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Abstract

In ecology, among the mathematical approaches used to model popula-
tion dynamics, Hidden Markov Models (HMM) are well adapted to the case
where the species of interest is difficult to observe. For a broader application
of HMM in ecology, two limits need to be overcome. While HMMs are often
used to deal with detection errors, another important situation is when only
some life stages of the population can be observed while the others remain
hidden. Also, understanding ecological patterns of dispersal requires a model
at the metapopulation level rather than for a single population. Therefore,
there is a need to extend the HMM framework to the case of several couples
of hidden and observed life stages interacting via dispersal, which depends
on the studied species (plant, fungus, animal). Such interactions have to be
modeled explicitly. In this work, we propose a conceptual guide to model
and estimate metapopulation parameters using the framework of Partially
Observable Dynamic Bayesian Networks (PO-DBN). We show that only four
interaction structures are needed to describe the main metapopulation mod-
els. We illustrate the four structures with examples of species dynamics and
we show how to build the associated interacting PO-DBN. Finally, we con-
sider parameter estimation using the EM algorithm. We establish that for
two structures the complexity of EM remains linear in the number of patches,
which means that estimation is easily accessible for the associated metapop-
ulations. For the two other structures, the EM complexity is exponential and

∗Corresponding author
Email address: nathalie.peyrard@inrae.fr (Nathalie Peyrard)



we discuss methods from approximate inference to overcome this difficulty.
This study provides the practical foundations for modeling and estimating
the dynamics of a metapopulation with hidden life stages.

Keywords: Metapopulation dynamics, Hidden life stages, Modelling,
Dynamic Bayesian Network, Estimation

1. Introduction

When studying a particular population, it is fundamental to consider that
this population is part of a larger entity with interactions through dispersal.
The metapopulation concept allows to consider such interactions. Levins
et al. (1969) defines a metapopulation as a group of populations that can
become locally extinct and recolonize unoccupied sites. In other words, a
metapopulation is a set of populations of the same species that evolve in
distinct sites (also called patches), while interacting with each other via col-
onization. The maintenance of the species at the regional scale depends on
the balance between local extinction and colonization of new unoccupied sites
through propagule exchanges. Therefore, the study of a metapopulation en-
ables to take into account both the local and the regional dynamics of the
species. Understanding metapopulation dynamics improve our knowledge on
the main levers used by the species for survival, and on how they will adapt
to new situations (e.g. habitat change or loss Amarasekare and Possingham,
2001). For instance, for biodiversity conservation purpose, it can help iden-
tifying important colonization paths to protect, while in pest control it can
help targeting control actions (Ovaskainen and Hanski, 2004).

The Levins model (Levins et al., 1969), modeling the dynamics of the
fraction of occupied sites as a function of population colonization and ex-
tinction probabilities, is the reference model for studying metapopulation
dynamics. In the 2000’s, this model was improved by introducing Stochastic
Patch Occupancy Models (SPOM), which make spatial dependence explicit
(Ovaskainen and Hanski, 2004) by considering that all patches are connected
but with different weights. A major limitation of these models is the assump-
tion that all individuals in the population are observable. This is because the
original aim of these models was not to estimate key parameters from data,
but rather to study the quasi-stationary state of the metapopulation (be-
fore total extinction, which is the stationary state). SPOMS have been used
to estimate parameters involved in the dynamics of the species under study
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(Rampal et al., 2004), however still in a context of complete observation of
the populations at each site.

In practice, populations studied are not always perfectly observable. Dur-
ing the monitoring, the objective is to detect the presence of the species or to
count the number of individuals in the population, but species can be rare or
cryptic and easily missed, or it can be confused with another. We will refer
to these situations as detection errors. In other cases, some individuals in the
population are more difficult to observe than other. Indeed, a population is
composed of individuals at different life stages, and for some species, one or
several life stages are not easily accessible to the observer. This is typically
the case for plants: standing flora are visible, while seeds in the seed bank
are hidden. It is also the case for many animals species like fishes, insects or
crustaceans, where the first life stages are usually difficult to localize and/or
to sample. For instance, in the case of salmon (Mobley et al., 2021), eggs
are deposited in spawning grounds that are very difficult to observe. We will
refer to such populations as Partially Observable Population (POP).

Hidden Markov Models (HMM, Cappé et al., 2005) are widely used in
ecology (McClintock et al., 2020; Glennie et al., 2023) because they are par-
ticularly adapted to estimate the dynamics of a single population from data
with detection error. Indeed, in the inference process, HMMs explicitly take
into account the fact that the process of interest is hidden and the observation
brings information on the hidden process. Examples of HMM to model de-
tection errors are numerous: Dubart et al. (2019) for snails, Royle and Kéry
(2007) for birds, or Louvrier et al. (2018) for wolves. See alsoGimenez et al.
(2014) or Louvrier et al. (2018) for explanations about the reformulation of
occupancy models into HMM. But, in the case where some life stages are
hidden there are not many attempts to use HMM. We can mention Pluntz
et al. (2018), but the model is actually an extension of the classical HMM.
One reason is that the dependency structure between hidden and observed
variables in a HMM is too simple to model the case where these two sets
of variables correspond to different life stages, due to the cycling over life
stages.

In addition, most of HMM for population dynamics study a single popu-
lation in a patch, with possibly a constant colonization parameter but which
is independent of the true state of the other patches in the regional metapop-
ulation. To the best of our knowledge, only two studies used a HMM-related
model with an explicit interaction between the different patchs of a metapop-
ulation, and estimated metapopulation parameters from data: Dubart et al.
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(2019) for snails in the context of detection error, and Le Coz et al. (2019)
for weeds with hidden seed bank.

Therefore, while species with hidden life stage are ubiquitous, there is
clearly a lack of modeling framework to be able to estimate from monitoring
data the key parameters driving metapopulation dynamics for such species.
As mentioned before, one possible explanation is that, for the within patch
dynamics, the HMM structure is too simple. Besides, taking explicitly into
account colonization from one patch to another requires also to model which
specific life stages are involved in this process. Indeed, not all life stages of
a population participate to dispersal, as shown for invertebrate species in
Benton and Bowler (2012), and these stages can be hidden. For example,
adult salmon disperse by swimming movement, so dispersal concerns the
observable life stage only, while fungus disperses through ascospores present
in the field soil, which are not visible. This makes the hidden life stages
an important consideration, although they are very rarely considered in the
context of metapopulation dynamics inference.

This paper focuses on metapopulations in which certain stages of devel-
opment are hidden. We will refer to them as Metapopulation with Partially
Observable Populations (M-POP), i.e. metapopulations in which the popula-
tions are POPs. In this work, we propose a conceptual guide for modeling and
estimating parameters involved in the dynamics of a M-POP. We consider
an extension of Dynamic Bayesian Networks (DBN, Dean and Kanazawa,
1989) with hidden states, which we refer to as Partially Observable DBNs
(PO-DBNs). PO-DBN generalize HMM in the sense that the Markovian as-
sumption is still made but there is no constraint of the dependency structure
between the observed and hidden variables at time t + 1 and observed and
hidden variables at time t. So, they are particularly suited to model a POP
dynamics by taking into account hidden stages dynamics and life cycle.Then a
M-POP can be modeled by interacting PO-DBN (one per population) which
interact through dispersal.

In an interacting PO-DBN, the interaction structure between the differ-
ent PO-DBN depends on the dispersal mode of the species under study. The
variables (hidden or observed) involved depend on the life stage at the origin
of the dispersal (hidden or observed life stage) and the life stage impacted
by the arrival of new individuals (again, hidden or observed life stage). For
instance, in the case of plants with seed bank, the observed life stage corre-
sponds to the standing flora and the hidden life stage to seeds in the seed
bank. Dispersal from one patch to another one starts from the standing flora
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and reaches the seed bank of the colonized patch. Therefore, in the corre-
sponding interacting PO-DBN structure, the hidden state of a patch at time
t+ 1 will depend on the observed states of neighbouring patches at time t.

After presenting why PO-DBN and interacting PO-DBN are well adapted
to the modeling of POP and M-POP dynamics respectively (sections 2 and 3)
we demonstrate that the main M-POP dynamics can be described from only
four basics interactions structures of interacting PO-DBN. In section 4 we
illustrate the four structures with concrete examples of species dynamics and
we show how to build the probability distributions defining the associated
interacting PO-DBN. Finally, in section 5 we consider parameter estimation
for these models and we discuss how to use the EM algorithm. We establish
that for two structures the complexity of EM remains linear in the number of
patches, which means that estimation is easily accessible for the associated
metapopulations. For the two other structures, the complexity is exponential
and we present methods from approximate inference that can be used to
overcome this computational limit.

2. From Partially Observable Populations to PO-DBN

In this section, we focus on the modeling of a POP dynamics, i.e. a single
population in a given patch. We show how the framework of PO-DBN is well
suited to model the different types of dynamics that can exist between the
observed life stage and the hidden life stage and we present examples from
the literature that follows this line to model weeds dynamics.

2.1. Partially Observable Populations

In ecology, a population is a group of individuals of the same species in
a given location (patch). Individuals can be present at different life stages.
The life cycle of animal species is classically divided into three stages: juve-
niles, growing individuals and finally in adults (Caswell, 1989). The life cycle
of plants is classically decomposed into three similar stages: seed, growing
plant and mature plant (Capdevila et al., 2022). Each stage plays an impor-
tant role in the dynamics of the species and a multitude of external factors
influence the survival of the species during one or more stages of its devel-
opment. For instance, for plants species, two types of strategies are used to
escape unfavorable (biotic or abiotic) environments: dormancy and coloniza-
tion. Indeed, when external conditions are unfavorable for their development
(e.g. cold winter), they can enter dormancy: a phase during which the plant
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development and metabolism is strongly reduced. The species can also colo-
nize new patches, i.e. spreads in a new environment.

In order to study the dynamics of a population, for instance to under-
stand which survival strategy is preferred, one needs to collect data from the
population (counts, abundance, presence/absence) at successive time steps.
However, some life stages can be more difficult to observe than others. Prac-
tically, in the case of plants, seeds in the seed bank are seldom sampled
because of the burden in time and cost, while standing plants are classically
sampled. We refer to a population where only some life stages are observable
as a Partially Observable Population (POP). Note that it is different from an
imperfect sampling where some individuals are missed independently from
their life stage, or misidentified to another species, which we refer to as de-
tection errors. In this paper we focus on population where only individuals
in specific life stages can be observed.

