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Abstract
During the founding of the field of quantitative genetics, Fisher formulated in 1918 his “infinitesimal model” that provided a novel 
mathematical framework to describe the Mendelian transmission of quantitative traits. If the infinitely many genes in that model are 
assumed to segregate independently during reproduction, corresponding to having no linkage, directional selection asymptotically 
leads to a constant genetic gain at each generation. In reality, genes are subject to strong linkage because they lie on chromosomes 
and thus segregate in a correlated way. Various approximations have been used in the past to study that more realistic case of the 
infinitesimal model with the expectation that the asymptotic gain per generation is modestly decreased. To treat this system even in 
the strong linkage limit, we take the genes to lie on continuous chromosomes. Surprisingly, the consequences of genetic linkage are in 
fact rather singular, changing the nature of the long-term gain per generation: the asymptotic gain vanishes rather than being simply 
decreased. Nevertheless, the per-generation gain tends to zero sufficiently slowly for the total gain, accumulated over generations, to 
be unbounded.
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In the early 20th century, Fisher’s infinitesimal model, in which each gene contributes an infinitesimal amount to a trait, 
re-conciliated the Mendelian and biometrical approaches for describing inheritance of continuous traits. Furthermore, it later pro
vided justification for the steady rise of genetic values in directional selection programs. However, predictions for long-term behavior 
in that model have ignored genetic linkage. Surprisingly, we find that genetic linkage changes the model’s behavior in a singular way, 
driving the system toward an “aging” regime in which the genetic gain per generation decreases down to 0. Nevertheless, because this 
slow down is so progressive, the gain that can be accumulated over generations is unlimited.
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Introduction
At the end of the 19th century, extensive measurements of vari
ous morphological traits led to the emergence of biometrical ap
proaches for quantifying trait heritability, a discipline that was 
spearheaded by Galton (1). Soon thereafter, Mendelian genetics 
began to rise as an alternative approach, with a focus on qualitative 
rather than quantitative traits as considered by biometrics. It is 
only in the early 20th century that R.A. Fisher provided an elegant 
reconciliation of this dichotomy: in a series of works beginning in 
1918 (2, 3) and summarized in his book (4), he was able to show 
that when many genes contribute to a trait, Mendelian inheritance 
leads to a pattern of trait values from one generation to the next 
that follows what is seen experimentally and is in agreement 
with the continuous description given by biometrics. Fisher is 

thus considered as a founder of the three fields: mathematical, 
population, and quantitative genetics.

Fisher formalized this many-genes assumption in a now stand
ard quantitative genetics model whereby M genes influence the 
considered trait, and the alleles—the variants associated with a 

gene—contribute additively to the trait. His “infinitesimal model” 
(2) is formally obtained by taking the limit M→∞. This limit of 

an infinite number of genes is particularly attractive because it 
allows a thorough mathematical treatment, thanks largely to 

the fact that any selection on individuals of an infinite population 
affects only infinitesimally the allelic frequencies. The case of 
directional selection is particularly interesting. In such a program 

to improve a population for a particular trait, one first exploits 
the variance of the value of that trait in the population, selecting 
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the “best” individuals. This selection of course increases the mean 
of the trait’s value in the population but it also reduces its under
lying causal variance, hereafter referred to simply as the genetic 
variance. After selection of individuals, the second step of direc
tional selection consists in mating these “best” individuals to pro
duce offspring for the next generation. This sexual reproduction is 
such that offspring inherit half of their alleles from one parent and 
the other half from their other parent. The two steps—selection 
followed by sexual reproduction—form a cycle that is at the heart 
of recurrent selection breeding programs. Within each cycle, the 
genetic variance is first decreased because of the selection and it 
is then increased via the genetic shuffling induced by meiotic 
crossovers.

The numerous mathematical studies of this system show that 
if the population size is infinite and if the inheritance of alleles 
from parents is random, that is arising independently for the dif
ferent genes corresponding to the absence of genetic linkage, then 
the cycling through generations rapidly converges to a steady-state 
regime where each generation is improved by a fixed amount over 
the previous one (5–8). Specifically, the mean value of the quanti
tative trait in the population increases at each generation by an 
amount that is asymptotically fixed and strictly positive. This be
havior is quite appealing because it is coherent with the mainten
ance of genetic variance in natural and domesticated populations 
(9, 10) and it also justifies the quite linear genetic progress pro
duced in modern directional selection programs for various stocks 
and crops (11, 12). Moreover, the infinitesimal model has found 
uses for practical situations such as in genomic selection analyses 
(13, 14).

