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Abstract 

Smallholder farmers, who mostly engage in low-value agriculture in the drylands 
of Northern Africa, were the first to have felt the effects of climate change, with threats 
to their livelihoods and food security. The increasing costs of agricultural production, 
poor water and energy infrastructure, loss of agricultural land due to urban expansion, 
fragmented resource management, and unsustainable management practices all con-
tribute to this vulnerability to climate change. This highlights the urgent need for inno-
vative practices in farming systems. Within the framework of the water–energy–food–
ecosystem nexus, this paper explores innovative practices in dryland farming systems, 
by assessing their impact on water, energy, food, and ecosystem through stake-
holder perception. In this work, we aim to present a systems approach for assess-
ing the resilience of the water–energy–food–ecosystem nexus in arid and semiarid 
regions. By using a multi-criteria analysis (MCA) approach, the study—which focuses 
on the Fès–Meknès region in Morocco—involves local actors to help researchers iden-
tify the key variables in order to assist farmers in their adaptation to climate change. 
The findings revealed different priorities between farmers and other stakeholders 
regarding the adoption of agricultural innovations. Farmers prioritize innovations 
that guarantee higher profitability and more market opportunities, such as integrating 
olive trees with cereal crops, by highlighting the importance of sustainable income 
sources. Meanwhile, stakeholders, such as researchers, engineers, government officials, 
and agribusiness entrepreneurs, prioritize innovations that emphasize high water 
use efficiency, which is crucial for the resilience of dryland farming areas: for instance, 
rainwater harvesting or the use of drought-resistant crop varieties that directly address 
the need for water conservation. But in doing so they are overlooking broader aspects 
within the water–energy–food–ecosystem nexus.

Keywords: Global change, Drylands, North Africa, Multi-criteria decision analysis, 
Smallholders, Focus group discussion
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Introduction
Climate change has become a major concern, and is causing severe problems worldwide, 
especially for drylands, which are home to over 2 billion people (UNCCD 2017). In dry-
lands, agriculture is particularly affected, which results in low productivity, water deple-
tion, increased irrigation demand, disrupted food availability, droughts, and so on. In 
addition to climate change, dryland areas are facing a wide range of socioeconomic chal-
lenges. There is a growing demand for energy, a decline in agricultural productivity, and 
an increase in food demand due to population growth, as the drylands are experienc-
ing a high population growth rate worldwide (Feng and Fu 2013; Fan et al. 2020). Such 
growth presents both challenges and opportunities, which require innovative solutions 
to ensure the sustainable development and resilience of these regions. In dryland areas, 
smallholders are primarily engaged in producing low-value crops for home consump-
tion, and a small percentage for selling; they were the first ones to have felt the impacts of 
these changes (DALRRD 2023; UNESCO and European Commission, 2021; Waha et al. 
2017). This makes it difficult for them to maintain their activities, and in some cases, 
they are forced to switch to other sectors to survive, or to migrate from rural areas (Sza-
boova 2023). What makes the situation worse is that in these areas, water, energy, food, 
and ecosystem assets have been managed separately from one another (OECD 2023). 
This fragmented approach has hindered the sustainable use of water resources, led to the 
degradation of ecosystems and aquifers, and prevented the recognition of the interlink-
ages between water, energy, and food security (OECD 2023). The lack of integrated man-
agement has also contributed to the vulnerability of small producers in remote drylands, 
thus further exacerbating the risks of poverty traps and land degradation due to increas-
ing climate shocks (Jobbins and Henley 2015). In addition, the fluctuation in precipita-
tion and water availability is affecting farming systems, which has a significant impact 
on both the economy and society due to its implications on agricultural productivity 
(Ahmed et al. 2022; Kee-Tui et al. 2021). Furthermore, current management techniques 
used by farmers are questionable since they are unsustainable over the long term, espe-
cially considering water scarcity, which is exacerbated by climate change (FAO 2014). 
Losses resulting from the suboptimal management of farming systems, which include 
all the agricultural practices used in irrigated areas, such as crop selection and rotation, 
technical packages, etc., are significant.

