τ(D);

(iii) τ∗∗(A) = τ(A), that is, the dual of the dual of τ is τ itself.

Weighted factorial effects can be defined from τ∗ as they were defined from
τ . Denote by I∗(B) the weighted factorial effect of B corresponding to τ∗, that
is, by substituting τ∗ for τ in (8). It is then natural to ask whether I∗ and I
are self-dual, that is, I∗(B) = I(B).

Proposition 5. If |B| is odd, then a necessary and sufficient condition for I(B)
to be self-dual for every sensitivity map τ is that

pB(A \B) = pB(D \ (A ∪B))

for every A ⊂ D, A 6= ∅.

Corollary 1. Weighted factorial effects I(B) with |B| odd and weights given
by (9) or (13) are self-dual.

7 Examples

Two well-known sensitivity indices of the literature are recovered.
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7.1 Sobol indices

As seen in the Introduction, the Sobol indices are given by Var fB(XB) =:
Sob(B), B ⊂ D, where the random variables fB(XB) are the components of
the functional Sobol-Hoeffding decomposition. To express Sobol indices with
sensitivity maps, the reasoning runs in three points. First, remember that it
holds

∑
B⊂D Sob(B) = Var f(X). Second, it is well-known that, if B = {j} is

a singleton then fj(Xj) = E(f(X)|Xj). Finally, we know from Example 1 that
if ψ(x, y) = (x − y)2/2 then τ(A) = E Var(f(X)|XD\A). Hence, remembering
that τ∗(A) = τ(D)− τ(D \A), we get∑

B⊂D
Sob(B) = τ(D) = τ∗(D), Sob{j} = τ∗{j}.

This suggests that Sob, the map that with each B associates the Sobol index
of B, might be the Möbius transform of the dual of τ . This is indeed the
case [18, 21]. In summary, the Sobol indices are obtained from (1) or from (2)
by taking ψ(x, y) = (x− y)2/2 and pB(A) = 1{A=∅}. As a final comment, let us
note that, in this case, the quantities τ∗(A) and τ(A) are known as the closed
Sobol index and the total Sobol index of A, respectively [14, 26].

7.2 Shapley effects

It has been proposed that the problem of assessing the importance of inputs in
both global sensitivity analysis and machine learning was akin to the problem
of distributing an overall payoff to players in cooperative game theory [19, 25].
If this comparison is endorsed then it is natural to use the Shapley value (see
Section 4.2) as a measure of input importance. To specify a Shapley value we
need to specify the characteristic function from which it arises. In uncertainty
quantification, it has been proposed

τ(A) = E Var(f(X)|XD\A) and τ∗(A) = Var E(f(X)|XA),

leading to the so-called Shapley effects [25, 34]. By self-duality, both choices
above lead to the same Shapley effect. (See [24, 34]; see also Proposition 5.)
We have already seen that τ and τ∗ above can be obtained with the divergence
ψ(x, y) = (x − y)2/2 and that Shapley values can be obtained with the weight
family (13). Thus the Shapley effect is an example of weighted factorial effects.

8 Discussion

A new paradigm for global sensitivity analysis has been proposed. In this
paradigm, we do not rely on the Sobol-Hoeffding decomposition to define main
and interaction effects anymore, but instead use ideas and concepts of factorial
experiments, in which the study of main and interaction effects has been a topic
of interest for a long time [38].

In the paradigm proposed, global sensitivity analysis consists of the following
key points:

1. we choose a divergence function ψ and build a sensitivity map τ ;
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2. we define the main effect of some given input, say {j}, by taking into
account the presence/absence of the other inputs. That is, by averaging
τ(j ∪A)− τ(A) over all A ⊂ D \ j;

3. we multiply each τ(j ∪A)− τ(A) by a weight pj(A);

4. we define interactions similarly.

The above approach has several direct benefits: (i) for inputs, arbitrary
probability distributions can be considered; (ii) for outputs, arbitrary diver-
gences; (iii) factorial effects are well-defined and interpretable; (iv) Sobol-like or
Shapley-like decompositions can be recovered by choosing appropriate weights,
if desired.

