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Abstract: Immature citruses are an important resource for the pharmaceutical industry due to
their high levels of metabolites with health benefits. In this study, we used untargeted liquid
chromatography–mass spectrometry (LC-MS) metabolomics to investigate the changes associated
with fruit size in immature citrus fruits in the first weeks of growth. Three orange cultivars (Citrus
sinensis ‘Navel’, Citrus sinensis ‘Valencia’, and Citrus sinensis ‘Valencia Late’) and a mandarin (Citrus
reticulata Blanco ‘Fremont’) were separated into eight fruit sizes, extracted, and analyzed. Statistical
analyses revealed a distinct separation between the mandarin and the oranges based on 56 metabolites,
with an additional separation between the ‘Navel’ orange and the ‘Valencia’ and ‘Valencia Late’
oranges based on 21 metabolites. Then, metabolites that evolved significantly with fruit size growth
were identified, including 40 up-regulated and 31 down-regulated metabolites. This study provides
new insights into the metabolite modifications of immature Citrus sinensis and Citrus reticulata in
the first weeks of growth and emphasizes the significance of including early sampled fruits in citrus
maturation studies.

Keywords: immature; Citrus sinensis; orange; Citrus reticulata; mandarin; metabolomics; Orbitrap;
LC-MS/MS; variety discrimination; fruit development

1. Introduction

Citrus fruits are well known for their nutritional properties and health benefits such
as anti-inflammatory, antioxidant, anti-obesity, and anticancer properties [1]. In particular,
two of the most consumed varieties, the sweet orange Citrus sinensis and the mandarin
Citrus reticulata, have shown high levels of metabolites related to these health benefits,
especially flavonoids and polymethoxyflavones (PMF) [2,3].

During maturation, the levels of flavonoids and PMF increase in the first months but
highly decrease when reaching full maturity, while sugar levels and other metabolites
increase [1,4]. Furthermore, while immature citrus fruits can be naturally harvested thanks
to the phenomenon of physiological dropping [5], they are regarded as a by-product
for the food industry. Conversely, they are considered a valuable source of bioactive
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compounds for the pharmaceutical industry. Hence, while mature citruses are appreciated
for consumption, citrus fruits harvested before maturation, i.e., immature citruses, are of
particular interest for the pharmaceutical industry [6,7].

Liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS) is a
widely used technique for the identification and/or quantification of natural products. In
recent years, untargeted LC-MS/MS metabolomics has been shown to be a powerful tool to
highlight the impact of citrus varieties, growth location, maturity, or harvesting conditions
on the metabolite composition of citruses. Wang et al. [8] characterized the metabolic diver-
sity of 62 citrus varieties among sweet oranges, lemons, pummelos, and grapefruits. Sweet
oranges had the highest number of flavonoid compounds, while pummelos and grapefruit
had the lowest. Moreover, the authors confirmed that from all fruit tissues, the flavedo had
the highest levels of flavonoids and PMF, as described elsewhere for other varieties [9,10].
Tsujimoto et al. [11] observed the discrimination of citrus-type crude drugs according to the
sugar chain of flavanone glycosides (e.g., naringin vs. isonaringin). Feng et al. [12] showed
that the grove location impacted the metabolite composition of C. reticulata. Metabolite level
increases (e.g., sugars, amino acids, carotenoids) or decreases (e.g., flavonoids, lipids) were
highlighted during the growth of Citrus unshiu [13], C. reticulata × C. sinensis [14], and Citrus
wilsonii Tanaka [15]. Wang et al. [16] showed that infection by Candidatus Liberibacter sp.
influenced the metabolite regulation of C. reticulata cv. ‘Shatangju’. However, although
numerous, most metabolomic studies are performed on mature fruits. Two studies were
performed by LC-UV on immature citrus at different sizes for C. reticulata Blanco [17] and
C. sinensis L. Osbeck [18]. However, they were limited to four flavonoids. Since hundreds of
metabolites were identified in mature citrus metabolomics studies, a much higher number
of metabolites is to be expected in immature citruses.

Herein, we performed untargeted LC-MS/MS metabolomics on eight fruit sizes for
four immature citrus varieties (Citrus sinensis ‘Navel’, Citrus sinensis ‘Valencia’, Citrus
sinensis ‘Valencia Late’, and Citrus reticulata Blanco ‘Fremont’) collected during the first
weeks of growth. Statistical analyses were then performed to determine the metabolites
distinctive of the variety and fruit size.