When it comes to evaluating the stress impact of a scarce resource like water on other 
sectors such as energy, food production, and ecosystems, new theoretical and methodo-
logical approaches such as the nexus approach help to renew the understanding of the 
trade-offs that regulate agri-food system sustainability (Brunori et al. 2020). According 
to Ponce Oliva et al. (2021), the nexus framework recognizes the interdependencies and 
interconnections between multiple sectors that share natural resources and have dif-
ferent management schemes. It is particularly effective for identifying and quantifying 
trade-offs and synergies, as well as helping to manage the resource competition between 
urban and agricultural sectors under climatic and demographic stressors. In practice, the 
adoption of innovative agricultural techniques such as advanced farming processes and 
technologies by large-scale farmers in the context of the water–energy–food–ecosystem 
nexus can present both benefits and challenges. These practices offer advantages such 
as improved water and energy efficiency, enhanced yields, and reduced environmental 
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impacts. However, they also present challenges, including water scarcity (Fitton et  al. 
2019), soil degradation, and biodiversity loss. The adoption of these techniques is influ-
enced by ownership structures, market dynamics, and regulatory frameworks, with 
implications for sustainability and resilience within the WEFE nexus (Namany et  al. 
2023; Nhamo et  al. 2020). Nevertheless, innovative techniques play a crucial role in 
addressing the complex interactions within the WEFE nexus, and can contribute to the 
promotion of sustainable agriculture, resource efficiency, and environmental conserva-
tion (Peña-Torres et al. 2022). Some large-scale farms also use innovative techniques and 
are well integrated into domestic and foreign markets, and are mostly owned by inves-
tors, companies, and large historical landowners (Dugué et al. 2015).

All the pressures faced by agriculture mentioned above—climate, economic, and 
human pressure—have a direct impact on four crucial elements: food, water, energy, 
and ecosystems (Karan et al. 2018; El Gafy et al. 2017). Understanding the intertwined 
relationships between these four elements is crucial for sustainable development and a 
stable future, starting on a local scale. However, several existing studies (Hamiche et al. 
2016; Tan and Zhi 2016; Maftouh et al. 2022; El Azhari and Loudyi 2019) focus only on 
one or two of these elements. This limited approach may not lead to relevant results 
as these four elements are strongly interlinked (Bizikova et  al. 2013). Therefore, this 
research explores the innovative practices that can positively impact these four elements 
directly or indirectly by triggering scenarios in a study area characterized by dryland 
farming.1 Applying the water–energy–food–ecosystem nexus approach to quantify resil-
ience is a useful way to identify and describe the characteristics of vulnerable areas of 
the system, such as drylands, and then target solutions to reduce the impact of resource 
and asset scarcity (Núñez-López et al. 2022; Tebaldi and Vignali 2023). Furthermore, to 
increase the consideration of stakeholder and farmer views in the present research, we 
have involved local actors to help researchers identify the key variables to be taken into 
account for the climate adaptation of farmers. To the best of our knowledge, and accord-
ing to previous literature [e.g., (Hoff et al. 2019; UNESCO and European Commission 
2021; Jobbins et al. 2015)], there is limited use of multi-criteria WEFE nexus analysis in 
climate innovation assessment, specifically at farm level, which has not sufficiently been 
explored in the area.

In the following section, we present an extended literature review of farming in North 
African drylands, and of the implementation of resilience and WEFE approaches. We 
then present our methodology based on multi-criteria analysis (MCA) for prioritiz-
ing innovations that address the needs of farmers and other stakeholders in combat-
ing climate change effects in the Saïss plain in Morocco, while considering their impact 
on water, energy, food, and the ecosystem. The paper then shows the results obtained 
regarding the adoption of innovations in the study area. The findings highlight the com-
plex nature of differences in prioritization between stakeholders and farmers concerning 
the feasibility and impacts of innovations at farm level.