2.2. Why are PO-DBN adapted to model POP dynamics?

Dynamic Bayesian Networks (DBNs, Dean and Kanazawa, 1989) can be
used to study multidimensional time series with structured dependencies.
They describe the evolution over discrete time of a process S = (St)t∈N com-
posed of N variables: S = (S1

t , S
2
t , ..., S

N
t )t∈N,N∈N. A DBN is Markovian,

i.e the current state St depends only on the previous state St−1 and not on
all the past sequence. Thus, a DBN is completely determined by the initial
distribution of the state at time t = 0 and the transition distribution from
states St−1 to state St. As DBN are graphical models (Koller and Friedman,
2009), it is possible to represent the dependencies between the different vari-
ables through a directed graph whose nodes are the model’s variables and
arcs go from parent nodes toward child nodes. This is an advantage since this
graphical representation can easily been build from biological knowledge on
the species dynamics. Then in a second step, the joint distribution probabil-
ity of S = (S1

t , S
2
t , ..., S

N
t )t∈N,N∈N is defined as the product of the distribution

probability of each variable conditionally to its parents.
We refer to as Partially Observable Dynamic Bayesian Networks (PO-

DBNs), the case where only some variables in St are observed and the others
are hidden. PO-DBN are therefore particularly well suited to model POP. In
particular, in this paper we focus on populations whose dynamics are divided
into two distinct life stages: an observed and a hidden one, and we will show
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how to use PO-DBN to estimate the key parameters driving the population
dynamics, like survival or colonization.

2.2.1. How to model POP dynamics with a PO-DBN?

To describe POP dynamics, we focus on a special case of PO-DBN in
which N = 2 and we consider that St is composed of two variables: one
observed and one hidden, describing the state of the POP at time t: St =(
Ot

Ht

)
. The variable Ht, corresponds to the state of the unobservable life

stage (e.g. the larval stage of an insect or the seed stage of a plant), and
Ot is the state of the observable life stage (e.g. the adult insect or the
flowering stage of a plant). Note that there may be more than two life
stages but we assume that they can be grouped into two sets, observable and
hidden. The states of these two processes can take different forms. They can
be presence/absence data (= 1/0), count data or abundance classes data.
We denote the state space of H = (Ht)t∈N by ΩH and the state space of
O = (Ot)t∈N by ΩO.

The PO-DBN associated to the POP dynamics is defined by two proba-
bility distributions :

• The initial distribution of S0 at t = 0, denoted π, and defined, for all

s0 =

(
o0
h0

)
∈ ΩO × ΩH , as:

π(s0) = π(h0, o0) = P(H0 = h0, O0 = o0).

We will show in the next section how this probability can be decom-
posed into two terms, according to the dependency structure of the
PO-DBN.

• The transition distribution, which corresponds to the probability of St

conditionally to St−1 noted T , and defined as, for all st−1 =

(
ot−1

ht−1

)
∈

ΩO × ΩH , st =

(
ot
ht

)
∈ ΩO × ΩH :

T (st−1, st) = P(St =

(
ot
ht

)
|St−1 =

(
ot−1

ht−1

)
)

For greater clarity, we denote this probability T (ht−1, ot−1|ht, ot).
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Without more assumption beyond Markovianity, we can represent the
dependencies between the states of the population at time t − 1, St−1, and
at time t, St, on the diagram shown in Figure 1.

◦ ◦ ◦

• • •

t− 1 t t+ 1

Figure 1: Simplified graphical representation of the interactions between hidden states
and observed states in the PO-DBN of a POP. An empty circle represents an hidden life
stage (Ht) and a fulfilled one is an observed life stage (Ot). The oval form represents St.

Remark 1. A model with the dependency structure of Figure 1 has been
proposed by Pieczynski (2003) under the name of Pairwise Markov Chain. It
is presented as an extension of the HMM.

In order to take into account the specific dependencies between the ob-
served and the hidden life stages of a given species, the transition distribution
T can be decomposed as a product of two transitions : the first one corre-
sponding to the transition distribution of the hidden state, noted TH , and
the second one corresponding to the transition distribution of the observed
one, noted TO. We detail these two terms in the next section.

2.2.2. Examples of PO-DBN associated to the POP dynamics

The graphical representation of the PO-DBN shows the dependencies
between the hidden and observed life stages of each population. From it, we
can construct the model’s probability distributions π, TH and TO. We will see
that depending of the species, TH and TO will not involve the same variables
in the conditionning.

TH and TO define what we will referred to as the internal dependency
structure of the POP described by the PO-DBN.

By looking at two particular PO-DBNs for POP dynamics with the two
most general structures, whose internal dependency structures are shown in
Figure 2, we explain in detail how to write the probability distributions
π, TH and TO associated. The two figures illustrate the same model, i.e.
the same transition distribution from st−1 to st. This transition can be
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decomposed in two different ways, using Bayes rule, and depending on the
population dynamics in question, we will choose the decomposition which
is easier to interpret in terms of the dependencies between the hidden and
observed state of life.

H0 Ht−1 Ht

O0 Ot−1 Ot

(a) PO-DBN associated to a POP dynamics
with dependencies from the hidden life stage to
the observed one

H0 Ht−1 Ht

O0 Ot−1 Ot

(b) PO-DBN associated to a POP dynamics
with dependencies from observed life stage to
the hidden one

Figure 2: Graphical representation of the internal dependency structures of the two most
general PO-DBN associated to a POP dynamics. Between time steps t−1 and t, the dashed
arcs are involved in the transition of observation, TO, and the filled ones are involved in
the transition of the hidden state, TH .

For the internal dependency structure shown in Figure 2a, the probability
distributions π, TH and TO are derived from the graphical representation by
identification of the parents of Ot and Ht:

• A time t = 0, node O0 is the child of node H0 and node H0 has no
parent node. Thus, in the structure 2a the initial distribution can be
written as follows:

π(h0, o0) = P(H0 = h0, O0 = o0)

= P(O0 = o0|H0 = h0)P(H0 = h0).

• At time t, node Ot is the child node of Ht, Ot−1 and Ht−1. And, Ht

is the child node of Ht−1 and Ot−1. So, the transition distributions TH

and TO can be written as follows:

TH(ht|ht−1, ot−1) = P(Ht = ht|Ht−1 = ht−1, Ot−1 = ot−1),

and,

TO(ot|ht, ht−1, ot−1) = P(Ot = ot|Ht = ht, Ht−1 = ht−1, Ot−1 = ot−1).

For the structure shown in Figure 2b, the distributions are as follows :
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• The initial probability can be rewritten as:

π(h0, o0) = P(H0 = h0|O0 = o0)P(O0 = o0).

• The transition probabilities TH and T0 are equal to:

TH(ht|ht−1, ot−1, ot) = P(Ht = ht|Ot = ot, Ht−1 = ht−1, Ot−1 = ot−1),

and,

TO(ot|ht−1, ot−1) = P(Ot = ot|Ht−1 = ht−1, Ot−1 = ot−1).

In practice, the internal dependencies structures of the PO-DBN for a
POP are often less complex, resulting in simpler expressions of the TH and
TO distributions. Indeed, depending on population dynamics, some depen-
dencies no longer exist. So, we examine now a simpler internal dependency
structure that corresponds to the graphical representation of Figure 3, and
we detail the expression of the probability distributions π, TH and TO.

H0 Ht−1 Ht

O0 Ot−1 Ot

Figure 3: Graphical representation of the internal dependency structure of the PO-DBN
structure associated to a theoretical POP dynamics. Between time steps t − 1 and t,
the dashed arcs are involved in the transition of observation, TO, and the filled ones are
involved in the transition of the hidden state, TH .

• A time t = 0, nodeH0 is the child of node O0 and node O0 has no parent
node. Thus, the initial distribution can be decomposed as follows:

π(h0, o0) = P(H0 = h0, O0 = o0)

= P(H0 = o0|O0 = h0)P(O0 = o0).
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• At time t, node Ht is the child node of Ot. And, Ot is the child node of
Ot−1 and Ht−1. So, the transition distributions TH and TO are defined
as follows:

TH(ht|ot) = P(Ht = ht|Ot = ot),

and,

TO(ot|ht−1, ot−1) = P(Ot = ot|Ht−1 = ht−1, Ot−1 = ot−1).

If we remove some arcs in Figure 2a, we can recover the case of HMM,
widely used in ecology, whose internal dependency structure is shown in
Figure 4. Therefore HMM are special cases of PO-DBN.

H0 Ht−1 Ht

O0 Ot−1 Ot

Figure 4: Graphical representation of the internal dependency structure of a HMM. Be-
tween time steps t− 1 and t, the dashed arcs are involved in the transition of observation,
TO, and the filled ones are involved in the transition of the hidden state, TH .

In this structure, the distributions of probability defining the model are
as follow.

• The initial probability is decomposed as:

π(h0, o0) = P(O0 = o0|H0 = h0)P(H0 = h0).

• The transition probabilities TH and T0 are the following:

TH(ht|ht−1) = P(Ht = ht|Ht−1 = ht−1),

which is the transition matrix of the HMM and,

TO(ot|ht) = P(Ot = ot|Ht = ht),

usually referred to as the emission distribution of the HMM.
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2.2.3. Estimation of the PO-DBN of a POP

In order to estimate the key parameters of the PO-DBN associated to
the POP, in the case where the state spaces are not too large, π, TH and
TO can be modeled as non-parametric. Otherwise, and in any cases, the
distribution π, TH and TO can be defined via some parameters linked to
the species dynamics. Estimation is based on classical algorithms for data
with latent variables: EM and the Forward-Backward algorithm (see section
5.1 and Appendix A, and also Murphy, 2002, for more general PO-DBN) .
Since for the PO-DBN of a POP, N = 2, EM can be ran without encountering
problems due to space or time complexity.

2.3. Literature examples of PO-DBNs to model and estimate the weeds dy-
namic

We present here existing works using PO-DBN for describing POP dy-
namics (even if not named as such by the authors), in which the hidden states
and observed states represent different life stages of the population.

The first model, presented by Pluntz et al. (2018) is a model designed
to estimate the key parameters involved in weeds dynamics, which are the
probabilities of colonization (c), seed survival (s), seed production (d) and
germination (g). The observed variable Ot ∈ {0, 1} is 1 if standing flora is
observed at time t and 0 otherwise. The hidden state Ht ∈ {0, 1} designates
the presence or absence of seeds in the soil. The model is an extension
of the classical HMM of Figure 4 where the current unobserved life stage
depends not only on the previous one but also on the previous observed
population. This is necessary in order to model the fact that the standing
flora (observed) produces new seeds that will enter the seed bank (hidden).
This event represents seed production, and it occurs with probability d. The
PO-DBN internal dependency structure is represented in the Figure 5 and is
a sub case of Figure 2a.

The parameters s, c and d are both involved in the expression of TH and g
is involved in the expression of TO . Finally, the seed production, of probabil-
ity d is fixed to 1. So, except d all the parameters are estimated using the EM
algorithm and the method has been implemented on real data to determine
the roles of seed banking and colonization in weed species dynamics.

The model proposed by Louvet et al. (2021) is similar to that of Pluntz
et al. (2018) model. However, it offers additional insights into the effect
of the seed bank, which is characterized by the Seed Bank Characteristic
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H0 Ht−1 Ht

O0 Ot−1 Ot

Figure 5: Graphical representation of the internal dependency structure of the PO-DBN
used to model weeds dynamics in Pluntz et al. (2018). The observed life-stage is the
standing flora, and the unobserved life stage is the seed bank. Note that there is a delay
of one time step on Ot compared to the structure in Pluntz et al. (2018), but they are
equivalent up to a shift of 1 in the indices of the observed variables. Between time steps
t− 1 and t,the dashed arcs are involved in the transition of observation, TO, and the filled
ones are involved in the transition of the hidden state, TH .