It is not difficult to see that if one relaxes either of the two 
standard hypotheses of the infinitesimal model (the number of 
genes M and the population size N both being infinite), then the 
asymptotic behavior changes qualitatively with a genetic gain 
per generation that tends toward 0. Indeed, for finite M (just as 
for M = 1), one enters a regime of diminishing returns because 
the more favorable alleles have a frequency that drops off more 
and more quickly at each step of selection. Similarly, in the case 
of finite N, all genes ultimately see their alleles become fixed. 
Thus, using the infinitesimal model to justify the substantial gen
etic variance seen in practice in natural populations requires hy
pothesizing that (i) the population size is sufficiently large and (ii) 
the considered trait depends on sufficiently many genes. These 
conditions of “sufficiently large” and “sufficiently many” are rela
tive to the number of generations over which the infinitesimal 
model acts: the more generations of directional selection, the 
more stringently one must meet those two conditions. It is import
ant to note that this minimal infinitesimal model (2, 7) does not in
clude the appearance of mutations, another mechanism that can 
maintain genetic variance.

The infinitesimal model is almost always studied without any 
genetic linkage because the mathematical analyses are then 
much simplified. However, from a biological point of view, genes 
are in fact subject to tight linkage for the simple reason that 
they lie along chromosomes. The different studies having tackled 
the consequences of genetic linkage used finite populations 
(15, 16) or a finite number of genes (17, 18), in which cases there 
is no constant long-term gain per generation as we pointed out be
fore. That could justify why all investigations keeping N and M in
finite considered that the qualitative behavior of the infinitesimal 
model is the same whether there is genetic linkage or not: they as
sumed that in the limit of many generations, the system goes to a 
steady state in which the genetic variance is a strictly positive 
constant, leading to fixed genetic gain per generation. In effect, 

according to these studies, linkage simply modifies the steady- 
state variance and thus the genetic gain per generation.

Our focus in the present work concerns whether that default 
assumption (19, 20) is correct. Interestingly, in spite of the fact 
that Fisher’s infinitesimal model was formulated over a century 
ago, there has been no mathematical progress in treating the 
M = N = ∞ limit with linkage to any degree of reliability (21). Given 
that in biological settings one has many tightly linked genes lying 
along chromosomes, in this work we connect to the infinitesimal 
model by taking the continuous limit. Specifically, we distribute an 
infinite number of genes along one continuous chromosome (for 
simplicity). The natural mathematical framework for treating 
that system relies on Fourier series which we then analyze based 
on the standard Gaussian approximation. As a result, we find 
that in contrast to expectations, the genetic variance decreases 
to 0 as the number of generations increases. There is thus no 
analog of the steady-state behavior arising in the absence of gen
etic linkage. Instead, a more singular behavior arises whereby 
the genetic variance goes to zero following a subtle scaling 
law characteristic of systems undergoing very slow or “aging” 
dynamics (22–26).

The infinitesimal model without linkage
Hypotheses
Fisher’s infinitesimal model begins with a quantitative trait con
trolled by a large number M of genes. Each individual (plant or ani
mal) has a genotype embodied by the allelic content of those 
genes. The cycle of sexual reproduction alternates between a hap
loid and a diploid phase. In the haploid phase, one has gametes 
with a single copy of each chromosome. Each gamete’s genotype 
is specified by a list, with one allele for each gene. In its simplest 
version, the genetic value is defined at the gametic level and is tak
en to be the sum of the values contributed by each allele:

G =
􏽘M

m=1

xm, (1) 

where xm is the (additive) effect of the allele carried by gene 
m (1 ≤ m ≤ M) in the considered gamete. When analyzing the pas
sage from one generation to the next, one can focus on the haploid 
or the diploid phase of the cycles depending on when selection 
arises. In the present work, we will follow the content of the hap
loid phase as it allows the compact representation of Eq. 1 and 
thus a much simpler mathematical treatment. However, this 
comes at the cost of allowing selection only in the haploid phase 
rather than in the diploid phase or even in both phases. As a con
sequence, we cannot treat a number of effects such as genetic 
dominance.

The values of G are partly heritable from one cycle to the next 
because of the allelic shuffling produced during meiosis (taking 
one from the diploid to the haploid phase). Across generations, 
the allelic content in the population of gametes changes because 
of selection, but the values of the alleles themselves are fixed. 
Those values are specified in the gametes of the first generation. 
A simple choice is to assume that alleles have just two possible 
values, for instance ±1/

���
M
√

. Another common choice is to allow 
an arbitrary number of alleles with values drawn independently 
from a Gaussian distribution of zero mean and variance of 1/M. 
(These dependencies on M ensure that the initial variance of G is 
1 for all values of M.) As M→∞, the two choices are equivalent be
cause of the central limit theorem. For convenience, we will use 
the second choice for the rest of our analysis.
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At the first generation, G is a Gaussian random variable of zero 
mean and unit variance, but over successive generations its mean 
rises because of the selection; for the present work, we assume the 
selection to arise during the gametic phase, operating via the val
ue of G. Thus, each generation is produced from the previous one 
according to the cycle: (i) one selects the gametes (haploid geno
types) having high G values in the current population and 
(ii) one produces the next generation by panmictic mating, i.e. 
by choosing pairs of gametes at random among the selected 
ones and “recombining” them into a single new gamete via allelic 
shuffling. The hypothesis of no genetic linkage corresponds to hav
ing independent assortment of the alleles when going from a pair 
of gametes to the next generation gamete. Given these choices, 
the infinitesimal model is formally obtained by taking the limit 
whereby both the number of genes M and the population size 
N go to ∞.