Beyond these direct benefits, the above paradigm brings a new perspective
which can lead to new ideas and foster new research. For example, look at Ta-
ble 3. The main effect I({2}) is represented with three different weight families:
the second column is the family of equal weights; the third and fourth columns
are those corresponding to Sobol indices and Shapley effects, respectively. Ob-
serve that in the Sobol case, some conditional effects are simply ignored. This
seems to be rather harsh. In the Shapley case, we may wonder why some ef-
fects have more weight than some others. What is reasonable in game theory
may not necessarily be reasonable in uncertainty quantification. More natural
seems to be the family of equal weights. From our new perspective it now seems
paradoxical that the most natural weight family is in fact the one which did not
lead to any sensitivity index known in the literature.

conditional effect weight families
τ({2}) 1/4 1 1/3

τ({2, 3})− τ({3}) 1/4 0 1/6
τ({1, 2})− τ({1}) 1/4 0 1/6

τ({1, 2, 3})− τ({1, 3}) 1/4 0 1/3

Table 3: Main effect of input 2 (I({2})) in the three-dimensional factorial ex-
periment with three possible weight families. The effect I({2}) is obtained by
multiplying, term by term, the first column by one of the last three columns—
according to the chosen weight family—and adding up the numbers.

As a second example, note that one important advantage of connecting global
sensitivity analysis with factorial experiments is that the methods and results
of the latter becomes available to the former. This should help to address high-
dimensional input spaces. Of course one can always perform some screening
experiment to reduce the number of inputs, but now in addition we can consider
fractional factorial designs to reduce the number of model runs while retaining
the most effects possible. See for instance [2, 23, 37] for more about fractional
factorial designs.

As a last example, note that in the present manuscript we focused on those
indices that satisfy property (iii) of Definition 2, that is, an index associated
with inputs A is null if and only if the function f does not depend on the inputs
in A. They are (many) indices in the literature that do not satisfy this property,
as for example indices based on divergences between probability distributions
(rather than between scalar outputs) [3, 7, 8, 10, 11, 32]. Instead, these indices
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satisfy the property: “an index associated with inputs A is null if and only if
XA and f(X) are independent”. It is important to note that the paradigm
proposed in the present manuscript applies to the latter case as well. In general
it suffices to replace property (iii) of Definition 2 by any property of interest.
What is important really is the correspondance between the indices and the
implicit factorial experiment. Once we realize this, we also realize that factorial
effects are already defined through the factorial experiment, and hence there
may be no need to look for any functional Sobol-Hoeffding decomposition.
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aux variables dépendantes : tests de performance de l’algorithme HOGS
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Proofs

Proof of Proposition 1

Suppose that τ(A) = 0. Then it holds (almost surely, as implicitly understood
throughout) f(X) = f(X\A). Taking expectations conditionally on X in both
sides, we get

f(X) = E(f(X\A)|X)

= E(E(f(X\A)|X,XD\A)|X)

= E(E(f(X\A)|XD\A)|X)

= E(f(X\A)|XD\A)

and the first part of the equivalence is proved. Suppose that f(X) = E(f(X)|XD\A).
Then

f(X) = E(f(X)|XD\A)
= E(f(X\A)|XD\A)

= E(f(X\A)|X\AD\A)

= f(X\A).