1  According to Stewart and Thapa (2016), dryland farming is a particular type of rainfed agriculture used in arid and 
semiarid regions in which annual precipitation represents about 20–35% of potential evapotranspiration.
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Literature review and theoretical background
Dryland farming in North Africa

North African drylands cover approximately 725 million hectares (FAO 2019), includ-
ing arid, semiarid, hyperarid, and dry subhumid areas. With a population of around 240 
million and an annual growth rate of 1.8 percent (FAO 2019; World Bank Data 2022), 
these regions often face poverty, resource scarcity, and political marginalization (FAO 
2022; Hirwa et  al. 2022). They are also hotspots for natural disasters, social conflicts, 
and inequalities (FAO 2015; FAO 2007b). Drylands are characterized by limited water 
availability (Ribbe and Dehnavi 2020), high temperatures (Daramola and Xu 2021), low 
and unpredictable rainfall (Bedair et al. 2023; FAO 2018), land degradation and defor-
estation (FAO 2019), which lead to significant issues such as drought (FAO 2018), and 
food insecurity (Devkota et al. 2022b). Moreover, the scarcity of water and arable land 
(FAO 2022), coupled with a limited potential for increasing output without irrigation, 
has led to a high and growing dependence on international markets for key staple foods 
(OECD and FAO 2018). The degradation of drylands in the region is also forcing peo-
ple who can no longer make a living off the land to move to urban areas, which has led 
to increased pressure on limited water resources (Boshra 2008). Despite having a long 
history of agriculture (Morales et al. 2013), the agricultural sector in North Africa con-
tributed less than 9% to the regional GDP in 2016 (AFDB 2018). However, it remains a 
primary source of employment, particularly for women, who make up 55% of the work-
force (Kühn 2019) in rural areas (FAO 2018; OECD and FAO 2018). Around 52% of the 
total population in North Africa, including small-scale farmers and farm workers, live in 
rural areas, and are among the poorest and most affected by agroecological crises (Sow-
ers et al. 2011). Although they face challenges such as low yields, limited access to qual-
ity seeds, and insufficient resources, smallholders play a crucial role in North Africa’s 
agricultural sector. They contribute significantly to food production and are essential for 
ensuring food security in the region (FAO 2024).

Drylands in North Africa have witnessed a sharp increase in rural poverty, malnutri-
tion, and social inequalities (FAO 2015; FAO 2007b). The challenges relating to climate 
change and the vulnerability in coping with these changes have directly affected food 
security (Schilling et al. 2012), and posed significant issues for farming systems and the 
livelihoods of inhabitants of the drylands. The main type of farming system is the irri-
gated farming system, which is of crucial importance in generating much of the region’s 
agricultural output. It contains both large- and small-scale irrigation schemes, with the 
large-scale system consisting of irrigated cropland and an agricultural population. The 
second most important type, the dryland mixed farming system, covers a significant 
area and contains a large agricultural population (FAO 2001). It is primarily depend-
ent on wheat and barley production, with strong interaction with small livestock, pri-
marily sheep (Alary and Frija 2022). Crop production relies heavily on rainfall, and the 
whole system is vulnerable to inter-annual and seasonal variability. The risk of drought 
is high, and considerable food insecurity exists within this system (FAO 2001). The third 
type is the rainfed mixed farming system, which is characterized by the cultivation of 
rainfed crops such as wheat, barley, legumes, olives, grapes, fruit, and vegetables. Live-
stock, mainly sheep and goats, are an important feature of this system. The prevalence of 
poverty within this system is moderate, but would be higher without extensive off-farm 
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income from seasonal labor migration (Hirwa et al. 2022; Ryan 2011; FAO 2001). Also, 
the location of farms in North African drylands, particularly in Morocco, can be cat-
egorized into both remote rural and peri-urban contexts. Remote rural farms are often 
isolated with limited market access, poor infrastructure, and significant challenges such 
as water scarcity and poor soil fertility. They rely on subsistence farming and face high 
vulnerability to climate change (Kmoch et al. 2018). In contrast, peri-urban farms ben-
efit from proximity to urban centers, and offer better market access, infrastructure, and 
diversified agricultural activities. However, they face threats of urban encroachment and 
pollution (El Hassani and Laziri 2022).