Event (SBCE) probability. The model proposed by Kazakou et al. (2021) is
bayesian and, puts an additional layer to the model of Pluntz et al. (2018) in
which the parameters depend on conditions external to the plant. Parameter
estimation is obtained using an EM algorithm in Louvet et al. (2021) and an
MCMC algorithm in Kazakou et al. (2021).

The limit of these models comes from the fact that they represent colo-
nization as a constant probability (seed rain) that influences the dynamics of
the unobserved life stage. It does not take into account the real population
state of neighbouring patches over time. The framework presented in the
next section allows us to go beyond this limit.

3. From Metapopulation with Partially Observable Populations to
interacting PO-DBN

Now we move from the modeling of a POP to the modeling of several POP
in interactions as in a metapopulation with some life stages unobserved. We
first define formally the notion of M-POP. Then we present the framework
of interacting PO-DBN and the general procedure to build one for a given
M-POP. A example from literature is described, again on weeds dynamics.

3.1. Metapopulation with Partially Observable Populations

A metapopulation is a set of spatially distributed populations of a same
species, interacting with each other. In a metapopulation, each population
evolves in a homogeneous spatial unit that is different from its neighbours,
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called a patch.

We refer to a metapopulation in which in each patch only some life stages
of the population are observable as a Metapopulation with Partially Observ-
able Populations (M-POP). In a M-POP, interactions between the popula-
tions of different patchs, which represent colonization, can occur between
hidden or observed life stages.

In the following, we will assume that the hidden and observed life stages
are identical in each patch. Besides, we assume that the mode of colonization
is identical between all populations of the M-POP. So, the internal depen-
dency structure of the PO-DBN associated to the POP will be the same in
each patch. Then we show how to link the PO-DBN of the different patches.

3.2. How to model M-POP dynamics with interacting PO-DBN ?

Let us consider a M-POP divided into C distinct populations, where
C ≥ 1. Each population is identified by a number c ∈ {1, ..., C} and its local
dynamics is modeled by the associated PO-DBN. Its states (observed and
hidden) can be influenced by the populations in the neighbouring patches of
c (if dispersal is limited by distances for instance). The set of indices of the
patches neighbours to patch c is denoted Nc.

By extending the notations of the Section 2.2.1 to the case of C patches,

we denote as Sc,t =

(
Oc,t

Hc,t

)
the state of the POP of patch c at time t (Oc,t for

the local observable life stage andHc,t for the local hidden life stage). We note

S1:C,t =

(
O1:C,t

H1:C,t

)
the state of the M-POP (composed of all POP in the M-

POP), where S1:C,t = (S1,t, S2,t, . . . , SC,t) and O1:C,t = (O1,t, O2,t, . . . , OC,t).
Colonization between patches must be taken into account in the transition

distributions TO and TH in each patch. Indeed, on a patch c the new state Sc,t

of POP c depends not only on the state local Sc,t−1 but also on the state of
the neighbouring POPs denoted as SNc,t−1. Furthermore, depending on the
species studies, the life stage from which colonization originates is observed
or hidden, and similarly colonization impacts only the hidden or the observed
life stage, meaning that TO and TH will depend only on the hidden part or
the observed part of SNc,t−1.

So, to model a M-POP the idea is to start from a set of C identical PO-
DBN and to link them by interaction arcs that form the Interaction Structure.
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We will refer to this model (without more formal definition) as an interacting
PO-DBN. The graphical representation of the conditional independencies in
an interacting PO-DBN is constructed from the repetition (for all patches) of
the same internal dependency structure (as populations of the same species
are assumed to develop in the same way). These internal dependency struc-
tures are in interaction via arcs that go from Oc′,t−1 or Hc′,t−1 at patch c′

to Oc,t or Hc,t in another patch c at t + 1, if c′ is in Nc. These arcs repre-
sent the mode of dispersion associated with the M-POP under study. This
final structure (internal dependency structure plus interaction structure) is
designated as the total interaction structure.

3.3. Example of an interacting PO-DBNs for M-POP from literature

Continuing the example of weeds, colonization of the seed bank is due
to seeds produced by standing flora that disperse and reach neighbouring
patches and enter their seed bank. However in the model of Pluntz et al.
(2018), the real state of the neighbouring patches is not considered and col-
onization is summarized by the parameter c constant over time. This does
not fully reflect the metapopulation’s dynamics.

To overcome this limitation, Le Coz et al. (2019) and Cheptou et al.
(2022) have extended the model proposed by Pluntz et al. (2018) to model
the dynamics of annual plants and seed banks with an interacting PO-DBN
(even if not named as such in the article). Similarly to Pluntz et al. (2018),
the observed life stage is the standing flora (divided into abundance classes),
and the hidden one represents the seed bank (also divided into abundance
classes). This model combines the dynamics of a considered weed population
in each field, represented by the internal dependency structure shown on
Figure 5 to an interaction structure between the populations of each field
representing colonization. Colonization occurs from the standing flora of a
patch to the seed bank of another patch, as shown in Figure 6. In this
model the state of the seed bank in field c depends explicitly on the state
of the standing flora in the neighbouring fields, which changes through time
(as opposed to a seed rain model). We will come back to this interacting
PO-DBN in section 4.2 where we will provide the expression of TO and TH .
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Figure 6: Graphical representation of the total dependency structure of the interacting
PO-DBN used to model weeds dynamics in Le Coz et al. (2019). Case of a metapopulation
of two patches. Filled circle represent standing flora (observed life stage), and empty ones
represents the seed-bank unobserved life stage. In this representation, the dashed arcs are
involved in the TO transition, and the filled arcs are involved in the TH transition. Red
arcs correspond to the interaction structure while black arcs correspond to the internal
dependency structure.

4. Four structures of interacting PO-DBNs to describe the main
M-POP dynamics

From the two previous section, it appears clearly that interacting PO-
DBNs offer a promising modeling option in ecology for describing the dy-
namics of M-POPs because they enable the study of species whose some life
stages may not be observable on each patch, as well as the explicit modeling
of inter-patch colonization. In order to deepen our understanding on how to
use them for modeling and estimating M-POP dynamics, we will address the
two open questions in the following sections.

• What are the relevant interaction structures when modeling the dy-
namics of a M-POP ? (Section 4)

• Can we easily access parameter estimation for these models, in other
words, what is the computational complexity of estimation in interact-
ing PO-DBNs ? (Section 5)

Consider the dynamics of a M-POP, containing C distinct populations
interacting with each other. As all specie do not have the same dispersal
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strategy, in order to identify the interaction structure of the associated in-
teracting PO-DBN we need to identify whether the life stage from which
colonization originated is observed or hidden, and similarly whether the col-
onized life stage is hidden or observed. If we consider a species that uses only
one dispersal mode there are only four possible interaction structures:

• colonisation from the observed life stage of patch c toward the observed
life stage of patch c′ (from Oc,t−1 to Oc′,t), as shown in Figure 7;

◦ ◦

• •

◦ ◦

• •

t t+ 1

c = 1

c = 2

Figure 7: General representation of the interacting PO-DBN with interactions between
observed life stages of the C = 2 populations. An empty circle represents an hidden life
stage and a filled one is an observed life stage.

• colonisation from the observed life stage of patch c to the hidden life
stage of patch c′ (from Oc,t−1 to Hc′,t), as shown in Figure 8;

• colonization from the hidden life stage of patch c to the observed life
stage of patch c′ (from Hc,t−1 to Oc′,t), as shown in Figure 9;

• colonisation from the hidden life stage of patch c towards the hidden
life stage of patch c′ (from Hc,t−1 to Hc′,t), as shown in Figure 10.

It is possible to combine these four types of interaction to create more com-
plex interaction structures, in order to model species with several dispersal
modes.

In Figures 7 to 10 the internal dependency structure in each patch is
not detailed because it will be different from one species to another. In the
following, we describe a concrete example of M-POP for each of the four
interaction structures and we provide the definition of π, TO and TH for the
associated interacting PO-DBN.
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Figure 8: General representation of the interacting PO-DBN with interactions from ob-
served life stages to hidden life stages of the C = 2 populations. An empty circle represents
an hidden life stage and a filled one is an observed life stage.
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Figure 9: General representation of the interacting PO-DBN with interactions from hidden
life stages to observed life stages of the C = 2 populations. An empty circle represents an
hidden life stage and a filled one is an observed life stage.

4.1. Interactions between observed life stages

Let us consider the case of sea trouts dynamics. The number of trouts
migrating upstream is declining every year due to global warming, but also to
changes in the watercourses that hinder their migration. It would therefore
be helpful to have a model at the level of the metapopulation in order to
predict the dynamic of the trouts populations or their genetic connectivity.

In a metapopulation of sea trouts (Mobley et al., 2021), in each patch,
a river, the population is composed of two life stages: adults and trouts
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Figure 10: General representation of the interacting PO-DBN with interactions between
hidden life stages of the C = 2 populations. An empty circle represents an hidden life
stage and a filled one is an observed life stage.

eggs. The only observable life stage is that of adults. They are observed
when they go up the rivers to lay their eggs in spawning grounds, which are
difficult to observe. Then, they move to colonize other patches (i.e. other
rivers). Therefore, the dynamics of two patches are linked by movements
from the observed life stage of a patch to the observed life stage of another
patch. This corresponds to the first general interaction structure presented
in Figure 7 in the case of C = 2 processes. To build an interacting PO-DBN
for the sea trouts, we also need to specify the internal dependency structure.
Since eggs become adults in the same river and adults can come back to the
river they come from, we obtain the total dependency structure of Figure 11
in the case of 2 rivers. If there are more than two patches, some rivers may
be too far from each other for colonization to be possible, and, in this case,
each river c is only in interaction with some other rivers c′ ∈ Nc and the
arc corresponding in the interaction structure is only present between the
PO-DBN of patch c and those in Nc.

Based on the structure in Figure 11, n interacting PO-DBN model for
a sea trouts M-POP would be as follows. Let us define Hc,t as the pres-
ence or not of eggs hidden in the spawning ground of the river c and Oc,t

as the presence or not of adult trouts in the the same river. Since, the
states are ’presence/absence’ we denote the state spaces as ΩH = {0, 1} and
ΩO = {0, 1}.

The three probability distributions π, TH and TO of the interacting PO-
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Figure 11: Total dependency structure of the interacting PO-DBN associated to sea trouts
with interactions between observed life stages of the C = 2 populations. An empty circle
represents the state of eggs (hidden) and a filled one is the state of adults (observable) in
the river. In this representation, the dashed arcs are involved in the TO transition, and
the filled arcs are involved in the TH transition. Red arcs correspond to the interaction
structure while black arcs correspond to the internal dependency structure.