2. Results and Discussion
2.1. Key Metabolites Responsible for Differentiating Immature Varieties

The metabolite extracts of the immature ‘Fremont’ mandarin and the three cultivars
of immature oranges (‘Navel’, ‘Valencia’, and ‘Valencia Late’) separated into eight fruit
sizes per variety, with four biological replicates (128 samples in total), were analyzed
by LC-MS as per recommended for metabolomics experiments [19]. Then, samples and
standards were analyzed by LC-MS/MS in ddMS2 mode for structural elucidation. Figure 1
summarizes the whole experiment. First, data processing was carried out on all the
samples. After the compound detection, QC correction, and normalization processes,
the obtained matrix containing 193 RT-m/z variables, along with their corresponding
normalized areas, was utilized for statistical analyses. Statistical analyses were performed
to (i) compare metabolite intensity differences between varieties including all fruit sizes
and (ii) determine the metabolites whose levels increased or decreased with the fruit
growth. The sorted variables were then identified or putatively identified according to the
annotation confidence of Schymanski et al. [20]. Examples of the three annotation levels
used in this study are given in Figures S1–S4 of the Supplementary Materials.

To determine the metabolites responsible for the differentiation of varieties for each
fruit size, partial least squares regression discriminant analysis (PLS-DA) was performed
using the sample variety for the model. The model was statistically acceptable in terms of
goodness of fit (R2X = 0.748; R2Y = 0.884) and predictability (Q2Y = 0.86).
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ble importance in the projection (VIP) obtained from the PLS-DA, log(fold change), and 

Figure 1. Summary diagram of the citrus metabolite analysis, from the fruit collection to the
data processing.

The PLS-DA score plot was used to visualize the variety discrepancies of the immature
citruses (Figure 2). The orange varieties (‘Navel’ orange, ‘Valencia’ orange, and ‘Valencia
Late’ orange) were separated from the ‘Fremont’ mandarin along the PC1 axis, while the
‘Navel’ orange was separated from the ‘Valencia’ and ‘Valencia Late’ oranges along the
PC2 axis. Hence, C. reticulata (oranges) and C. sinensis (mandarin) varieties were clearly
separated, whereas the closest cultivars (‘Valencia’ orange and ‘Valencia Late’ orange) were
not. This separation mirrors the results of Ronnigen et al. [21] on mature citruses, where
PC1 separated the tangerine from the oranges and PC2 separated the ‘Valencia’ orange
from the ‘Navel’ orange. In addition, the PLS-DA analysis performed using the fruit size
for the models did not yield satisfactory results. This suggests that the metabolite levels
were more differentiated by the variety of the fruit rather than its growth, supporting the
findings of Multari et al. [22] on phenolic compounds from various citruses.
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Figure 2. Multivariate analysis performed on all samples: PLS-DA modeled with the sample va-
riety. Orange: Fremont mandarin, blue: ‘Navel’ orange, red: ‘Valencia’ orange, green: ‘Valencia
Late’ orange.

To identify the key factors that distinguish each orange cultivar from the mandarin
fruit, volcano plots and PLS-DA analyses were conducted consecutively. Using the vari-
able importance in the projection (VIP) obtained from the PLS-DA, log(fold change), and
p-value obtained from the volcano plots, 56 variables were selected as significantly differ-
ent (VIP > 1.0; log(fold change) > 1.0; p-value < 0.05). Among these 56 variables, 6 were
identified by the corresponding standard (3′,4′,5,7-tetramethoxyflavone, sinensetin, tan-



Molecules 2024, 29, 3718 4 of 13

geretin, 5-demethylnobiletin, nobiletin, and gardenin A), 17 were tentatively identified
by correspondence with MS/MS databases, and 33 were annotated as isomers of iden-
tified compounds or by their chemical family. Details of the annotations are given in
Table S2 of the Supplementary Materials.

The identified compounds could be divided into two groups: (i) up-regulated in the
Fremont mandarin (18) or (ii) up-regulated in the oranges (‘Valencia’ orange, ‘Valencia Late’
orange, and ‘Navel’ orange; 38). The distribution of the identified compounds per chemical
family from groups (i) and (ii) is given in Table 1.