The steady-state property
In most breeding programs, the selection phase typically keeps 
only those individuals whose (apparent) genetic value is above a 
generation-dependent threshold. Let μ and σ be the mean and 
standard deviation of G within the current population; common 
practice is to then select those gametes whose G value is greater 
than μ + βσ where β is a measure of the selection intensity. At large 
β, only a small fraction of the population of gametes is used for 
mating, and in practice the distribution of G falls off rapidly so 
that most selected gametes have their G value very close to the 
imposed threshold. A major mathematical simplification arises 
in the infinitesimal model if one selects instead the gametes 
whose G value is exactly at that threshold (this is possible because 
the population size is infinite). With those choices, let us now re
view (5, 7, 17, 18) the process of going from the initial population 
to the next generation, for fixed M but then taking M to infinity.

In the initial population (generation 0), all xm are i.i.d. Gaussian 
random variables of mean 0 and variance 1/M, so the joint distri
bution of the xm is multi-Gaussian and the associated covariance 
matrix is diagonal. After selection, since we impose G = μ0 + βσ0 

(μ0 = 0 and σ0 = 1 in the initial generation), the joint distribution 
of the xm is modified but it remains multi-Gaussian because the 
selection corresponds to imposing a linear constraint on the varia
bles. What are the parameters of this new (multi-Gaussian) distri
bution? Clearly, by using the permutation symmetry amongst the 
genes, all the means must be increased by βσ0/M. More subtly, the 
selection introduces a dependency amongst the xm (since their 
sum is fixed) and thus the off-diagonal covariances no longer 

vanish: selection has introduced “linkage disequilibrium”, a phe
nomenon that in this context called the Bulmer effect (cf. (6)). By 
direct calculation (5, 7, 17), e.g. using the discrete Fourier trans
form of the xm, one finds that the off-diagonal covariances are 
all equal to −1/M2 while the variances are all 1 − 1/M. Of course, 
these values ensure that the variance of G after selection is 0.

Moving on to the sexual reproduction phase of the cycle, one 
takes pairs of gametes and performs random assortment, i.e. 
the first gamete transmits its alleles for a subset of M/2 randomly 
chosen genes while the second one transmits its alleles for the 
other subset of M/2 genes. When going from all xm to a subset 
thereof, the joint distribution of the xm in this subset is again 
multi-Gaussian. Furthermore, the hard constraint on the sum of 
the xm is lost when one considers a subset containing only half 
of those xm. In fact, as can be seen by direct calculation, the 
sum of the kept xm in each case is a Gaussian variable of variance 
1/4 (cf. (5)). Since the two gametes are independently drawn from 
the infinite population, the G value for the “recombined” gamete 
also has a Gaussian distribution, and its new variance is 1/2 (to 
be compared with the value 0 after selection). This “boosting” of 
the variance of G by the assortment phase is referred to as the re
lease of genetic variance; in effect, the random assortment is able 
to mine the (infinite) variability available in the (infinite number 
of) xm.

To summarize this M→∞ limit, the distribution of the xm in 
the population of recombined gametes goes to a multi-Gaussian 
subject to the constraint that G is of variance 1/2 (5–7, 27). 
Interestingly, with our choice of selection, we reach the steady 
state of the cycling in just one generation. Specifically, at gener
ation k ≥ 1, the joint distribution of the xm is a multi-Gaussian 
such that the xm can be considered to be independent Gaussian 
random variables of variance 1/M, but subject to the constraint 
(hidden in covariances that are of order 1/M2 and are thus naively 
“lost” when M→∞) that the variance of their sum (i.e. the vari
ance of G) is 1/2. At each generation, the selection phase of the 
cycle makes the variance of G go to 0 but then the phase with 
random assortment restores a variance of 1/2. One thus has a 
steady-state behavior when comparing one cycle to the next, all 
statistical properties are constant except for the means: those of 
the xm increase by β/M

��
2
√

, and that of G increases by β/
��
2
√

.

The infinitesimal model with linkage
General framework and model choices
Genetic linkage in real biological situations arises because genes 
belong to chromosomes, so the transmission of an allele at one 
position of a chromosome generally leads to the simultaneous 
transmission of a large surrounding region, producing strong cor
relations of inheritance along chromosomes. Numerous studies 
have considered a finite number of linked loci (17, 18, 20, 28–32) 
showing that linkage generally reduces the response to selection, 
but so far a controlled treatment directly within the infinitesimal 
model (having an infinite number of linked loci) has not been 
provided.