DBN associated to the sea trout dynamics are defined as follows :

• Initial distribution. There is one initial probability per river c. If we
assume that it is the same for each river it can be denoted π(hc,0, oc,0),
where for all c ∈ {1, ..., C}, and for all hc,0 ∈ ΩH and for all oc,0 ∈ ΩO:

π(hc,0, oc,0) = P(Hc,0 = hc,0, Oc,0 = oc,0)

= P(Hc,0 = hc,0|Oc,0 = oc,0)P(Oc,0 = oc,0).

It is decomposed into two probabilities: the probability of presence/absence
of adults at t = 0, and the probability of presence/absence of eggs
at t = 0 conditionally to the presence/absence of adults. Obviously,
P(Hc,0 = 1|Oc,0 = 0) = 0.

• Transition distribution. For Figure 11, we have that the presence of
eggs in the spawning ground of river c depends only on the presence
of adult sea trout in that river, while the presence of adults at time t
depends on the presence of adult at time t−1 in river c and in neighbour
rivers, and on the presence of eggs at time t − 1 in river c (eggs that
have hatched into adults).
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The two transition distributions TH and TO are therefore defined as
follows: for all c ∈ {1, ..., C}, and for all (h1:C,t−1, o1:C,t−1) ∈ ΩH × ΩO

and (hc,t, oc,t) ∈ ΩC
H × ΩC

O,

TH(hc,t|oc,t) = P(Hc,t = hc,t|Oc,t = oc,t).

It represents the probability that there are eggs (or not) in spawning
grounds of river c conditionally to the arrival (or not) of the sea trouts
in river c. And,

TO(oc,t|{oc′,t−1, c
′ ∈ Nc}, ot−1,c, ht−1,c) =

P(Oc,t = oc,t|{Oc′,t−1 = oc′,t−1, c
′ ∈ Nc}, Oc,t−1 = oc,t−1, Hc,t−1 = hc,t−1),

which designates the probability of presence or absence of adults in
river c at time t conditionally to arrival of adults by migration or to
the presence of eggs at t− 1 that have hatched into adults.

The sea trouts metapopulation is an example of the general interaction
structure shown in Figure 7. This structure can be relevant to any M-POP
where individuals in the first life stages remain unseen and only adults are
visible and can colonize new patches. For instance, it can describe the dy-
namic of river fishes that go to ocean and go up into the rivers.

4.2. Interactions from observed life stages to hidden life stages

Let us continue the description of the case of a weed metapopulation,
started in section 3.3. Weed control is a major challenge in agriculture, be-
cause weeds can lead to competition with crops, thus decreasing crop yield.
In the same time weeds are beneficial for auxiliary and pollinator insects
(Bretagnolle and Gaba, 2015). In order to regulate weeds populations, with-
out totally eradicating them, interacting PO-DBNs can allow us to estimate
the colonizing and dormancy profile of each species.

For a metapopulation of weeds, we recall that in each patch (i.e. a field),
the population is composed of two life stages : seeds in seed bank and stand-
ing flora, and only the standing flora is visible. The seeds in seed bank can
remain in the soil or grow and become standing flora. Seeds produced by the
standing flora either enter the local seed bank or are dispersed by the wind
before entering the soil and feeding the seed bank of other patches (i.e. other
fields). Thus, the dynamics of two patches are linked by interactions from
the observed life stage of a patch to the hidden life stage of another patch.
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This corresponds to the second general interaction structure, presented in
Figure 8, where C = 2. If there are more than two patches, some fields may
be too far from each other for colonization to be possible, and, in this case,
each field c is only in interaction with a subset of fields c′ ∈ Nc and the arc
corresponding in the interaction structure is only present between c and the
PO-DBN of patches in Nc.

Then, combining this interaction structure with the internal dependency
structure specific to weeds leads to the total dependency structure of Figure
6. Let us know define more formally the interacting PO-DBN model for a
weed M-POP. Let us define Hc,t as the presence or absence of seeds hidden
in the soil , and Oc,t as the presence or absence of standing flora observed
on the surface of field c at time t. Since, the states are ’presence/absence’,
the state spaces are ΩH = {0, 1} and ΩO = {0, 1}. The three probability
distributions π, TH and TO of the PO-DBN associated to a weed dynamics
are defined as follows :

• Initial distribution. There is one initial probability per patch c. We
denote π(hc,0, oc,0), where for all c ∈ {1, ..., C}, for all hc,0 ∈ ΩH and
for all oc,0 ∈ ΩO:

π(hc,0, oc,0) = P(Hc,0 = hc,0, Oc,0 = oc,0)

= P(Oc,0 = oc,0|Hc,0 = hc,0)P(Hc,0 = hc,0),

where the two terms designate respectively the probability of presence
or absence of standing flora conditionally to the presence or absence of
seeds in the soil, and the probability of presence or absence of seeds in
the soil, at the start of the study. Obvioulsy, P(Oc,0 = 1|Hc,0 = 0) = 0.
The probability P(Oc,0 = 1|Hc,0 = 1) = is the probability of success of
germination and growth of the plant.

• Transition distribution. The presence of seeds in the soil and of stand-
ing flora in the patch c at time t depends not only on the presence
of seeds in the soil and of standing flora in the patch c at time t − 1
but also on the standing flora of the other patch c′ at time t− 1. The
two transition distributions TH and TO are derived as follows. For all
c ∈ {1, ..., C}, for all (h1:C,t−1, o1:C,t−1) ∈ ΩH × ΩO and (hc,t, oc,t) ∈
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ΩH × ΩO,

TH(hc,t|hc,t−1, oc,t−1, {oc′,t−1, c
′ ∈ Nc}) =

P(Hc,t = hc,t|Hc,t−1 = hc,t−1, Oc,t−1 = oc,t−1, {Oc′,t−1 = oc′,t−1, c
′ ∈ Nc}).

It represents the probability of presence/absence of seeds in the seed
bank of field c at time t conditionally to the presence of seeds at time
t− 1 in field c and to the presence/absence of standing plants in neigh-
bouring fields at t − 1. For instance, if oc,t−1 = 0, oc′,t−1 = 0 for all
c′ ∈ Nc, and hc,t−1 = 1 TH(1|hc,t−1, oc,t−1, {oc′,t−1, c

′ ∈ Nc}) represents
the probability of survival of the seed bank from t− 1 to t.

The transition for the local observation is

TO(oc,t|hc,t) = P(Oc,t = oc,t|Hc,t = hc,t),

It designates the probability of presence/absence of standing plants at
time t conditionally to the presence/absence of seeds in the seed bank
at t.

We have described an example of an interacting PO-DBN with the general
interaction structure shown in Figure 8. It also applies to any annual plant
whose newly produced seeds are dispersed by the wind, by animals (e.g.
hoarding by squirrels or transport by fur), by humans or by gravity.

4.3. Interactions from hidden life stages to observed life stages

In order to reduce pesticide use in the management of plant diseases in
crops fields, it is necessary to understand the epidemics dynamics at the
local and regional scales. A model at the metapopulation level would be
useful to inform management tools (Cros et al., 2017) and to design efficient
management strategies. We illustrate the general dependency structure of
Figure 9 on the case of oilseed rape phoma stem canker. This is a fungal
disease that infects and destroys oilseed rape crops (West et al., 2001). In
a given field (i.e., a patch), two life stages can be distinguished: ascospores
on the field surface in stubble, which are very difficult to detect (consid-
ered as the hidden life stage), and, phoma that has infected a leaf, visible
by the leaf spots (observable life stage). Starting from leaf spots, phoma
then spreads throughout the plant, ultimately leading to its death and the
production of infected stubble. This stubble, remaining on the soil surface
after oilseed rape has been harvested, produce ascospores, which are then
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dispersed by the wind, infecting young plants in local and other patches (i.e.,
other fields). The interaction structure is that of Figure 9 since dispersal
starts from ascospores (hidden) and the result of colonization is visible on
infected leaves (observed). The complete interaction structure associated to
the phoma dynamics is represented, for C = 2 patches, in Figure 12. As for
the other examples, if there are more than two patches, the arcs correspond-
ing to the interaction structures may not be present between all patches but
only between those that are spatially neighbours.
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Figure 12: Total dependency structure of the interacting PO-DBN associated to the phoma
dynamics on oilseed rape, with interactions from hidden life stages towards observed life
stages. An empty circle represents the ascospores in stubble on the ground (hidden) and a
filled one represents the infected leaves (observed). In this representation, the dashed arcs
are involved in the TO transition, and the filled arcs are involved in the TH transition. Red
arcs correspond to the interaction structure while black arcs correspond to the internal
dependency structure.

The probabilities defining an interacting PO-DBN model for this M-POP
would be as follows. Let us define Hc,t as the abundance of ascospores on
the stubble on the field c surface and Oc,t as a severity index derived from
the spots on the leaves of field c. The state spaces are ΩH = {0, 1, ..., s} and
ΩO = {0, 1, ..., d}, where 0 means ’absence’ and s or d are respectively the
maximal abundance class or severity index.

The three distribution probabilities π, TH and TO of the interacting PO-
DBN associated to the phoma dynamics are defined as follows:
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• Initial distribution. There is one initial probability per process c. If
we assume that it is the same for each field it is denoted π(hc,0, oc,0),
where for all c ∈ {1, ..., C}, and for all hc,0 ∈ ΩH and for all oc,0 ∈ ΩO:

π(hc,0, oc,0) = P(Hc,0 = hc,0, Oc,0 = oc,0)

= P(Hc,0 = hc,0|Oc,0 = oc,0)P(Oc,0 = oc,0).

The two probabilities designate respectively the probability of the as-
cospores abundance conditionally to the severity index of the leaf in-
fection and the probability of the severity index of the leaf infection,
at initial time.

• Transition distribution. From Figure 12, we have that the abundance
of hidden ascospores on the field c at time t depends on the severity
index represented by the leaf spots visible at the same time (same year)
on the same field, while the severity index on the field c at time t is
taken conditionally to the abundance of infected stubble on patch c
and on patches in Nc at time t − 1. The two transition distributions
TH and TO are defined as follows: for all c ∈ {1, ..., C}, and for all
(h1:C,t−1, o1:C,t−1) ∈ ΩC

H × ΩC
O and (hc,t, oc,t) ∈ ΩH × ΩO,

TH(hc,t|oc,t) = P(Hc,t = hc,t|Oc,t = oc,t).

It represents the probability of the abundance of the infected stubble
(ascospores) conditionally to the severity index the same year on patch
c. And,

TO(oc,t|{hc′,t−1, c
′ ∈ Nc}) = P(Oc,t = oc,t|{Hc′,t−1 = hc′,t−1, c

′ ∈ Nc},
Hc,t−1 = hc,t−1),

which designates the probability of the severity index conditionally to
the hidden infected stubble in the neighbour fields and in the local field
the previous time step.