The concept of resilience in dryland farming systems

In the agricultural context, resilience refers to the ability of farming systems to with-
stand and recover from various challenges, such as climate change (Baffour-Ata et  al. 
2023), market fluctuations, and natural disasters, while continuing to maintain produc-
tivity and adapt to changing circumstances (Martin et al. 2019; Cabell and Oelofse 2012; 
Darnhofer et  al. 2010a; OECD 2020). This approach considers the interconnectedness 
of various components, such as ecological, social, and economic factors, to understand 
the system’s capacity to withstand and recover from disturbances (Meuwissen et  al. 
2019; Tebaldi and Vignali 2023). In other words, resilient agriculture is not just about 
the ability of farms to cope; it is about their ability to transform, be robust and inno-
vative, and adapt to the increasing environmental, economic, social, and institutional 
challenges of today’s world (OECD and FAO 2021). However, resilience does not mean 
that the agricultural system and the farm itself need to react only when the challenges 
occur, as in some cases this might be too late. Resilience also involves the importance of 
building the capacity of the agricultural sector to prepare for risks under a wide range of 
future scenarios. Several studies (Robinson et al. 2015; Jellason et al. 2022; Meyer 2020; 
Ephraim et al. 2023; Devkota et al. 2022a) on resilience in agriculture have made signifi-
cant contributions to the understanding of the resilience of farming systems and farmers 
in drylands. These studies have emphasized the importance of agricultural resilience in 
ensuring that management actions do not push the surrounding landscape beyond its 
limits, that future opportunities to produce goods or income are not lost, and that new 
opportunities are created to allow producers to market, learn, innovate, and adapt when 
shocks occur. Furthermore, these studies have underlined the significance of persis-
tence, adaptability, and the ability to transform as key factors in enhancing the resilience 
of farming systems and farmers in drylands (Coulibaly 2023). Various studies provide 
valuable insights into the perceptions and practices of smallholder farmers in different 
regions of Morocco, such as the Fès–Meknèss and Marrakesh-Safi areas, regarding the 
potential for resilience and adaptation in the face of challenges (Boutagayout et al. 2023). 
Additionally, research has been conducted to assess the resilience of farming systems in 
the Saïss plain in Morocco, by focusing on farmer knowledge, existing agricultural pro-
duction systems, and agricultural practices in the region (Hossard et al. 2021). Further-
more, a study has explored the heterogeneity of resilience in pastoral and agro-pastoral 
farming systems in semiarid to arid rural areas of Morocco, thus providing a compre-
hensive understanding of the resilience of livelihood strategies in these regions (Alary 
et  al. 2022). These studies Robinson et  al. (2015), Jellason et  al. (2022), Hossard et  al. 
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(2021), Meyer (2020), Ephraim et al. (2023), Devkota et al. (2022a), Amede and Tsegaye 
(2016), Boutagayout et  al. (2023), Alary et  al. (2022202220222022) have shed light on 
the factors influencing agricultural resilience, including persistence, adaptability, and 
the ability to transform, and have emphasized the importance of building robust and 
adaptable farming systems to cope with environmental, economic, and social challenges. 
Therefore, they contribute to the development of sustainable and adaptive agricultural 
practices in the country.