To simplify our analysis of the effects of genetic linkage, we 
shall consider that the gametes carry just one chromosome. 
Furthermore, to facilitate the mathematical derivations, we will 
take that chromosome to be continuous (33). To go from the cur
rent generation to the next, each “recombined” chromosome of 
the next generation is taken to be an assortment of two chromo
somes of the current generation. As illustrated in Fig. 1,  we imple
ment this combination by introducing two crossovers, say at 

0

0

0

L P1 P2

L

L
L/2

Parental 
chromosomes

Recombined 
chromosome

Fig. 1. Assortment of alleles with linkage: in our framework, each gamete 
consists of one continuous forming a segment of length L. During the 
assortment phase, two parental gametes (in blue, top parental 
chromosome, and red, bottom one) “recombine” so the new (child) gamete 
inherits half of its genetic content from each gamete of that pair. 
Crossover points are labeled P1 and P2.
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positions P1 and P2. The recombined chromosome has its [P1, P2] 
region coming from one of those two current-generation chromo
somes. If we interpret positions beyond the chromosome’s end us
ing a periodic representation, we can consider that the [P2, P1] 
region is also an interval coming from the other two current- 
generation chromosomes. For our modeling of meiosis, we impose 
those two regions to be of the same total size. With the use of the 
interpretation extending the chromosome periodically, in effect 
one can consider P1 to be uniformly distributed along the chromo
some, corresponding to a recombination rate that is constant, in
dependent of position.

Introducing the Fourier series representation
We continue to assume that the population size is infinite. The 
position s (0 ≤ s < L) of a gene on the chromosome can be conveni
ently replaced by the quantity θ = 2πs/L (0 ≤ θ < 2π) which can then 
be interpreted as an angle.

One can specify the genotype of a gamete either by its allelic 
values x(θ) along the chromosome or by the corresponding re
presentation in Fourier space. In the limit M→∞, this representa
tion takes one from the profile x(θ) to the Fourier components 
labeled by k:

Xk =
1
2π

∫2π
0 e−ikθx(θ)dθ, (2) 

where k runs over all integers, from −∞ to +∞. Since X−k is the 

complex conjugate of Xk, which we denote Xk, any genotype can 
be specified by X = {Xk, 0 ≤ k < +∞}. Note that Xk=0 is real. If one ap
plies the inverse transform, one recovers the profile (which is peri
odic in θ):

x(θ) =
􏽘+∞

k=−∞
eikθXk. (3) 

In the initial population that satisfies linkage equilibrium, the x(θ) 
are i.i.d. random variables of zero mean, corresponding to 
Gaussian white noise so that E[x(θ)x(θ′)] is the Dirac delta function 
δ(θ − θ′). Transforming to Fourier space, we see that the real and 
imaginary components of X are independent, all means are 
0 and all variances are 1/2 except that of Xk=0 which is 1. The 
vector X specifying a genotype in this initial population thus fol
lows a multi-dimensional complex normal (Gaussian) distribution 
(34–36). All means vanish and the covariance matrix is the diag
onal identity matrix:

E[(Xk − E[Xk])(Xk′ − E[Xk′ ])] = δk,k′ , (4) 

where δk,k′ is the Kronecker delta (k ≥ 0 and k′ ≥ 0). The “pseudo- 

covariance” matrix (like Eq. 4 but without the complex conjugate) 
is zero everywhere except for the (0,0) entry which is 1.

Selection and recombination in Fourier space
Let us now consider how the Xk are changed as one performs one 
cycle of directional selection, applying first the selection of game
tes as was done in the case without linkage and then recombining 
them in pairs as shown in Fig. 1 to produce recombined gametes of 
the next generation. Not surprisingly, the selection of gametes 
having a given genetic value G simply corresponds to collapsing 
the distribution of Xk=0 to a Dirac delta function at that value, 
leaving all other aspects of the distribution unchanged. (This is 
the analog of what we reviewed for the case without linkage.)

In the second part of the cycle, there is panmictic mating of the 
selected gametes. For a given pair of gametes of genetic content X 
(the transform of x(θ)) and X′ (the transform of x′(θ)), define ψ to be 

the angle (0 ≤ ψ < 2π) of the point P1 in Fig. 1. The allelic profile 
of the recombined gamete is the sum of two contributions, 
x(θ)H(θ − ψ) and x′(θ)H(θ − ψ − π), where H is the periodic step 
(Heaviside) function that has the value 1 in all intervals [2nπ, (2n + 
1)π] and vanishes everywhere else (n can be any integer). The key 
point is that these terms are linear functions of X or X′. (In 
Appendix I of the Supplementary Material, we provide the explicit 
expressions for the recombined gamete’s Fourier coefficients as a 
function of the ones in the recombining pair.) Noting that linear 
combinations of multi-dimensional complex normal variables 
are themselves multi-dimensional complex normal, we can con
clude by recursion that at each generation each genotype follows 
a multi-dimensional complex normal distribution, with a covari
ance matrix that is a function of the successive crossover posi
tions leading to that gamete across generations. Consequently, 
conditional on those crossover positions, the joint distribution of 
the Xk is multi-complex normal at all generations. However, we 
will not know those crossover positions for individuals drawn at 
random from the population. As a result, the (averaged) distribu
tion of the Xk has no reason to be multi-complex normal.