Table 1. Distribution of the identified compounds per chemical family that were either up-regulated
in the ‘Fremont’ mandarin or the three oranges.

Chemical Family Number of Up-Regulated Compounds
in the ‘Fremont’ Mandarin

Number of Up-Regulated
Compounds in the Oranges

Amino acids 0 4
Amines 4 3
Peptides 0 1

Amino sugars 0 4
Sugars 0 2
Lipids 1 1

Polyphenols 0 6
Polymethoxyflavones 11 10

Polymethoxyflavanones 0 1
Flavones 2 5

Organic phosphorous 0 1

A total of 16 flavonoids were detected in the oranges, whereas 13 were identified
in the mandarins, corroborating the results of Wang et al. on mature citruses [8], which
showed that sweet oranges had the highest number of flavonoid compounds among sweet
oranges, mandarins, lemons, pummelos, and grapefruit. Furthermore, upon comparing
the combined polymethoxyflavone intensities, the ‘Fremont’ mandarin exhibited greater
levels in total PMFs compared to the three cultivars of oranges, which also concurred with
the results of Wang et al. [8] and Xing et al. [23] on mature citruses.

Figure 3 shows the comparison by boxplots of seven PMFs according to variety. Some
compounds were up-regulated in oranges (e.g., 5,7,8,4′-tetramethoxyflavone, sinensetin),
while their isomers were up-regulated in the mandarine (e.g., 3′,4′,5,7-tetramethoxyflavone,
tangeretin). The observed sinensetin/tangeretin trend is consistent with the literature on
mature C. sinensis [24–26] and C. reticulata [9] and in early immature fruits [25].

Although the ‘Navel’, ‘Valencia’, and ‘Valencia Late’ oranges share a close genetic
relationship, a differentiation was observed in terms of metabolites between the ‘Navel’
orange and the ‘Valencia’ and ‘Valencia Late’ oranges.

To identify these metabolites, the previous methodology was repeated, leading to the
selection of twenty-one significantly different variables, among which, one was identified
by the corresponding standard (gardenin A) and seven were tentatively identified by
correspondence with MS/MS databases. Nine compounds were up-regulated in the ‘Navel’
orange: five PMFs, one polyphenol, one limonoid, one amino sugar, and one organic acid.
Twelve compounds were up-regulated in the ‘Valencia’ and ‘Valencia Late’ oranges: four
PMFs, two flavones, two amino acids, one polyphenol, one amine, one amino sugar, and
one lipid. Details of the annotations are given in Table S2 of the Supplementary Materials.

For both comparisons, the class of polymethoxyflavones was the most prevalent
with a total of 21 compounds, including 14 hydroxylated-PMFs. Hydroxylated-PMFs
are PMFs that have lost one or more methyl group, enhancing their solubility in water,
albeit decreasing their capacity to penetrate biological membranes. Hence, while PMFs are
better absorbed into the bloodstream, hydroxylated-PMFs are better absorbed through oral
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consumption. Nonetheless, both have shown diverse health benefits, e.g., the regulation of
lipid metabolism, anti-diabetes, anti-obesity, anti-inflammation, and anti-cancer [27].
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2.2. Evolution of Major Metabolites in Growing Fruits during the First Weeks of Growth

To analyze the influence of fruit size on the metabolites produced, during the first
weeks of growth, raw data were separated according to variety for data processing and
statistical analyses. After the compound detection, QC correction, and processes, the
four matrices (for each variety) containing 193 RT-m/z variables each, along with their
corresponding normalized areas, were utilized for statistical analyses.

A first PLS-DA was performed using the fruit size for the model. However, the
model had low goodness of fit (0.418 < R2X < 0.555; 0.209 < R2Y < 0.262) and very low
predictability (0.087 < Q2Y < 0.157) values. Manual inspection of the data revealed that
for many compounds, the increase/decrease in intensity from one size to the next was
often too small to be statistically significant. Moreover, for most metabolites, a strong
increase/decrease around the 18 mm fruits was observed, potentially coinciding with
half the duration of the collection period. Hence, the differences in intensity between the
smallest size (5–9 mm), the middle size (15.1–18 mm and 18.1–21 mm), or the largest size
(27.1–30 mm) were statistically significant (Figure 4).