Remark 2. In practice, in agriculture, oilseed rape is cultivated in rotation
with other crops such as wheat and barley. In this case, since phoma cannot
infect wheat and barley, the internal dependency structure and the interaction
structure would present less arcs compared to Figure 12.
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The structure of Figure 12 could also be applied to other metapopula-
tions such as a fungus whose mode of dispersal is projection. It also can be
applied to mussel dynamics, in which juveniles (too small to be visible) are
transported by host fishes from one patch to another, then drop out as adults
(and therefore too large to be transported again) and become visible in their
arrival patch, where they will produce new juveniles that will be transported
to another patch.

4.4. Interactions between the hidden life stages

Flooding favors the movement of certain species, both animal and plant.
In this example, we consider plant species with low wind dispersal and for
which flooding, i.e. moving seeds by water, is the only dispersal mode. In
order to predict the spatial repartition of these species, it is important to
take into account the effect of flooding on their dynamics when modeling
(Hölzel and Otte, 2001).

During flooding, some of the seeds in the patch’s soil may be carried by
the water to other patches downstream of the flooding site, while others may
remain in the patch soil. Following the flood, the displaced or non-displaced
seeds germinate and become standing floras. Therefore the dynamics of two
patches are linked by movements of the hidden life stage of a patch to an-
other patch. This corresponds to the general interaction structure presented
on Figure 10 in the case of C = 2 patches. The detailed interaction struc-
ture associated to the dynamic of these plants is shown in Figure 13 for two
patches. If there are more than two patches, some patches may be too far
from each other for colonization to be possible. In this case, each patch c
is only in interaction with some other patches c′ ∈ Nc and the arc corre-
sponding in the interaction structure is only present between the PO-DBN
associated to the specie in patch c and those in Nc. Then the internal de-
pendency structure in a patch leads to an interacting PO-DBN with total
dependency structure shown in Figure 13.

Let us define Hc,t as the abundance of seeds in seed bank of the patch c
and Oc,t as the abundance of standing flora visible on the same patch. The
state spaces are ΩH = {0, 1, ..., s} and ΩO = {0, 1, ..., d}, where 0 means
’empty’ and s or d represent the maximal abundance class.
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Figure 13: Total dependency structure of the interacting PO-DBN associated to the flood-
ing dynamics with interactions between hidden states. An empty circle represents the seed
in seed-bank (hidden) and a filled one represents the standing flora (observed). In this
representation, the dashed arcs are involved in the TO transition, and the filled arcs are
involved in the TH transition. Red arcs correspond to the interaction structure while black
arcs correspond to the internal dependency structure.

The three distribution probabilities π , TH and TO of the interacting
PO-DBN associated to the specie dynamics are defined as follows :

• Initial distribution. There is one initial probability per process c. If
we assume that it is the same for each patch it is denoted π(hc,0, oc,0),
where for all c ∈ {1, ..., C}, and for all hc,0 ∈ ΩH and for all oc,0 ∈ ΩO:

π(hc,0, oc,0) = P(Hc,0 = hc,0, Oc,0 = oc,0)

= P(Oc,0 = oc,0|Hc,0 = hc,0)P(Hc,0 = hc,0).

The two terms designate respectively the probability of abundance of
standing flora conditionally to the abundance of seeds, and the proba-
bility of abundance of seeds in the soil at time t = 0.

• Transition distribution. In Figure 13, we can see that the abundance
of seeds in the soil of patch c at time t depends local abundance of
standing flora at t − 1, and on the presence of seeds in the soil in
patch c and also in patches in Nc (displaced via flooding) at t − 1.
The abundance of standing flora in patch c at time t depends on the
presence of seeds in the soil in the same patch at time t . The two
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transition distributions TH and TO are therefore as follows:
for all c ∈ {1, ..., C}, for all (h1:C,t−1, o1:C,t−1) ∈ ΩH×ΩO and (hc,t, oc,t) ∈
ΩC

H × ΩC
O,

TH(hc,t|hc,t−1, {hc′,t−1, c
′ ∈ Nc}, oc,t−1) = P(Hc,t = hc,t|Hc,t−1 = hc,t−1,

{Hc′,t−1 = hc′,t−1, c
′ ∈ Nc},

Oc,t−1 = oc,t−1),

It represents the probability of the abundance of seeds in the soil con-
ditionally to the seeds abundance in patch c and in neighbour patches
time t − 1 and the abundance of standing flora in the same patch at
time t− 1. And,

TO(oc,t|hc,t−1) = P(Oc,t = oc,t|Hc,t = hc,t),

which is the probability of standing flora abundance conditionally to
the abundance of seeds in the same patch, representing the growth of
plants.

The model with the general interaction structure shown in Figure 10
can be applied to other metapopulations which are displaced by an external
effect when they are in their hidden life stage, such as when seeds in the
soil are moved from one patch to another by tractor wheel. Besides, the
metapopulation dynamics of subterranean animals that can move from one
patch to another via underground passages can also be described by such
structure.

Remark 3. Another example of the general interaction structure shown in
Figure 10 is known in the literature as Coupled HMM (CHMM, Brand et al.,
1997). A CHMM in an interacting PO-DBN whose total interaction structure
shown in Figure 14. It is well adapted to deal with the case of detection
errors, in which the observation is a ”noisy” version of reality, described by
the hidden state.

As illustrated in the four examples, the construction of the interacting
PO-DBN associated to the dynamics of the species under study is a relatively
straightforward process. It comprises three fundamental steps:

1. At the POP scale, the internal dependency structure is built from the
dynamics of the POP.
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Figure 14: Graphical representation of a Coupled HMM. An empty circle represents a
hidden state and a filled one represents an observed one. In this representation, the
dashed arcs are involved in the TO transition, and the filled arcs are involved in the TH

transition. Red arcs correspond to the interaction structure while black arcs correspond
to the internal dependency structure.

2. At the M-POP scale, the type of interactions between each POP are
identified from the type of dispersal used and arcs are added between
the PO-DBN of each patch to obtain the total dependency structure
of the interacting PO-DBN associated to the dynamics of the M-POP
under study.

3. Ultimately, the graphical representation of the total dependency struc-
ture is used in order to identify which variables are parents of Oc,t on
one hand and of Hc,t on the other hand, in order to determine the
variables involved in the conditioning part of TH and TO.

5. Estimation of the parameters of a M-POP

In this section, we begin by recalling how parameter estimation is classi-
cally performed for a PO-DBN with one of the structure shown in Figure 2
or with simpler internal dependency structure (i.e. with some arcs absent).
This is the model for a single POP on a patch. Then we show how the
computational complexity can become prohibitive when using a direct appli-
cation of the same estimation method to an interacting PO-DBN, depending
on the interaction structure. We explain why for the structures of Figure 7
and Figure 8 simplifications occur and estimation remains tractable meaning
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that for the corresponding M-POP it will be easy to implement an estima-
tion procedure with low time or space complexity. Finally we discuss which
methods for approximate resolution can be mobilized to bypass the compu-
tational lock associated to interacting PO-DBN with structures of Figures
Figure 9 and Figure 10.

5.1. Parameters estimation for the PO-DBN of a POP

Since a PO-DBN is in the family of models with hidden variables, the
classical method to estimate the parameters is the Expectation-Maximization
algorithm (EM, Dempster et al., 1977). The EM algorithm is an iterative
algorithm and each iteration is composed of two steps. We detail here these
two steps on the PO-DBN of Figure 2a to point out where the computational
difficulty could arise when moving to one of the four types of interacting PO-
DBN model of a M-POP presented in the previous section.

In the following, we denote the vector of the observations between t = 0
and t = M by O0:M = (O0, O1, O2, ..., OM). In the same way, the vector of the
hidden states between t = 0 and t = M is denoted H0:M = (H0, H1, ..., HM).
The set of model parameters is θ. For the non-parametric PO-DBN with
the dependency structure shown in Figure 2a, θ is composed of the initial
distribution π and the two transition distributions TH and TO.

Let us consider θ(m) the parameter estimates at iteration m of EM and
define Q(θ|θ(m)) the intermediate quantity, as the expectation of the complete
log-likelihood, where

Q(θ|θ(m)) = Eθ(m) [lnPθ(O0:M , H0:M)|O0:M = o0:M ] .

The two steps in each iteration are the following ones:

1. Expectation Step (E step): computation of the marginal condi-
tional distributions involved in the expression of the intermediate quan-
tity Q(θ|θ(m)).

2. Maximization step (M step): updating of the set of parameters θ
thanks to the quantities found in the E Step, by resolving θ(m+1) =
argmax

θ
Q(θ|θ(m)).

These two steps are repeated until the algorithm converges. EM converges
towards a local maximum of the likelihood Pθ(O0:M = o0:M). In the case
of the PO-DBN of Figure 2a, similarly to EM for estimating a HMM, the
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E-step relies on the Forward-Backward algorithm (Baum et al., 1970). Two
auxiliary quantities are computed recursively from which all other conditional
probabilities needed in the E step can be computed. Their expressions are:

αt(ht) = Pθ(m)(O0:t = o0:t, Ht = ht),

βt(ht) = Pθ(m)(Ot+1:M = ot+1:M |Ht = ht, Ot = ot).

Remark 4. Compared to the forward-backward variables of the EM for HMM
the difference lies in the fact that the observation ot appears in the condition-
ing of βt.

The quantities αs are computed by a forward recurrence

αt(ht) =
∑
ht−1

TO(ot | ht−1, ht, ot−1)TH(ht | ht−1, ot−1)αt−1(ht−1),

with α0(h0) = π(z0, y0). And the quantities βs by a backward recurrence

βt(ht) =
∑
ht+1

βt+1(ht+1)TO(ot+1 | ht+1, ht, ot)TH(ht+1 | ht, ot),

with βM(zM) = 1. One can see that for a given t and K possible values
for the hidden state (i.e. |ΩH | = K) there are 2K values to compute and
each computation involves K sums. Therefore computing all the αt(ht) and
βt(ht) requires 2MK2 sums. It means that the time complexity of the E-step
is quadratic in K, the number of possible states of the unobserved life stage
of the POP.

Regarding now the M-step, in the non-parametric case, the maximization
leads to analytical expressions for updating the parameters. In the paramet-
ric case, depending on the case, there may not be analytical expression and
one must resort to numerical optimization.

5.2. Why can estimation become intractable for interacting PO-DBN?

The most straightforward way to estimate the parameters of an inter-
acting PO-DBN would be to consider it as a PO-DBN model with struc-
ture of Figure 1 with multidimensional hidden and observed variables (by
grouping all patches) and to apply the EM algorithm to this PO-DBN.
Indeed, if we consider the vector of all hidden states at time t, H1:C,t =
{H1,t, H2,t, . . . , HC,t} and the vector of all observations at time t O1:C,t =
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{O1,t, O2,t, . . . , OC,t}, then (H1:C,t, O1:C,t) is a PO-DBN and the dimension of
the hidden state space is K ′ = |ΩH |C . Therefore the computational com-
plexity of the E-step becomes 2M(K ′)2 and is exponential in the number of
patches of the M-POP. This can quickly becomes prohibitive, beyond a few
patches.