The complex normal projection and 
inter-generational recursion relations
Since the crossover positions are random, the joint distribution of 
the Xk over the whole population is a mixture of multi-complex 
normal distributions. To progress, we project that mixed distribu
tion back to a multi-complex normal distribution, for which we 
need to compute the covariance and pseudo-covariance matrices. 
Although it may seem challenging to do so, a very useful feature 
follows from the invariance of the problem under rotation, i.e. θ→
θ + δ for any shift δ. Indeed, the initial population is invariant 
under rotations and this invariance is preserved from one gener
ation to the next. That constrains enormously the mathematical 
equations because when performing a rotation by an angle δ of 
the profiles of all gametes in the population, each Xk will be multi
plied by a phase e−ikδ showing that the mean of Xk vanishes if k ≠ 0. 
Similarly, the covariance of Xk and Xk′ will be multiplied by 
e−i(k′−k)δ, showing that the covariance matrix must be diagonal. 
Applying the same reasoning to the pseudo-covariance matrix, 
we see that it has to vanish except for its (0,0) entry. Thus, within 
this projection approximation, to follow the multi-dimensional 
distribution of X when going from one generation to the next, 
we only need to determine how the mean of Xk=0 changes and 
how the (complex) variances of the Xk are modified. We do this 
by direct calculation from the expression for a recombined game
te’s Fourier coefficients in terms of that of the two contributing ga
metes (that derivation is given in Appendix I of the Supplementary 
Material) followed by the calculation of the associated variances 
(that derivation is given in Appendix II of the Supplementary 
Material). We summarize the results as follows.

Denote by μg the mean of X0 at generation g. Similarly, denote 
by σ2

k,g the (complex) variance of the kth Fourier coefficient at gen
eration g, that is the expectation of XkXk (which is real). One then 
has

μg+1 = μg + βσ0,g (5) 

in direct analogy with what occurs in the absence of linkage, β still 
being the parameter associated with the selection intensity. Note 
that the selection for a given value of G affects only the Fourier 
component at k = 0, setting its variance to zero. Then, including 
the effects of the second phase of the cycle during which alleles 
are shuffled by crossovers as shown in Fig. 1, we obtain the 
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following recursions for the variances which are most easily writ
ten using both positive and negative indices for the Fourier coeffi
cients (−∞ < k, k′ < ∞):

σ2
k,g+1 =

σ̂2
k,g

2
+

2
π2

􏽘

k′odd

σ̂2
k+k′ ,g

k′2
, (6) 

where σ̂k,g = σk,g if k ≠ 0 while σ̂0,g = 0 because the variance of G is 

set to 0 during the selection phase. In Eq. 6, the sum over k′ is to 
be taken over both positive and negative odd integers (note how
ever that σk,g = σ−k,g). The initial conditions for these recursions 

are σ2
k,g=0 = 1 for all k, corresponding to linkage equilibrium. 

Furthermore, one also has the boundary condition for all g: σ2
k,g →

1 as k→ ±∞. Equations 5 and 6 then specify within the complex 
normal projection approximation the change in the distribution 
of X values in the population when going from one generation to 
the next, in the limit of an infinite number of genes and an infinite 
population size. Even after a single iteration of Eq. 6, the variances 
will no longer all be equal, corresponding to the appearance of 
linkage disequilibrium that is expected to build-up over genera

tions. Nevertheless, in the standard lore, one expects σ2
0,g (often re

ferred to as the additive genetic variance) to go to a limiting strictly 
positive value at large g.

Absence of a steady-state solution to the recursion 
equations
The recursions for the variances in Eq. 6 have the following inter
pretation if one thinks of σ2

k,g as specifying the amount of “matter” 
at site k and generation g. When going from g to g + 1, half of the 
matter at each site stays put while the other half is shared across 
other sites. That sharing is done via a “diffusion”, implemented 
mathematically via a convolution kernel. In effect, a fraction 
4/(π2k′2) of that transferred matter is assigned to a site at a dis
tance |k′|, where k′ (positive or negative) is imposed to be odd. 
(Of course the sum of all those fractions is 1.) Note that this diffu
sion process conserves the total amount of matter. However, the 
case k = 0 includes a resetting whereby all matter at that site is 
first removed, thereby leading to loss of matter. Therefore, the 
amount of matter lost at each iteration—at the level of the whole 
system—is precisely the value of σ2

k=0,g. Each iteration is thus an al
ternation of (i) removing all the matter at site k = 0 and (ii) diffus
ing matter across all sites with the aforementioned convolution 
kernel. In analogy with the case without linkage, we may expect 
that there is a steady-state solution to these recursions to which 
the system converges as g→∞.