The development of citrus fruits occurs in three distinct phases: cell division, lasting
about 8 weeks after flowering; cell enlargement, spanning 3 to 6 months; and ripening.
Each phase is marked by specific changes in primary and secondary metabolisms [28,29].
The early stages are crucial for the accumulation of secondary metabolites, including phe-
nolic compounds and flavonoids. Notably, the accumulation of organic acids peaks in the
middle of the cell enlargement phase, then gradually decreases, while sugars continue to
accumulate, reaching their maximum at the end of maturation [5]. These results clearly
highlight the metabolic differences between the first two phases, allowing us to categorize
the samples into two distinct size groups, (i) from 5 mm to 18 mm and (ii) from 18.1 mm to
30 mm, which agrees with the PLS-DA models acceptable for all varieties in this configura-
tion (0.405 < R2X < 0.541; 0.844 < R2Y < 0.953; 0.718 < Q2Y < 0.908). In addition, volcano
plots were generated by comparing each size to the next, size 5–9 mm against 15.1–18 mm,
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size 18.1–21 mm against 27.1–30 mm, and size 5–9 mm against 27.1–30 mm. Variables with
log(fold change) > 1.0 and p-value < 0.05 for at least three of the comparisons were kept.
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* log(fold change) > 1.0 and p-value < 0.05; n.s.: statistically non-significant difference.

Seventy-two variables were selected as significantly different (VIP > 1.0; log(fold
change) > 1.0; p-value < 0.05), and amongst them, five were identified by the corresponding
standard (fructose, adenosine, 5-demethylnobiletin, isonaringin, and neoponcirin), sixteen
were tentatively identified by correspondence with MS/MS databases, and fifty-one were
annotated as isomers of identified compounds or by their chemical family. Details of the
annotations are given in Table S2 of the Supplementary Materials.

The compounds identified could be divided into two groups depending on their
intensity evolution by either an (i) increase (40) or (ii) decrease (31) with the growth of the
fruit. The distribution of the identified compounds per chemical family from groups (i) and
(ii) is given in Table 2.

Table 2. Distribution of the identified compounds per chemical family that either showed an intensity
increase or decrease with the fruit growth.

Chemical Family Number of Compounds with
an Intensity Increase

Number of Compounds with
an Intensity Decrease

Organic acids 1 0
Amino acids 1 0

Peptides 0 1
Amines 5 11

Amino sugars 10 1
Sugars 4 2
Lipids 0 3

Polyphenols 3 3
Limonoids 3 0

Polymethoxyflavones 3 10
Flavones 3 0

Flavanones 2 0
Organic phosphorus 5 0

Almost all compounds had a similar evolution in all varieties except for one compound,
a sugar with the molecular formula C11H16O13 (RT: 4.2 min, m/z 357.0662), for which a
significant increase was observed for the ‘Navel’ orange, while a significant decrease was
observed for the ‘Valencia’ orange (non-significant evolution for ‘Fremont’ mandarin and
‘Valencia Late’ orange).
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Figure 5 illustrates these results for four compounds identified by confirmation with
a standard (increase for (A) fructose, (B) adenosine, and (C) isonaringin; decrease for (D)
5-demethylnobiletin). Only isonaringin and an amino sugar (RT 2.5 min, m/z 295.1133)
demonstrated significant changes across all four varieties, whereas for the other com-
pounds, there was no significant evolution in at least one variety, as illustrated in Figure 5
for fructose, adenosine, and 5-demethynobiletin. Therefore, these results imply that the
evolution of metabolite level with the fruit size varies depending on the variety or cultivar,
even during the first weeks of growth. Indeed, similar observations were made by Multari
et al. [22] and Bi et al. [14], albeit in relation to more mature fruits.
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red: ‘Valencia’ orange, green: ‘Valencia Late’ orange; crosshatching: non-significant change according
to established criteria.