The water–energy–food–ecosystem nexus applied to dryland farming

The growing recognition of the interdependencies between water, energy, food, and 
ecosystem highlights the importance of innovations in fostering resilience and adapta-
tion (Pérez 2023). Brunori et  al. (2020) outlined the importance of innovative policies 
that should not rely on outdated knowledge, by proposing four approaches that could be 
used by the scientific community. Firstly, systems approaches analyze the interconnect-
edness between activities, stakeholders, and outcomes in food systems within changing 
environments. This involves analyzing the interactions and dynamics within the farm-
ing system as a whole. Secondly, nexus approaches, which are at the core of this system, 
mean that intervening in one sector will have impacts on others (Brunori et al. 2020). 
Thirdly, future-oriented approaches involve acknowledging that past trends may not dic-
tate future events, and considering the unintended consequences of choices, from con-
sumption to technology (Brunori et al. 2020). This involves assessing the resilience and 
sustainability of farming systems by considering future scenarios and potential impacts. 
This approach helps to identify strategies for developing alternative systems, and to 
assess their compatibility with projected exogenous factors, thereby guiding decision-
making toward more adaptive and resilient farming practices (Paas et al. 2021). Lastly, 
inter- and trans-disciplinary approaches embrace collaboration and synergies with other 
disciplines to tackle complex issues in agriculture and food studies (Brunori et al. 2020), 
by facilitating a deeper understanding of interactions within farming systems and the 
development of integrated strategies for resilience and sustainability (van der Lee et al. 
2022). In line with the nexus approach advocated by Brunori et al. (2020), this methodol-
ogy is best suited for assessing the resilience of farming systems due to its focus on the 
interconnected nature of water, energy, and food systems within farming systems. This 
approach seeks to reconcile the interdependencies between water, energy, food, and nat-
ural ecosystems, by providing a more targeted assessment of the specific relationships 
and interactions that influence the resilience of farming systems. Recent studies have 
further expanded the nexus framework, such as Ponce Oliva et  al. (2021), who high-
lighted the importance of incorporating urban water use within the nexus framework 
to better understand the economic interdependencies between agriculture and urban 
sectors. Their research demonstrates how nexus thinking can reveal the compatibilities 
and divergence between food production and urban water use under different climatic 
and demographic stressors. This perspective highlights the need to integrate economic 
dimensions, such as household welfare and agricultural income, into the nexus analysis, 
by providing a comprehensive approach to resource management at basin level. By con-
sidering these factors, we can develop more effective strategies for enhancing resilience 
and sustainability in dryland farming systems.
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The concept of the WEFE nexus has evolved since the decision to add “Ecosystem” to 
the WEF nexus (Hoff 2011). The WEFE nexus has transitioned from a focus on resource 
security to a more comprehensive approach that considers interconnections and inte-
gration to achieve sustainable development goals. The goal of the water–energy–food–
ecosystem nexus approach is to demonstrate that food and energy production are 
dependent on water resources. They must be studied together, and multidimensional 
interventions are needed to identify optimized and adequate management and technical 
solutions. In light of these considerations, understanding the consequences of shortages 
of water, energy, food, and ecosystem services is crucial for comprehensively addressing 
the challenges faced by farming systems (Muthee et al. 2021).

In order to grasp the complexity of the WEFE nexus in drylands, and to identify 
key and innovative solutions for farmers to better manage water, energy, ecosystem 
resources, and food production, different approaches have been adopted by academ-
ics. Several studies have used spatial analysis (Raya Tapia et al. 2023; Liang et al. 2020; 
Wang et al. 2018), Geographic Information Systems (GIS) (Lin et al. 2019), participatory 
approaches (Ghafoori Kharanagh et  al. 2021), or sector-based resource management 
approaches (De Andrade Guerra et  al. 2021) to analyze the water–energy–food–eco-
system nexus in various contexts, including drylands. Azzam et  al. (2023) introduced 
a developed WEF nexus framework based on Geographic Information Systems (GIS), 
which aims to assess the interlinkages between water, energy, and food on a spatial scale. 
Moreover, sector-based resource management approaches fail to recognize the intercon-
nectedness of water, energy, and food resources, thus leading to insecurities within each 
sector (Taguta et al. 2022). Among the strong efforts of bio-economic modeling that are 
applied to the NEXUS approach [e.g., (Correa et al. 2022; Ngammuangtueng et al. 2023; 
Bazilian et  al. 2011)], farmer and stakeholder opinions and views are not sufficiently 
taken into account when it comes to selecting and identifying the key variables which 
are needed for the assessment and identification of the best adaptation strategies for 
farmers. Previous bio-economic modeling approaches (Akinsete et  al. 2022; Vahabza-
deh et al. 2023) applied to the NEXUS approach often prioritized economic factors such 
as crop yields and market prices, while overlooking technical and environmental con-
siderations such as local knowledge and ecosystem services. Moreover, the combination 
of qualitative actor-based data with quantitative methodologies such as bio-economic 
modeling is strongly recommended for improving research on the sustainability of agri-
food systems and climate adaptation (Cammarano et al. 2023; Jennings et al. 2024).