5.3. For which interaction structure can we obtain a tractable complexity for
interacting PO-DBN estimation?

When representing an interacting PO-DBN by a multidimensional PO-
DBN as above we reach the worse complexity of the E step. We do not take
into account that the corresponding M-POP is structured in patches and that
not all 4 dispersal paths are used. In the four total dependency structures
presented in section 4, each structure uses a single dispersal path (e.g from
hidden life stage of a patch to observed life stage of another). In some cases,
this can lead to a reduction of the E step complexity.

Such a simplification will be possible when, conditionally to all the obser-
vation o1:C,0:M , the state of each hidden sequence,Hc,0:M = {Hc,0, Hc,1, . . . , Hc,M},
is independent of the state of each other sequence Hc′,0:M for c′ ̸= c. We will
refer to this property as Independence of Hidden Chains Conditionally to
the Observations (IHCCO). We will see that only two of the four interaction
structures described in section 4 satisfy this property. In this case the ac-
tual auxiliary quantities computed during the E step will not be αt(h1:C,t),
βt(h1:C,t) which both depend on the state of all hidden chains at time t, but
auxiliary quantities defined at the chain level, αc,t(hc,t), βc,t(hc,t), leading to
a complexity which is C × 2MK2 , i.e. linear in the number of patches
(see Appendix B and Appendix C).

It is a well established result (Koller and Friedman, 2009) that the condi-
tional independencies of a (Dynamical) Bayesian Network can be identified
from the structure of its graphical representation. So it is possible to ’read’
in the structures of Figures 7 to 10 if in each of these interacting PO-DBN
IHCCO holds or not. How to do this rigorously is explained in (Koller and
Friedman, 2009), and it is quite technical. Here we identify two particular
patterns that can be found in a structure and we explain only intuitively why
IHCCO does not hold if these patterns are present.

The first pattern is when two hidden variables Hc,t and Hc′,t′ from two
distinct patches have an out-going arc that reaches the same observed vari-
able, let say Oc′′,t′′ . This forms what is called a V-structure in the DBN
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(Koller and Friedman, 2009). If Oc′′,t′′ is observed, Hc and Hc′ are not inde-
pendent conditionally to this observation since they have both contributed
to its emission. Let think of an example where the observation is the sum
of the two hidden variables. Then knowledge on the sum of two variables
make these two variables dependent. This pattern is present in Figure 9,
which represent the interacting PO-DBN for a M-POP with interaction from
the hidden life stage to the observed life stage. Let us consider three patches
(C = 3), it this case both H1,t and H2,t have an out-going arc that reaches the
same observed variable, namely O3,t+1. So for this type of M-POP, IHCCO
does not holds and the complexity of EM will remain exponential in C.

A directed path is a path that follows the direction of the arc in the
graphical representation of the interacting PO-DBN. For instance, in Figure
6 there is a directed path from H1,0 to H2,2 that goes through O1,0 and H2,1.
The second pattern is the existence of a directed path that goes from the
hidden variable of one chain Hc,t towards the hidden variable of another
Hc′,t′ (t < t′) without going through any observed variables. If such a path
exists then, intuitively knowing the value of Hc,t has an influence on the value
of Hc′,t′ . This pattern is present in Figure 10. When the colonization goes
from the hidden population of one patch towards the hidden population of
another patch, it creates a directed path from hidden variables of patch c
towards hidden variables of patch c′ that does not pass through an observed
variable (for instance from hc,t towards hc′,t+1). So for this type of M-POP,
IHCCO does not holds and the complexity of EM will remain exponential in
C.

For the two remaining cases (Figure 7 and Figure 8) the two patterns
are never present. All the directed paths between hidden variables always
go through an observation. To get out of chain c and reach chain c′, the
information carried out by Hc,t must pass through some observations which
block the influence of Hc,t on Hc′,t′ . Furthermore, and observation is never
the child of two hidden variables from different chains. So there is no way
that hidden states at patch c influences hidden states at patch c′ conditionally
to the observations. For these two M-POP IHCCO holds and it is possible
to derive an EM with complexity only linear in C. Details of the E-step
for the structure of Figure 11 (which an example of the general structure of
Figure 7) and for the structure of Figure 6 (which an example of the general
structure of Figure 8) are provided in Appendix B and Appendix C (we
also provide the formula for updating the parameters, M-step).
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5.4. How to bypass the estimation lock when IHCCO does not hold ?

For the two interaction structures with no conditional independence be-
tween the hidden processes conditionally to the observations, three main
solutions can be used to handle the complexity of the E-step : Monte-Carlo
simulations, variational approximation of the conditional distribution of the
C hidden chains given the observations, or ad-hoc simplification of the global
transition probability.

Remark 5. As far as we know, estimation of an interacting PO-DBN with
structure of Figure 9 has never been studied, but it could be envisaged us-
ing one of these 3 methods. On contrary, these three options have already
been proposed for a particular case of the structure of Figure 10, the case
of Coupled HMM already mentioned and whose structure is shown in Figure
14.

5.4.1. Simulation-based EM

Simulation-based EM algorithms are used when Forward-Backward cal-
culations are too complex. In this type of algorithms, the E step is replaced
by a simulation step. There exist three main versions of approximate EM
based on simulations. In the case of Monte-Carlo EM (MC-EM, Wei and
Tanner, 1990), the intermediate quantity Q(θ|θ(m)) is approximated using
a Monte-Carlo estimator. Several samples from the conditional distribution
Pθ(m)(H1:C,0:M = h1:C,0:M | O1:C,0:M = o1:C,0:M) are generated and Q is approx-
imated by the empirical mean. Stochastic EM (SEM, Celeux and Diebolt,
1985) is a special case of MC-EM where only one draw from Pθ(m)(H1:C,0:M =
h1:C,0:M | O1:C,0:M = o1:C,0:M) is made. This sampled value is used to restore
the hidden variable and the M step consists in maximizing the log-likelihood
of the complete data Pθm(H1:C,0:M = h1:C,0:M , O1:C,0:M = o1:C,0:M), which can
be easier than maximizing Q. The Stochastic Approximation EM (SAEM,
Allassonnière and Chevallier, 2021) also requires a single draw at each itera-
tion. At each iteration, one sample is generated, then the function which is
maximized QSAEM is a linear combination of the log-likelihood of the com-
plete data and the function QSAEM at the previous iteration.

The main advantages of simulation-based EM is that there are rather
easy to implement and they come with theoretical guaranties on their con-
vergence. In practice, for the model of interest in this article, the cali-
bration of the algorithm used for simulating the conditional distribution
Pθ(m)(H1:C,0:M = h1:C,0:M | O1:C,0:M = o1:C,0:M) can be a delicate exercise.
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Since there are dynamical stochastic model, it is usually performed using
Particle Filtering and more specifically Sequential Monte Carlo (SMC). Par-
ticle filtering suffers from degeneracy problems when simulated processes are
long, and it is not always obvious which proposal distribution to choose. Nev-
ertheless, it remains widely used, as it is simple to implement and provides
good results.

For the CHMM case (Figure 14, particular case of Figure 10 : an MCEM
algorithm based on SMC has been proposed, in the context of freeway traffic
modeling (Kwon and Murphy, 2000), but there is no available code.

5.4.2. Variational EM

The idea of a variational approximation is to perform computations on a
model chosen in a family, F , of probability distributions with simpler depen-
dence structure than that of the true conditional distribution P(H1:C,0:M |
O1:C,0:M). The family is chosen such that the E step becomes tractable. The
element of the family which is selected is the one that leads to the best ap-
proximation of the true model. This notion of optimality is defined according
to the Kullback-Leibler divergence. When variational approximation is used
in the E step of EM, it leads to the Variational EM algorithm (Wainwright
and Jordan, 2008). The main advantage of the Variational EM is that it is
fast. Indeed, optimizing the Kullback-Leibler divergence is usually fast.

The main limit of the Variational EM is the lack of theoretical guaranties
for the models of interest here. Nevertheless the variational approach is more
and more used to estimate complex models due to its simplicity and rapidity,
and in practice it usually provide good estimators.

In the case of an interacting PO-DBN with structures of Figures 9 and
10, using VEM amounts to the choice of a family F of models where IHCCO
holds. Therefore, the corresponding variational E-step will be of complexity
linear in C.

For structures of Figures 10 and 9, the simpler variational approximation
is the mean field approximation which consists in choosing for F the family
of fully independent hidden variables. It corresponds to

q(h1:C,1, h1:C,2, . . . , h1:C,T ) =
∏
c

∏
t

q(hc,t)

Less naive approximations can sometimes be considered that still enable fast
and easy inference. In this spirit, in the case of CHMM, Wainwright and
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Jordan (2008) proposed to approximate the true conditional distribution by
a product of independent non homogeneous Markov process.

q(h1:C,1, h1:C,2, . . . , h1:C,M) =
∏
c

{
qc(hc,0)

M∏
t=1

qc,t(hc,t | hc,t−1)

}

This solution is implemented in the CHMM R package, which provides as
well the exact EM (Xiaoqiang et al., 2019). But, as far as we know, there
is no such code available for the general structure of Figure 9 and for other
particular cases of the Figure 10.

5.4.3. Ad-hoc EM

Another option that has been explored to simplify estimation is to work
with a surrogate of the expression of the conditional distribution of interest.
The surrogate may not be a proper distribution itself and is not the result
of an optimization of some criterion. In that sense, this is different of the
variational approach. Examples are from the field of signal analysis, and
concern the CHMM model: Brand et al. (1997) for classifying two-handed
actions, Montazeri Ghahjaverestan et al. (2016) on clinical data and Zhong
and Ghosh (2002) for multichannel EEG analysis. The advantage is to lower
the complexity of estimation, like the variational approximation. However
they are ad-hoc procedures with no justification of the choice of the surrogate.

6. Discussion

In this article, we focused on interacting PO-DBNs to model the dynamics
of metapopulation where some life stages in the each population are not ob-
servable. Through concrete examples, we have demonstrated how interacting
PO-DBNs are sufficiently rich and flexible to capture the variety of possible
metapopulation dynamics, in particular for different dispersal modes. We
also discuss parameter estimation in these models in the context of the EM
algorithm.

Interacting PO-DBNs are particularly well suited for describing M-POP
(metapopulation with partially observed populations) dynamics. First, on a
single population, PO-DBNs allow us to model systems whose dependency
structure is more complex than that of the classical HMM, which allows
us to go beyond detection errors and model the dynamics of a population
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whose some developmental stages are not all observable. Second, at the
metapopulation level, interacting PO-DBNs enable more accurate descrip-
tion of metapopulation dynamics, taking into account interactions among
populations through colonization. Additionally, in this framework it is easy
to include covariates, like habitat quality or climate influence, to describe
the M-POP dynamics more realistically.