While there have been numerous publications on the metabolites associated with citrus
growth, there is a notable lack of literature dealing with the smallest fruit sizes. As most
citrus trees begin flowering in spring [30], citrus samples collected in September [22,31]
or later [32] are more advanced in their growth than those used in this study or may
correspond to the largest fruit size [13,15,24,33]. Still, our findings could be compared to
the study of Goh et al. [26] on the development of metabolites in the peel and juice of
‘Navel’ oranges over time. Their study started in the seventh week, which could potentially
correspond to the midpoints of our examination. The second sample was collected in the
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20th week, exceeding the estimated growth duration for the 30 mm ‘Navel’ orange fruits
studied (8 to 9 weeks). The decline in neoponcirin and limonin with fruit development was
consistent across both studies. However, some compounds (e.g., tangeretin, sinensetin)
underwent significant changes in their research, which were not reflected in our findings
due to the relatively minor alterations in content that we observed (i.e., log(fold change) < 1).
Interestingly, opposite trends were observed for isonaringin, with a decline noted during
fruit development reported by Goh et al. [26], which was in accordance with the findings
of Kumar et al. [18].

These discrepancies might be due to the studied cultivar [34], fruit drying conditions
(e.g., sun-dried, hot-air-dried, or freeze-dried) [18,31], and/or geographical origins [35].

Finally, it should be noted that there was a substantial fluctuation in the levels of
several metabolites in the 18 mm fruits —i.e., during weeks 7 or 8 depending on the variety,
with either a significant increase or decrease. Therefore, our findings indicate that including
the smallest-sized fruits can provide new insights in the study of citrus growth.

3. Materials and Methods
3.1. Chemicals

Methanol, acetonitrile, and water were purchased from Fischer Chemical (Loughbor-
ough, UK), whereas formic acid was from Merck (Darmstadt, Germany) and dimethyl sul-
foxide (DMSO) was from Thermo Scientific (Waltham, MA, USA). All solvents and formic
acid were LC-MS grade. All standards were analytical standards with a purity ≥ 95%.
Sinensetin, tangeretin, 5-demethylnobiletin, nobiletin, and gardenin A were purchased
from Biosynth (Compton, UK). Fructose, adenosine, isonarigin, and neoponcirin were
purchased from Sigma Aldrich (Steinheim, Germany). 3′,4′,5,7-tetramethoxyflavone was
purchased from Thermo Scientific (Altrincham, UK).

3.2. Fruit Samples and Sample Preparation

Small fruits were collected from the south side of adult trees grown in an experimental
orchard near San Giuliano in Corsica (42◦18′55′′ N, 9◦29′29′′ E; 51 m above sea level).
Trees were from the collection of the “CRB Citrus” biological resource center managed by
INRAE and CIRAD in Corsica (France). The trees were submitted to standard cultural
practices: water was supplied every day on the basis of the 100% replacement of actual
evapotranspiration estimated from the Penman–Monteith equation [36] and fertilizers were
supplied according to the recommendations of the local agriculture department. Insects
and diseases were also controlled according to these recommendations. Three cultivars of
orange (Citrus sinensis (L.) Obs.) and one of mandarin (Citrus reticulata Ten.) were analyzed
(Table 3).

Table 3. Cultivar and rootstock combinations analyzed in this study.

Variety Citrus sinensis (L.) Obs. Citrus sinensis (L.) Obs. Citrus sinensis (L.) Obs. Citrus reticulata Ten.

Cultivar Valencia campbell Valencia Late Navelate Fremont
SRA 17 SRA 246 SRA 307 SRA 147

Rootstock Poncirus trifoliata Poncirus trifoliata Poncirus trifoliata Poncirus trifoliata
Plot location Ala H1-4 Ala H1-4 Ala O17-20 B3 G1-4

The experiments were conducted in open fields and standard procedures were applied
to minimize variations due to potentially different environmental conditions, as previously
reported [37]. For each variety, 4 genetically identical trees (grafted on the same rootstock)
were used as replicas. To follow the evolution of metabolites during fruit development,
a minimum of 100 g of fresh fruit and at least 10 fruits were collected and classified into
8 groups, according to the following sizes of fresh fruit: 5–9 mm, 9.1–12 mm, 12.1–15 mm,
15.1–18 mm, 18.1–21 mm, 21.1–24 mm, 24.1–27 mm, and 27–30 mm. In Corsica, citrus
flowering is spread over 4–6 weeks, depending on the spring climate. Since citrus flowers
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do not bloom simultaneously, different fruit sizes can coexist, especially in the early stage
of the growth. Therefore, all sizes were harvested simultaneously on 28 June 2022.