Before treating the true convolution kernel arising here (it is 
spread out to infinity, thereby complicating the analysis), consider 
first the simpler situation where one replaces it by the standard 
diffusion convolution kernel. In that case, the transferred matter 
is equally shared between one’s nearest neighbors on each side (so 
k′ takes on only the values ±1). Assume that there exists a steady 
state for this system, i.e. that there is a set of σ2

k,∗ which are invari
ant under the processes of (i) removal of all matter at k = 0 and (ii) 
sharing half of one’s matter between one’s nearest neighbors. The 
steady-state condition then imposes that the matter transferred 
“out” of any given site is exactly compensated by an equal amount 
of matter transferred “in”. For any k ≠ 0 that requires σ2

k,∗ to be 
equal to the average of σ2

k−1,∗ and σ2
k+1,∗. As a consequence, on 

each side of the origin (k = 0), σ2
k,∗ must be linear in k. However, 

that property necessarily contradicts the boundary condition 
σ2

k,∗ → 1 as g→∞, from which we conclude that the initial hy
pothesis (existence of a steady state) must be false. Instead, the 

system will exhibit nonstationary dynamics, whereby at any finite 
g, the σ2

k,g will smoothly interpolate on each side of the site k = 0 be
tween a near vanishing value and the value 1 far away, and as g 
increases, the overall region of very low values will become wider 
and wider, corresponding to an unbounded build-up of linkage 
disequilibrium.

The impossibility of a steady-state behavior can also be shown 
in the continuum scaling limit using a Green function approach. 
To do so it is convenient to change variables from σ2

k,g to ck,g = 1 − 
σ2

k,g and again interpret the variables as amounts of matter. The 
corresponding boundary conditions are now ck,g → 0 as k→ ±∞ 
for all g. Furthermore, the step (i) becomes (i′) “set ck=0,g to 1” while 
the step (ii) remains unchanged. The advantage of this change of 
variables is that the total matter present in the system is finite and 
so can be more easily followed. In particular, it starts at 0 (cf. the 
initial conditions) and it can only increase at each step. A cycle 
(one generation) then corresponds to first resetting the value of 
ck=0,g to 1 and then applying the diffusion step whereby for each 
site half of its matter is transferred to other sites. Suppose we ap
ply (i′) and (ii) starting from the initial conditions and then follow 
the behavior of the ck,g at large g. Given the definition of the ck,g, 
they will always be less or equal to 1. At each step, some amount 
of matter is introduced at the site k = 0 and then diffusion is 
applied. Each amount of matter added at generation g1 at the 
site k = 0 will lead to a spread-out distribution at a later generation 
g2, and in the continuum limit when g2 − g1 is large that distribu
tion corresponds to the Green function which has a Gaussian 
form: 

������������
π(g2 − g1)

􏽰
exp[ − k2/(g2 − g1)] (the “missing” factor of 2 in 

the diffusion constant follows from the fact that at each gener
ation only half of the matter at each site participates in the diffu
sion). Using the linearity of the equations, this Green function 
approach then shows that the total response is obtained by sum
ming this last expression over all g1 values. If the system con
verges to a putative steady state where ck=0,∗ < 1, then the added 
amount of matter at each step tends toward a fixed and strictly 
positive amount, from which we obtain that ck,g2

∼ ���
g2
√

at large 
g2. That contradicts the fact that 0 ≤ ck,g2

≤ 1. Thus, if the system 
converges to a steady-state distribution, it must satisfy ck=0,∗ = 1. 
But if that is the case, the steady-state condition on the distribu
tion implies ck,∗ = 1 for all k, which does not respect the boundary 
condition ck,∗ → 0 as k→ ±∞. This Green function approach thus 
shows, just like the previous approach, that the system cannot 
converge to a steady state at large g.

This last method of analysis allows us to now treat the original 
recursions equation 6 for which the diffusion convolution kernel 
decays as 1/k′2. This convolution kernel has the property that its 
moments (expectation of k′α) are finite if and only if α < 1. This ex
ponent α is characteristic of the so-called α-stable distributions 
(37) to which our convolution kernel will converge in the con
tinuum limit. Specifically, based on the generalized central limit 
theorem (38), the iteration of this convolution kernel at large g 
leads in the continuum limit to the Cauchy distribution 
π−1(2g/π)/((2g/π)2 + x2). This is the direct analog of the Gaussian 
distribution of the previous paragraph and it provides the Green 
function of the problem. We thus repeat the previous reasoning 
using again the linearity of the recursions. If we assume that the 
iterations converge to a steady-state behavior for which 
ck=0,∗ < 1, by summing over all contributions produced by the 
added matter at 1 ≤ g1 ≤ g2, we obtain ck,g2

∼ ln (g2) at large g2. 
This diverges when g2 →∞, contradicting the fact that 
0 ≤ ck,g2

≤ 1. Thus in the steady state, one must have ck=0,∗ = 1, 
but as before that leads to ck,∗ = 1 for all k which is not acceptable 
given the boundary condition ck,∗ → 0 as k→ ±∞. So we can 
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conclude that the recursions equation 6 lead to a nonstationary 
behavior, and that as g increases, σ2

k,g converges to 0. We now 
turn to the numerical analysis of Eq. 6 to study how σ2

k=0,g tends 
to 0 with increasing g.