M-POP can use different dispersal modes. We formally identified that
four interaction structures of interacting PO-DBNs enable to describe the
main M-POP with a single dispersal mode and we illustrates them through
concrete examples that describe the dynamics of animal and plant species.
We acknowledge that more complex interaction structures exist. In this case,
the M-POP can be modeled by an interacting PO-DBN whose interaction
structure combines several of the four elementary dispersal modes of section
4. As an illustration, let us consider the example of Daphnia, the small
crustaceans living in rivers. These populations can be divided into two life
stages: adults (observable life stage) and eggs (hidden life stage). During
floods, Daphnia can be displaced from one stream to another, enabling adult
populations to colonize other patches. Similarly, eggs (which are not visible
in the river) can also be transported by floodwaters, but also in birds’s feet.
Therefore, in the Daphnia case, interactions between different patchs occur
between observed life stages, but also between hidden life stages. The inter-
acting PO-DBN would combined arcs of Figure 7 and 10.

Regarding estimation, in the case of interactions between observations or
from observed to hidden states, the forward-backward algorithm correspond-
ing to the E step is linear in the number of patchs, therefore EM can be used
as such and is not more complicated to implement than an EM for HMM.
However, the EM algorithm is not tractable for the two other interaction
structures, thus requiring the use of approximate EM algorithms. To the
best of our knowledge, these solutions have not been envisaged for these in-
teracting PO-DBNs, with the exception of the structure illustrated in Figure
14 that corresponds to a CHMM. Moreover, in this paper, we have focused
on the EM algorithm, but other methods for estimating the parameters of an
interacting PO-DBN are available. For example, the ABC (Beaumont et al.,
2002) or the MCMC (Robert and Casella, 2005) methods enable Bayesian
parameter estimation, but these methods can be difficult to calibrate.
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In this article we were interested by the question of understanding the
metapopulation dynamics, therefore we focused of the estimation of the in-
teracting PO-DBN parameters. There are other important questions when
studying a M-POP dynamics, that could we addressed with the interacting
PO-DBN framework. For instance, if the dispersal mode of the species un-
der study is not clearly identified, model selection could be used to identify
the interaction structure that best suits the data. If one is interested in the
temporal evolution of the hidden life stages of a particular metapopulation
it is possible to adapt the Viterbi algorithm for HMM to our four different
structures (with the same computational difficulties in practice) to recon-
struct the sequences of hidden states in each patch.

In regard to the modeling assumptions, two points of particular signifi-
cance merit attention. First, we point out the need to collect longitudinal
observed data providing information on the hidden system. These data must
be a time series, with regular time step, and it can represent an important
workload in the field for specific systems. Second, we considered the case
of interacting PO-DBNs with finite and discrete hidden state spaces. The
estimation methods proposed in this paper are adapted to this situation, but
not to continuous hidden state spaces. In contract, the observed state space
could be continuous although having as the same time discretized hidden life
stages and continuous observed life stages for the same species may appear
to be an unsuitable approach.

Even though very general, the framework we propose is not well suited
to model the dynamics of any species. For instance, in the case of mam-
mals the evolution between the different life stages (e.g., from juveniles to
adults) is not clearly marked by two distinct physical states. and it is not
always obvious to define two categories: hidden and observed life stages.
The transition is rather smooth and continuous. In this case, it would be
necessary to use a different approach to model the metapopulation dynamics.

To conclude, the framework we propose can contribute to bring solutions
in conservation biology or invasive species. It sheds a new light on some
non-explored populations dynamics and offer the opportunity to study the
dynamics of metapopulations with hidden life stages, a domain that, until
now, was limited to very specific examples of species (Le Coz et al., 2019) or
required very strong assumptions (Levins et al., 1969). The practical use of
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these models will be possible by developing specific algorithms and codes and
providing an easy-to-use modeling tool for ecologists. This article is therefore
a mean for encouraging researchers in computational statistics to tackle the
challenges raised by estimation in these models and to make the solutions
available to the statistical ecology community.
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Appendix A. E-step of EM for the more general PO-DBN model
of a POP

We present here the E-step of the EM algorithm for the PO-DBN whose
structure is shown in Figure 2a. The global transition for this model is

P(Ht = ht, Ot = ot | Ht−1 = ht−1, Ot−1 = ot−1)

= P(Ot = ot | Ht = ht, Ht−1 = ht−1, Ot−1 = ot−1)

× P(Ht = ht = ht | Ht−1 = ht−1, Ot−1 = ot−1)

= TO(ot|ht, ht−1, ot−1)TH(ht|ht−1, ot−1).

Let M be the number of observation time steps, and θ = (π, TH , TO) the
model parameters. The complete likelihood, denoted Lcomp, is given by the
following equation:

Lcomp = Pθ(H0:M = h0:M , O0:M = o0:M) = π(h0, o0)
M∏
t=1

TO(ot | ht, ht−1, ot−1)TH(ht|ht−1, ot−1).

Appendix A.1. Expression of the intermediate quantity

During iteration m of EM, if θ(m) is the current estimate of θ, we have to
compute (E-step) and them maximize over θ (M-step) the following quantity:

Q(θ, θ(m)) = Eθ(m) [ln(Lcomp)|O0:M = o0:M ].

Since

ln(Lcomp) = ln π(h0, o0)+
M∑
t=1

lnTO(ot | ht, ht−1, ot−1)+
M∑
t=1

lnTH(ht|ht−1, ot−1),

we have

Q(θ, θ(m)) =
∑
h0

Pθ(m)(H0 = h0 | O0:M = o0:M) lnπ(h0, o0)

+
M∑
t=1

∑
ht,ht−1

Pθ(m)(Ht = ht, Ht−1 = ht−1 | O0:M = o0:M) lnTO(ot | ht, ht−1, ot−1)

+
M∑
t=1

∑
ht,ht−1

Pθ(m)(Ht = ht, Ht−1 = ht−1 | O0:M = o0:M) lnTH(ht|ht−1, ot−1).
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Appendix A.2. E-step

We can see that evaluating Q requires to compute

• ρ(m)(h0) = Pθ(m)(H0 = h0 | O0:M = o0:M), ∀h0 ∈ ΩH

• ξ(m)(ht, ht−1) = Pθ(m)(Ht = ht, Ht−1 = ht−1 | O0:M = o0:M), ∀1 ≤ t ≤
M, ∀ht, ht−1 ∈ ΩH

Similarly to the Forward-Backward algorithm for HMM, each ρ(m)(h0) and
each ξ(m)(ht, ht−1) can be computed via two auxiliary variables defined re-
cursively:

• α
(m)
t (ht) = Pθ(m)(O0:t = o0:t, Ht = ht), ∀0 ≤ t ≤ M, ∀ht ∈ ΩH ;

• β
(m)
t (ht) = Pθ(m)(Ot+1:M = ot+1:M |Ht = ht, Ot = ot), ∀0 ≤ t <

M, ∀ht ∈ ΩH .

Computation of ρ(m) and ξ
(m)
t (ht, ht−1) using α

(m)
t and β

(m)
t

Note that we have that α
(m)
t (ht)β

(m)
t (ht) = Pθ(m)(Ht = ht, O0:M = o0:M)

and the likelihood can be obtained as follows:
∑

ht
α
(m)
t (ht)β

(m)
t (ht) = Pθ(m)(O0:M =

o0:M). So

ρ(m)(h0) =
α
(m)
0 (h0)β

(m)
0 (h0)∑

h0
α
(m)
0 (h0)β

(m)
0 (h0)

We also have that

ξ
(m)
t (ht, ht−1) = Pθ(m)(Ht = ht, Ht−1 = ht−1, O0:M = o0:M)/

∑
ht

α
(m)
t (ht)β

(m)
t (ht)

and the numerator can be decomposed as

Pθ(m)(Ht = ht, Ht−1 = ht−1, O0:M = o0:M)

= Pθ(m)(Ot+1:M = ot+1:M | Ht−1 = ht−1, Ht = ht, O0:t = o0:t)

×Pθ(m)(Ht−1 = ht−1, Ht = ht, O0:t = o0:t)

= Pθ(m)(Ot+1:M = ot+1:M | Ht = ht, Ot = ot)Pθ(m)(Ht−1 = ht−1, Ht = ht, O0:t = o0:t)

= β
(m)
t (ht)T

(m)
O (ot | ht, ht−1, ot−1)Pθ(m)(Ht−1 = ht−1, Ht = ht, O0:t−1 = o0:t−1)

= β
(m)
t (ht)T

(m)
O (ot | ht, ht−1, ot−1)T

(m)
H (ht | ht−1, ot−1)α

(m)
t−1(ht−1)

Recursive computation of the α
(m)
t s and β(m)ts
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The quantities αs can be computed by a forward recurrence and the
quantities βs by a backward recurrence, as follows: ∀1 ≤ t ≤ M, ∀ht ∈ ΩH

α(m)(ht) =
∑
ht−1

T
(m)
O (ot | ht, ht−1, ot−1)T

(m)
H (ht | ht−1, ot−1)α

(m)
t−1(ht−1),

with α
(m)
0 (h0) = π(m)(h0, o0). And, ∀0 ≤ t < M, ∀ht ∈ ΩH

β
(m)
t (ht) =

∑
ht+1

β
(m)
t+1(ht+1)T

(m)
O (ot+1 | ht+1, ht, ot)T

(m)
H (ht+1 | ht, ot),

with β
(m)
M (hM) = 1.
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Appendix B. EM algorithm for a interacting PO-DBN with in-
teraction structure of Figure 6

We present now the formulas of the EM algorithm for the interacting PO-
DBN associated with the structure of Figure 6 presenting an interaction from
observations towards hidden states. The formulas below are also presented
in Le Coz et al. (2019). Here we have adapted the notations to that of
our article, and we consider the case where Nc = {1, . . . , C}. The complete
likelihood for this model, denoted by Lcomp, is given by:

Lcomp = Pθ(H1:C,0:M = h1:C,0:M , O1:C,0:M = o1:C,0:M)

=
C∏
c=1

[
π(hc,0)TO(oc,0 | hc,0)

M∏
t=1

TH(hc,t | o1:C,t−1, hc,t−1)TO(oc,t | hc,t)

]
.

Appendix B.1. Expression of the intermediate quantity

The intermediate quantityQ(θ|θ(m)), can be decomposed into three terms,
one depending on the initial distribution π, another depending on the tran-
sition matrix TH and the last one on TO.

Q(θ|θ(m)) = Eθ(m) [ln(Lcomp)|O1:C,0:M = o1:C,0:M ]

=
C∑
c=1

∑
hc,0∈ΩH

ln (π(hc,0))× Pθ(m)(Hc,0 = hc,0|O1:C,0:M = o1:C,0:M)

+
C∑
c=1

M∑
t=1

∑
(hc,t,hc,t−1)∈Ω2

H

ln (TH(hc,t | o1:C,t−1, hc,t−1))

× Pθ(m)(Hc,t−1 = hc,t−1, Hc,t = hc,t|O1:C,0:M = o1:C,0:M)

+
C∑
c=1

M∑
t=0

∑
hc,t∈ΩH

ln (TO(oc,t | hc,t))× Pθ(m)(Hc,t = hc,t|O1:C,0:M = o1:C,0:M).