After being harvested, measured, and weighed, the fruits were dried in an oven
(Memmert Elektronik BE400 220 V 1000 W 70◦, Bioblock Scientific, Madrid, Spain) at a
temperature of 50 ◦C for 3 weeks in order to achieve complete desiccation while preserving
the most bioactive compounds [31]. Then, the dried fruits were crushed with a blade
crusher (Moulinex Grinder AR-1108 180W, Moulinex, Paris, France) to a fineness of 400 µm.

For the LC-MS analysis, citrus powders were diluted in a 1:1 water/methanol mixture
(2 mg/mL), filtered through 13 mm GHP 20 µm filters (acrodisc), and then diluted 10-fold
in a 1:1 water/methanol mixture. Standards were prepared in DMSO (1 mg/mL) and
diluted 50-fold in a 1:1 water/methanol mixture. Previous experiments (Supplementary
Materials) demonstrated that the experimental deviation was negligible in comparison
with the biological variation. Consequently, no extraction replicates were conducted. In
total, four replicates (biological replicates) per condition (variety and size) were employed.

3.3. Instrumentation

The LC-MS/MS experiments were performed using an ultra-high performance liquid
chromatography (UHPLC) system (Vanquish, Thermo Scientific, San Jose, CA, USA) cou-
pled to a hybrid quadrupole–Orbitrap mass spectrometer (Orbitrap Exploris 120, Thermo
Scientific, San Jose, CA, USA) using heated electrospray ionization (HESI). The acquisition
was performed using Xcalibur software 4.1 (Thermo Scientific, San Jose, CA, USA). The
chromatographic gradient and mass spectrometer parameters were optimized prior to the
analysis. For instance, the optimization allowed us to minimize in-source fragmentation.

The column was a 2.1 mm × 100 mm Acquity UPLC CSH C18 1.8 µm column (Waters,
Manchester, UK) with a 0.2 µm pre-filter. The sample tray and column oven temperatures
were set at 20 ◦C and 40 ◦C, respectively. The injection volume was set at 1 µL. A flow rate
of 100 µL/min was used. Mobile phase A consisted of water + 0.1% formic acid and mobile
phase B of acetonitrile + 0.1% formic acid. The gradient elution was as described in Table 4.

Table 4. Chromatographic gradient settings.

Time (min) Mobile Phase B (%)

0 0
2 0
4 40
10 100
14 100

14.5 0
16 0

Before and after each run, an experimental blank was injected for blank subtraction.
The column was equilibrated with four injections of the quality control (QC, mix of every
samples), and then, the QC was injected throughout the runs after every eight samples.
Samples were randomly injected as recommended for metabolomic experiments [19].

Mass spectra were obtained in the positive ionization mode. The source parameters
were set as the following: The spray voltage, ion transfer tube temperature, and vaporizer
temperature were 3.1 kV, 300 ◦C, and 400 ◦C, respectively. Sheath gas, auxiliary gas, and
purge gas were set at 45 units, 20 units, and 5 units, respectively. Mass spectra were recorded
over a m/z 150–1500 range using full scan and data-dependent acquisition (ddMS2) modes
with a resolution setting of 120,000 FWHM for the MS1 and 15,000 for the MS2. For the
ddMS2, the intensity threshold and normalized collision energy were set up to 9 × 104 and
22%, respectively. Dynamic exclusion was performed by excluding ions that were selected
twice within 1 s for 3 s.
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3.4. Data Processing and Data Analysis
3.4.1. Data Processing

Data processing (compound detection and normalization) was performed using Com-
pound Discoverer 3.3.2.31 software (Thermo Fisher Scientific). The workflow and param-
eters are given in Table S1 of the Supplementary Materials. Matrices containing RT-m/z
variables, along with their corresponding normalized areas, were exported from the soft-
ware for the PLS-DA. Box-plot graphs were also exported from Compound Discoverer.

3.4.2. Statistical Analysis

The log(fold change) and p-values resulting from the different comparisons (e.g., ‘Fre-
mont’ mandarin vs. ‘Valencia’ orange with all sizes included) were calculated by the
Compound Discoverer 3.3.2.31 software (Thermo Fisher Scientific) and exported in .csv for-
mat for further analysis. PLS-DA were performed by importing the data matrices processed
by Compound Discoverer on the Workflow4Metabolomics.org (W4M) platform [38,39].
The VIP score resulting from the PLS-DA was exported from the W4M platform in .csv
format. Subsequently, the two files were manually merged using Excel for Microsoft 365
MSO (Microsoft), with significantly different variables retained if they satisfied all the
specified criteria (VIP > 1.0; log(fold change) > 1.0; p-value < 0.05). Score plots from the
PLS-DA were generated by the W4M platform, and chemical structures were drawn using
Chemdraw Ultra 12.0 (CambridgeSoft, Cambridge, MA, USA).