Numerical treatment of the recursion equations
To treat numerically the infinite set of recursions given in Eq. 6, we 
have to focus on a finite number of variances and in practice we 
consider those having index k with |k| ≤ N, N large. Each recursion 
involves all k′ and so, in our numerical treatment, the variances 
beyond the cut-off N are replaced by analytic expressions that 
are set by matching the values in the neighborhood of k = ±N. 
This avoids the severe truncation error that would have followed 
if we had simply replaced those variances at |k| > N by their limit
ing value. Naturally, the results need to be extrapolated to the 
N = ∞ limit as best as possible. In practice, having a finite N intro
duces errors that become significant when g has the same order of 
magnitude as N. Thus it is necessary to perform a study of the nu
merical behavior of σ2

0,g as a function of N. Noticing that the recur
sions involve a convolution, we compute the convolution using the 
discrete fast Fourier transform. This allows us to treat N values up 
to tens of thousands on a desktop computer. We now discuss 
the results obtained with these numerical methods. The computer 
codes (R (39) scripts for implementing efficiently the numerical iter
ations of Eq. 6 and for the corresponding analyses) are provided as 
Supplementary Material.

The system displays aging dynamics  
as the generation number increases
As mentioned before, the initial condition is σ2

k,g=0 = 1, and one also 
has the boundary condition σ2

k,g = 1 when k→∞ for any g. For nu
merical purposes, we change variables and follow instead 1 − σ2

k,g 

as a function of g. That is more convenient because then these 
quantities go to 0 as |k| →∞, at any fixed g, and so problems of nu
merical round off arise for much larger N and g than without that 
change.

Figure 2 displays our results for the first 250 variables, specific
ally 1 − variance for 0 ≤ k ≤ 250, taking a number of values of g. 
Clearly, all variances decrease with increasing g, but this occurs 
very slowly in a way typical of aging dynamics (22–24) as evi
denced by the fact that values in this figure are displayed for g val
ues equal to powers of 2. In the context of the explanation given in 
the “Absence of a steady-state solution” section, such an aging be
havior is not a surprise. Indeed, the matter added at each gener
ation at the k = 0 site decreases to 0 with generations while 
keeping the system away from a steady state.

We also see that the errors introduced by the truncation par
ameter N become visible only when g is comparable to N. These 
slow dynamics would be quite difficult to identify in a forward 
simulation of a population subject to directional selection. In par
ticular, to ensure small enough drift effects, it would be necessary 
to simulate huge population sizes.

The genetic variance decays to 0 inversely with 
the logarithm of generation number
The k = 0 variance component determines the genetic gain (cf. Eq. 
5) which is the main observable of interest in quantitative genet
ics. Our scaling analysis of σ2

0,g is summarized in Fig. 3 where we 
display the product log2(g)σ2

0,g as a function of log2(g). The curves 
for different values of N superpose well except that finite N effects 
are visible at large g, in direct analogy with what was found in 
Fig. 2. As N increases to infinity, we see empirically that the curves 
tend to an envelope that is well fit to the function

log2(g)σ2
0,g = A +

B

log2(log2(g))
���������
log2(g)

􏽰 (7) 

with A = 1.48 and B = −2.02. From this we conclude that the genet
ic variance decreases to 0 as the inverse of the logarithm of g, with 
higher order corrections that include a logarithmic correction fac
tor (thus a log–log term) reminiscent of correction to scaling terms 
arising in various one-dimensional moving front problems (40).

Fig. 2. Evolution of the first 250 variables (1 − σ2
k,g for 0 ≤ k ≤ 250) at 

increasing g values. Note that the errors introduced by the truncation 
parameter N become visible when g is comparable to N.

log2(g)

lo
g
2(
g
)σ

2 0
,g

Fig. 3. Scaling law and corrections for the genetic variance σ2
k=0,g when the 

number of generations g becomes large. Y axis is log2(g)σ2
0,g estimated 

using different values of N. The numerical data at finite N are shown via 
dots and our associated fit by the continuous curve (regions not used for 
the fit are indicated by a dotted line). X axis is log2(g). The function for the 
fit uses two parameters A and B and is specified in Eq. 7.
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The long-term genetic gain is unbounded
Since the genetic variance goes to 0 at large g, Eq. 5 shows that the 
gain per generation goes to zero. Nevertheless, the total gain, ac
cumulated over generations, goes to infinity with increasing g. 
Indeed, by Eq. 5, that total gain is β times the sum over g of the 
σ2

0,g. The leading term in Eq. 7 shows that σ2
0,g ≈ A/log2(g), and so 

it is easy to see that the corresponding series is divergent. A quali
tative way to justify this property is to notice that at any g there 
remains genetic variance in the σk,g at large k as in the case with
out linkage, variance that can be transferred to k = 0 over genera
tions. It is just a question of applying sufficiently many crossovers 
(generations) to recover that reservoir of variance. As a result, the 
reachable total genetic gains are the same whether there is link
age or not, it is just that with linkage it takes far more generations 
to access that reservoir and in fact one has a case of “diminishing 
returns” per generation: it takes more and more generations to 
provide a fixed genetic gain.