Appendix B.2. E step

In the E step, we calculate the marginal distributions involved in the
expression of the intermediate quantity Q(θ|θ(m)). They are

• ∀0 ≤ t ≤ M, ∀c ∈ {1, ..., C}, ∀hc,t ∈ ΩH ,

ρ
(m)
c,t (hc,t) = Pθ(m)(Hc,t = hc,t|O1:C,0:M = o1:C,0:M);
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• ∀1 ≤ t ≤ M, ∀c ∈ {1, ..., C},∀(hc,t−1, hc,t) ∈ Ω2
H ,

ξ
(m)
c,t (hc,t−1, hc,t) = Pθ(m)(Hc,t−1 = hc,t−1, Hc,t = hc,t|O1:C,0:M = o1:C,0:M).

They will be computed via the two following auxiliary variables:

• ∀0 ≤ t ≤ M, ∀c ∈ {1, ..., C}, ∀hc,t ∈ ΩH ,

α
(m)
c,t (hc,t) = Pθ(m)(O1:C,0:t = o1:C,0:t, Hc,t = hc,t);

• ∀0 ≤ t < M,∀c ∈ {1, ..., C},∀hc,t ∈ ΩH ,

β
(m)
c,t (hc,t) = Pθ(m)(O1:C,t+1:M = o1:C,t+1:M |Hc,t = hc,t, O1:C,t = o1:C,t).

Computation of ρ
(m)
c,t and ξ

(m)
c,t using α

(m)
c,t and β

(m)
c,t

The quantities ρ
(m)
c,t (hc,t) and ξ

(m)
c,t (hc,t−1, hc,t) can be expressed as follows:

ρ
(m)
c,t (hc,t) =

α
(m)
c,t (hc,t)β

(m)
c,t (hc,t)∑

hc,t∈ΩH

α
(m)
c,t (hc,t)β

(m)
c,t (hc,t)

,

and

ξ
(m)
c,t (hc,t−1, hc,t) =

β
(m)
c,t (hc,t)T

(m)
H (hc,t | o1:C,t−1, hc,t−1)T

(m)
O (oc,t | hc,t)α

(m)
c,t−1(hc,t−1)∑

hc,t∈ΩH

α
(m)
c,t (hc,t)β

(m)
c,t (hc,t)

.

Recursive computation of the α
(m)
c,t s and β

(m)
c,t s

In a forward algorithm, we compute α
(m)
c,t (hc,t) by using the following

recurrence formula:
∀1 ≤ t ≤ M, ∀c ∈ {1, ..., C}, ∀hc,t ∈ ΩH ,

α
(m)
c,t (hc,t) ∝

∑
hc,t−1∈ΩH

α
(m)
c,t−1(hc,t−1)T

(m)
H (hc,t | o1:C,t−1, hc,t−1)T

(m)
O (oc,t | hc,t),

where α
(m)
c,0 (hc,0) = π(m)(hc,0)T

(m)
O (oc,0 | hc,0).

In a backward algorithm, we compute β
(m)
c,t (hc,t) using the following re-

currence formula:
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∀0 ≤ t < M,∀c ∈ {1, ..., C},∀hc,t ∈ ΩH ,

β
(m)
c,t (hc,t) ∝

∑
hc,t+1∈ΩH

β
(m)
c,t+1(hc,t+1)T

(m)
O (oc,t+1 | hc,t+1)T

(m)
H (hc,t+1 | o1:C,t, hc,t),

where β
(m)
c,M(hc,M) = 1.

Here, as opposed to the recursive formulas for a HMM or for the PO-
DBN of Appendix A, there is no equality: equality is up to a constant. In
consequence the forward and backward algorithm are performed on auxiliary
variables proportional to the original ones. The demonstration is available
in Le Coz et al. (2019).

Appendix B.3. M step

In step M, the aim is to solve θ(m+1) = argmax
θ

Q(θ|θ(m)), under the

following constraints:

•
∑

hc,0∈ΩH

π(hc,0) = 1;

•
∑

hc,t∈ΩH

TH(hc,t | o1:C,t−1, hc,t−1) = 1;

•
∑

oc,t∈ΩO

TO(oc,t | hc,t) = 1.

Using the Lagragian method to take into account these constraints, we
can derive the update formulas. We recall that notation oc,t or o1:C,t−1 denotes
the values of the corresponding random variables observed in the data. They
are fixed for a given estimation problem. We obtain:

∀y1:C ∈ ΩC
O,∀x′ ∈ ΩH , ∀x ∈ ΩH ,

T
(m+1)
H (x′ | y1:C , x) =

C∑
c=1

M∑
t=1

ξ
(m)
c,t (x, x′)1(y1:C=o1:C,t−1)∑

x′′∈ΩH

C∑
c=1

M∑
t=1

ξ
(m)
c,t (x, x′′)1(y1:C=o1:C,t−1)

,

∀x ∈ ΩH ,∀y ∈ ΩO,
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T
(m+1)
O (y | x) =

C∑
c=1

M∑
t=0

ρ
(m)
c,t (x)1(y=oc,t)∑

x′∈ΩH

C∑
c=1

M∑
t=0

ρ
(m)
c,t (x′)1(y=oc,t)

,

and ∀x ∈ ΩH ,

π(m+1)(x) =

C∑
c=1

ρc,0(x)∑
x′∈ΩH

C∑
c=1

ρc,0(x′)

.
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Appendix C. EM algorithm for a interacting PO-DBN with in-
teraction structure of Figure 11

We present now the formulas of the EM algorithm for the interacting
PO-DBN associated with the structure of Figure 11 presenting an interaction
from observations towards observations. The complete likelihood, denoted
by Lcomp, is given by.

Lcomp = Pθ(H1:C,0:M = h1:C,0:M , O1:C,0:M = o1:C,0:M)

=
C∏
c=1

[
π(oc,0)TH(hc,0 | oc,0)

M∏
t=1

TH(hc,t | oc,t)TO(oc,t | o1:C,t−1, hc,t−1)

]
.

Appendix C.1. Expression of the intermediate quantity

The intermediate quantity Q(θ|θ(m)) can be decomposed into two terms,
one depending on the transition matrix TH and the last one depending on
TO.

Q(θ|θ(m)) = Eθ(m) [lnLcomp|O1:C,0:M = o1:C,0:M ]

+
C∑
c=1

M∑
t=0

∑
hc,t∈ΩH

ln (TH(hc,t | oc,t))Pθ(m)(Hc,t = hc,t|O1:C,0:M = o1:C,0:M)

+
C∑
c=1

M∑
t=1

∑
hc,t−1∈ΩH

ln (TO(oc,t | o1:C,t−1, hc,t−1))Pθ(m)(Hc,t−1 = hc,t−1|O1:C,0:M = o1:C,0:M)

+K.

where K is a constant, independent of θ.

Appendix C.2. E step

In the E step, we calculate the marginal distributions involved in the
expression of the intermediate quantity Q(θ|θ(m)). They are, ∀0 ≤ t ≤
M, ∀c ∈ {1, ..., C}, ∀hc,t ∈ ΩH ,

ρ
(m)
c,t (hc,t) = Pθ(m)(Hc,t = ht|O1:C,0:M = o1:C,0:M).

Note that there is no auxiliary variable similar to the ξc,t that is computed
in Appendix B since in the graphical representation of Figure 11 there is no
arc from hc,t−1 to hc,t.
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The quantities ρ
(m)
c,t (hc,t) are computed via the two following auxiliary

variables:

• ∀0 ≤ t ≤ M, ∀c ∈ {1, ..., C},∀hc,t ∈ ΩH ,

α
(m)
c,t (hc,t) = Pθ(m)(O1:C,0:t = o1:C,0:t, Hc,t = hc,t);

• ∀0 ≤ t < M,∀c ∈ {1, ..., C},∀hc,t ∈ ΩH ,

β
(m)
c,t (hc,t) = Pθ(m)(O1:C,t+1:M = oc,t+1:M |Hc,t = hc,t, O1:C,t = o1:C,t).

Computation of ρ
(m)
c,t using α

(m)
c,t and β

(m)
c,t

The quantities ρ
(m)
c,t (hc,t) can be expressed as follows:

ρ
(m)
c,t (hc,t) =

α
(m)
c,t (hc,t)β

(m)
c,t (hc,t)∑

hc,t∈ΩH

α
(m)
c,t (hc,t)β

(m)
c,t (hc,t)

Recursive computation of the α
(m)
c,t s and β

(m)
c,t s

In a forward algorithm we compute α
(m)
c,t (ht,c) by using the following re-

currence formula:

∀1 ≤ t ≤ M, ∀c ∈ {1, ..., C}, ∀hc,t ∈ ΩH ,

α
(m)
c,t (hc,t) ∝

∑
hc,t−1∈ΩH

α
(m)
c,t−1(hc,t−1)T

(m)
H (hc,t | oc,t)T (m)

O (oc,t | o1:C,t−1, hc,t−1),

where α
(m)
c,0 (hc,0) = T

(m)
O (hc,0 | oc,0)π(oc,0). The initial distribution π(oc,0) is

assumed to be known.
In a backward algorithm, we compute β

(m)
c,t (hc,t) using the following re-

currence formula:

∀0 ≤ t < M,∀c ∈ {1, ..., C},∀hc,t ∈ ΩH ,

β
(m)
c,t (hc,t) ∝

∑
hc,t+1∈ΩH

β
(m)
c,t+1(hc,t+1)T

(m)
H (hc,t+1 | oc,t+1)T

(m)
O (oc,t+1 | o1:C,t, hc,t),

where β
(m)
c,M(hc,M) = 1.

Similarly to EM for the interacting PO-DBN of Appendix B, the recursive
formulas are up to a constant and in practice the forward-backward algorithm
is performed on auxiliary variables proportional to the original ones.

48



Appendix C.3. M step

In step M, the aim is to solve θ(m+1) = argmax
θ

Q(θ|θ(m)), under the

following constraints:

•
∑

hc,t∈ΩH

TH(hc,t | oc,t) = 1;

•
∑

oc,t∈ΩO

TO(oc,t | o1:C,t−1, hc,t−1) = 1.

Using the Lagragian method to take into account these constraints, we
can derive the update formulas. We recall that notation oc,t or o1:C,t−1 denotes
the values of the corresponding random variables observed in the data. They
are fixed for a given estimation problem. We obtain:

∀y ∈ ΩO,∀x ∈ ΩH ,

T
(m+1)
H (x | y) =

C∑
c=1

M∑
t=0

ρ
(m)
c,t (x)1(y=oc,t)∑

x′∈ΩH

C∑
c=1

M∑
t=1

ρ
(m)
c,t (x′) 1(y=oc,t)

,

∀x ∈ ΩH ,∀y ∈ ΩO,∀y′1:C ∈ ΩC
O,

T
(m+1)
O (y |, y′1:C , x) =

C∑
c=1

M∑
t=1

ρ
(m)
c,t−1(x)1(y=oc,t)1(y′1:C=o1:C,t−1)∑

x′∈ΩH

C∑
c=1

M∑
t=1

ρ
(m)
c,t−1(x

′)1(y=oc,t)1(y′1:C=o1:C,t−1)

.
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