3.4.3. Metabolite Identifications

Identification was performed on MS/MS spectra and confirmed by standards when
available. The annotation of compounds was then classified according to the annotation
levels of Schymanski et al. [20]: structural identification verified by using a standard
(identical retention time (RT), molecular formula, and MS/MS spectrum); 2: structural
identification based on similarity with an internal or external database (molecular formula
and MS/MS spectrum); 3: chemical family identification (molecular formula and MS/MS
spectrum); 4: molecular formula; and 5: RT and m/z. The MS/MS databases used were
mzCloud (https://www.mzcloud.org/, accessed on 12 February 2024, Thermo Fisher
Scientific), the Mass Bank of North America (MoNA, http://mona.fiehnlab.ucdavis.edu,
accessed on 12 February 2024), the Global Natural Product Social Molecular Networking
(GNPS, http://gnps.ucsd.edu, accessed on 12 February 2024), and the Human Metabolome
Database (HMBD, http://www.hmdb.ca/, accessed on 12 February 2024). The literature
was also used for MS/MS spectra obtained solely from standards [23,40–45].

4. Conclusions

In conclusion, this study provides insight into the metabolite composition of four com-
mon citrus varieties in their first weeks of growth, notably in the determination of metabolic
variations among their varieties or depending on the fruit size. Fifty-six metabolites were
determined as significantly different between the immature mandarin and the three imma-
ture orange cultivars, of which thirty-five, more than half, were secondary metabolites of
the polyphenol family, molecules highly sought after for their health benefits.

Additionally, 21 metabolites were determined as significantly different between the
immature ‘Navel’ orange and the immature ‘Valencia’ orange or immature ‘Valencia Late’
orange. Given that oranges are genetically almost identical, with only minor point mu-
tations distinguishing them, this method could serve as a preliminary approach for the
identification of different orange varieties based on their accumulation of primary and
secondary metabolites.

The analysis of the influence of the fruit diameter on the four citrus cultivars demon-
strated, in correlation with the bibliography, a distribution of samples into two distinct
groups: from 5 mm to 18 mm and from 18.1 mm to 30 mm diameters. This shows that
increasing fruit size resulted in a significant increase for 40 metabolites and a significant
decrease for 31 metabolites.

https://www.mzcloud.org/
http://mona.fiehnlab.ucdavis.edu
http://gnps.ucsd.edu
http://www.hmdb.ca/
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While it was not feasible to strictly identify all compounds due to the absence of
available standards, each compound was labeled with the respective chemical family. As
such, beyond the typical focus in citrus studies on flavonoids, limonoids, and sugars, this
investigation uncovered other classes such as amino acids, amino sugars, and lipids. It
is worth mentioning that a high number of polymethoxyflavone compounds have been
reported, including numerous isomers, i.e., four isomers of demethylnobiletin. As poly-
methoxyflavones have been associated with many health benefits, this study in its entirety
(interspecific, different phases of development) highlights the relevance of immature cit-
ruses for the pharmaceutical industry, particularly with regard to the 18 mm stage, which
corresponds to 7/8 weeks after flowering, i.e., the transition between the end of the cell
division phase and the cell enlargement phase.

In view of current climate change, a valuable addition to this research would be to
extend its geographical scope to a multiregional level, thus gaining deeper insights into the
metabolic responses of different species during the initial stages of citrus fruit development.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules29163718/s1: Figure S1: Verification of the extraction variability;
Figures S2–S4: Illustration of compound annotation according to the first 3 levels of annotation
confidence of Schymanski et al. [20]; Table S1: Metabolomic workflow and parameters on Compound
Discoverer software; Table S2: Summary of the identified metabolites according to differences between
(i) the three oranges and the Fremont mandarin, (ii) the Navel orange and Valencia/Valencia Late
oranges, or that increases or decreases with the fruit growth, with MS/MS spectra available. Table S3:
Evolution. The references used for the identification are given in Section 3.4.3.
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