Discussion and conclusions
We have revisited the infinitesimal model, originally proposed by 
Fisher in 1918 (2), with the goal of determining the consequences 
of linkage therein. Indeed, in spite of decades of work on that mod
el, the challenge of quantitatively treating linkage amongst an 
infinite number of genes has never been squarely addressed. To 
do so, we first introduced a number of model choices which allowed 
us to derive exact recursion equations for the allelic Fourier 
coefficients from one generation to the next (cf. Appendix I of the 
Supplementary Material). Then, using the projection onto 
complex-normal distributions, we computed the recursions for 
the means and the covariance matrices (Eqs. 5 and 6). The analysis 
of these equations revealed a qualitatively different long-term be
havior compared to the case without linkage: the genetic variance 
(the variance of G in Eq. 1, equal to σ2

k=0,g in our notation) goes to 0 at 
large g and so does the genetic gain per generation (cf. Eq. 5). The 
subtlety of this process likely explains why no previous work had 
suggested that introducing linkage might qualitatively change the 
behavior of the infinitesimal model. Furthermore, our numerical 
treatment shows that the corresponding dynamics exhibit aging; 
as a result, any simulation based on following populations of indi
viduals will almost certainly be inconclusive. In effect, although the 
constraint of linkage is moderate at each generation, when consid
ering many generations, its cumulative effect increases indefinitely 
the linkage disequilibrium and thereby changes the long-term be
havior of the system in a singular way.

At the mathematical level, the origin of this singular behavior 
lies in the way the diffusion convolution kernel decays with dis
tance. For an inverse power law of exponent 2 (as arises in the pre
sent case) and also for faster rates of decay (e.g. as occurs for the 
standard nearest-neighbor diffusion convolution kernel that was 
considered for pedagogical purposes in the “Absence of a steady- 
state solution” section), the reduction of variance produced in 
the low frequency modes does not diffuse away sufficiently well 
into the high frequency modes to prevent the ultimate vanishing 
of all variances at large g. Were the rate of decay slower, say ac
cording to an inverse power 1 + α (0 < α < 1), a non-trivial steady 
state might emerge instead, but realizing that type of decay using 
crossovers would require both an infinite number of crossovers 
and introducing strong statistical dependencies between them. 
Interestingly, the case without linkage can be thought of as an ex
treme limit of such a rate of decay: the infinite number of cross
overs required to break all linkage corresponds to a convolution 

kernel that diffuses out to infinity in an instantaneous manner, 
so the variance reduction produced at the level of the genetic vari
ance is diluted across all modes in a single step, and thus there is 
no finite effect on any individual mode.

Our mathematical treatment took advantage of having an in
finite population and an infinite number of genes as assumed by 
Fisher. But it also relied on several choices staying within the in
finitesimal model: applying the selection step in the haploid phase 
(as a result we cannot treat effects of dominance), having a single 
chromosome per gamete, imposing exactly two crossovers that 
produce equal sized segments in the genetic recombination step 
thereby forcing a flat recombination landscape and a fixed genetic 
length, and finally selecting gametes of a given genetic value G. 
Treating other model choices, such as applying selection during 
the diploid phase as usually done (41) and allowing multiple linear 
chromosomes, would certainly introduce major technical difficul
ties for both the mathematical and numerical analyses. 
Nevertheless, it should be clear that the key property driving the 
unlimited build-up of linkage disequilibrium is the rate at which 
the variance reduction (originating at the level of G during the se
lection step) diffuses out toward the high frequency modes (i.e. 
the small scales at the level of the chromosomes). The exponent 
of the power law in the corresponding diffusion convolution ker
nel will not be modified when generalizing to other distributions 
for the number of crossovers (as long as they are in finite number 
because of the stability of that law, cf. the explanation in the sec
tion on the absence of a steady-state solution) or by having mul
tiple chromosomes, so we expect that even in these more 
realistic systems the long-term behavior will still see the genetic 
variance tend toward 0, though perhaps more slowly. That key 
property should also hold even if the complex normal projection 
is not used, though of course it is not clear how to treat mathem
atically the dynamics of this system without introducing that pro
jection. Similarly, we do not expect the choice of form of selection 
to affect our conclusion, even though manifestly using truncation 
selection leads to unmanageable recursions (16–18, 42). Note that, 
in our analysis, for convenience we selected gametes to have a giv
en genetic value as a way of bypassing the difficulties generated by 
truncation selection, but the mathematics would have been hard
ly affected had we selected according to a Gaussian around that 
value.

Lastly, coming back to the controversy of the early 20th century 
between the two schools of thought, namely the biometric school 
and the Mendelian genetics school, let us note that within the bio
metricians, some expected that mixed heredity and its “return to 
the mean” under selection would drive traits to have vanishing vari
ance in the absence of environmental noise, thus, in our language, 
they expected the variance of G to converge to zero over genera
tions. In that, they were right, but they would also have predicted 
a bounded cumulative gain for G, and in that, they were wrong.
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