The second part is proved. The proof is complete.
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Proof of Lemma 1

Choose A ⊂ D. The proof is by mathematical induction. Fix n = 1. It is
clear that ∆i1τ(A) = ∆{i1}τ(A) for every i1 ∈ D \ A. Now let us assume that
∆in · · ·∆i1τ(A) = ∆{i1,...,in}τ(A) holds for some fixed n and for all {i1, . . . , in}∩
A = ∅. Choose {i1, . . . , in+1} ∈ D \ A and put Bn = {i1, . . . , in} and Bn+1 =
Bn ∪ in+1. We have

∆in+1 · · ·∆i1τ(A)

= ∆in+1∆Bn
τ(A)

= ∆Bn
τ(A ∪ in+1)−∆Bn

τ(A)

=
∑

(A∪in+1)⊂C⊂A∪Bn+1

(−1)n−|C\(A∪in+1)|τ(C)−
∑

A⊂C⊂A∪Bn

(−1)n−|C\A|τ(C)

=
∑

A⊂C⊂A∪Bn+1

τ(C)
(

(−1)n−|C\(A∪in+1)|1{in+1∈C} − (−1)n−|C\A|1{in+1 6∈C}

)
=

∑
A⊂C⊂A∪Bn+1

τ(C)(−1)n−|C|+|A|+1
(
1{in+1∈C} + 1{in+1 6∈C}

)
.

The proof is complete.

Proof of Proposition 2

The equality is correct for B = ∅. Suppose B 6= ∅. Plugging (5) into (8), we
have

I(B) =
∑

A⊂D\B

∑
A⊂C⊂A∪B

(−1)|B|−|C\A|τ(C)pB(A). (17)

Clearly, for each A′ ⊂ D, the term τ(A′) appears exactly one time in the sum.
Furthermore, if we denote B = {i1, . . . , in} then D can be partitioned into
subsets {A : A ∩B = ∅}, {A : A ∩B = i1}, . . . , {A : A ∩B = B}. It then clear
that (17) equals

n∑
k=0

∑
A:|A∩B|=k

(−1)n−kpB(A \B)τ(A).

The proof is complete.

Proof of Proposition 3

If we plug (11) into (8) then we get (12) and hence (14) by Möbius inversion.
Now we shall show that (11) is the only choice that guarantees the correctness
of (14) for every map τ . Since it is equivalent to (12), it is clear that (14) implies
I(∅) = 0. But then

∑
A⊂D p∅(A)τ(A) = 0 by Proposition 2, which means that

p∅(A) is null unless A = ∅. Now, Combining (10) and (12),∑
A⊂B

(−1)|B\A|τ(A) =
∑
A⊂D

(−1)|B\A|pB(A \B)τ(A)( for all B 6= ∅).

Since this equality must be true for every map τ : 2D → [0,∞) with τ(∅) = 0,
we have that

1{A⊂B} = pB(A \B)
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for every A ⊂ D, A 6= ∅. This implies that pB(A) = 1{A∪B⊂B} = 1{A=∅} for all
A ⊂ D \B. The proof is complete.

Proof of Proposition 4

Put l(A) =
∑d
i=1(−1)|i\A|pi(A \ i). Taking B = {i} in (10), we have

d∑
i=1

I({i}) =
∑
A⊂D

τ(A)l(A).

Since it is required that the equality (15) be true for every τ , we have that l(A)
must be zero for every subset A which is not the empty set or D. If A = D
then l(D) must be one. Hence, since

∑
A⊂D l(A) = 0, we have that l(∅) must

be minus one. The proof is complete.

Proof of Proposition 5

Put l(A,B) = (−1)|B\A|pB(A \B) so that I∗(B) =
∑
A⊂D l(A,B)τ∗(A). Since∑

A⊂D l(A,B) = 0, it holds

I∗(B) = −
∑
A

l(A,B)τ(D \A)

= −
∑
A

l(D \A,B)τ(A)

=
∑
A

(−1)|A∩B|+1pB(D \ (A ∪B))τ(A).

The equality I(B) = I∗(B) is then equivalent to∑
A

τ(A)
(

(−1)|B\A|pB(A \B)− (−1)|A∩B|+1pB(D \ (A ∪B))
)

= 0.

If |B| is odd, it holds that |B \A| is even if and only if |A∩B|+ 1 is even, and
hence (−1)|B\A|pB(A \ B) and (−1)|A∩B|+1pB(D \ (A ∪ B)) are always of the
same sign. The claim follows because the equality must hold true for every map
τ with τ(∅) = 0.
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