

A multiparameter model for local filtrate flux and solids concentration distribution in cross-flow membrane filtration of colloidal suspensions

Hossein Gholamian, Maksym Loginov, Geneviève Gésan-Guiziou

► To cite this version:

Hossein Gholamian, Maksym Loginov, Geneviève Gésan-Guiziou. A multiparameter model for local filtrate flux and solids concentration distribution in cross-flow membrane filtration of colloidal suspensions. Euromembrane 2024, Sep 2024, Prague, Czech Republic. hal-04694170

HAL Id: hal-04694170 https://hal.inrae.fr/hal-04694170v1

Submitted on 11 Sep 2024 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

A multiparameter model for local filtrate flux and solids concentration distribution in cross-flow membrane filtration of colloidal suspensions

Hossein Gholamian Maksym Loginov Geneviève Gésan-Guiziou

INRAE, Institut Agro Rennes-Angers UMR 1253 Science et Technologie du Lait et de l'Œuf (STLO) hossein.gholamian@inrae.fr www.rennes.inrae.fr/stlo

Fraternité

Model

• Concentration-independent permeability

Casein micelles (CM): concentration-dependent permeability and compressibility, complex rheological properties (Bouchoux et al. (2014))

Objective: to extend the model of (Bacchin et al. 2002) in order to account material properties and to find out how these properties impact the filtration kinetics, J(x).

System of equations

- $\begin{array}{l} h_{CP} & \text{thickness of CP layer} \\ h_d & \text{thickness of deposit layer} \end{array}$
- *P* pressure
- *Q* volumetric cross flow rate
- *u* cross flow velocity *x* distance along the membrane *z* distance from the membrane *x* particle velocitien
- φ particle volume fraction

Eq. for flow in the CP layer under the applied shear stress

 $u = f(\dot{\gamma}, \tau)$

Darcy Eq. for filtrate flow across the CP layer, the deposit, and the membrane

$$\mu_f J(x) = -k(x,z) \frac{\mathrm{d}\pi(x,z)}{\mathrm{d}z}$$

- 0 in feed
- sg in point of sol-gel transition
- *w* on the membrane surface

Eq.I

Eq.II

Main model equations

Modified Darcy Eq. from Eq. II:

Eq.V
$$J(x) = \frac{P(x) - \pi(\varphi_w(x))}{\mu_f R_m}$$
 Where: $P(x) = P_0 - \frac{2\tau}{R} x$ $P(x) = P_0 - \frac{2\tau}{R} x$

Once *M* is known, we could obtain:
$$-\begin{cases} \varphi_w(x) \text{ by Eq. IV} \\ J(x) \text{ by Eq. V} \end{cases}$$

$\varphi_w(x)$ local particle concentration on membrane wall

- particle concentration in bulk
- shear stress

 φ_0

τ

R

 P_0

M

Ý

k

π

 μ_f

- radius of membrane
- pressure at the entrance to filter channel
- Filterability (function of material properties of filtered material and of wall shear stress)

shear rate

- permeability of concentrated particle
- osmotic pressure (compressibility) of particles
- permeate viscosity
- R_m membrane resistance

f(x) local filtrate flux

P(x) local pressure

Flux calculations for 2 zones

Illustration with the case of casein micelles filtration : definition of Function M

6

Model advantages:

* Local compressibility and permeability of CP layer may vary with local particle concentration.
(one can input any dependency of permeability and compressibility on particle concentration)

* Model accounts for non-Newtonian nature of CP layer.

(one can input any dependency of Rheological behaviour on particle concentration and shear stress)

* Model is **simple.**

(only one differential equation is solved, numerically)

Conclusion:

* CP layer properties (compressibility, fluidity and permeability) defines filtration kinetics, J(x), even in zone 2.

* Deposit layer properties (compressibility, fluidity and permeability) do not impact filtration kinetics, J(x), even in zone 2.

Perspectives

* extend for solutes transmission (e.g. partial rejection of solutes by deposit in two-component suspension)

* extend for turbulent cross-flow