WEFE‑based innovations in dryland farming systems

Innovation in agriculture is essential for addressing the complex challenges facing the 
global food system and achieving the sustainable development goals, especially in coun-
tries where agriculture is an important field of the economy (Markovic et al. 2020). By 
using the power of technology, science, and collaboration, we can unlock the potential 
of agriculture to feed people, protect the planet from different hazards such as climate 
change, and build prosperous and resilient communities for future generations (Vyas 
and Singh 2022; Masi et  al. 2022; Gremmen et  al. 2019;  El Bakali et  al. 2023b). The 
concept of innovation in farming systems encompasses the introduction of new strat-
egies, methods, and practices aimed at improving four elements: water, energy, food, 
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and ecosystem. Implementing innovations in farming systems not only depends on 
willingness for development and resilience, but there are also barriers that limit these 
innovations, such as the size and type of farms, their technological advancement and 
financial resources, as well as the experience and educational attainment level of farm-
ers (Diederen et  al. 2003). Innovations in the water–energy–food–ecosystem nexus in 
farming systems are crucial for achieving sustainable and resilient agricultural practices 
(Ansari et  al. 2023). Based on the needs of farmers in these areas, these innovations 
should encompass diverse approaches aimed at enhancing the resilience, productivity, 
and sustainability of farming systems while mitigating their impacts on water, energy, 
food, and the ecosystem. Key WEFE-related innovations implemented in dryland farm-
ing involve the adoption of minimum tillage methods, which aim to reduce soil dis-
turbance and erosion while preserving soil moisture and fertility (Singh et al. 2023). In 
addition to tillage practices, the use of organic fertilizers, such as compost and manure, 
provides multiple benefits for the environment. These natural inputs enhance soil fertil-
ity and structure, thus reducing the need for synthetic fertilizers and minimizing nutri-
ent runoff into water bodies (Zhou et al. 2022). Furthermore, smallholders implement 
the integration of drought-resistant crop varieties, which helps to mitigate the impacts 
of water scarcity on agricultural production. Reducing fertilizer use in agriculture is an 
innovation that is generally not accepted by farmers, as to them it involves sacrificing 
food; however, it may be feasible in some cases (Yuan et al. 2023). The adoption of drip 
irrigation technologies enables precise water delivery to crops, thus minimizing water 
losses through evaporation and runoff (Yang et al. 2023). Intercropping, rainwater har-
vesting, and agroforestry practices, such as the integration of olives trees with cereals 
crops, further contribute to water conservation, energy efficiency, and environmental 
sustainability in farming systems (Stott et al. 2023; Reddy et al. 2023; Tamagnone et al. 
2020; Ouali et al. 2022; Daoui and Fatemi 2014). Concerning the financial aspect, subsi-
dies and support mechanisms can encourage farmers to adopt water-saving technologies 
(Burt et al. 2023). Moreover, the financial incentives of revolving loans for women can be 
a means of supporting women in agriculture.

Innovations impacting the WEFE nexus for smallholders

When examining the studies conducted on WEFE in Morocco, we found only limited 
literature. The studies mostly focus on the relationship between water and energy (Hum-
phrey et al. 2022; Almulla et al. 2022; Maftouh et al. 2022; El Azhari and Loudyi 2019), 
and reflect the fact that Morocco is a net energy-importing country that is heavily reli-
ant on imported coal, oil, and gas to meet its energy needs (Almulla et al. 2022). At the 
same time, the country faces water scarcity, and the study by Siddiqi and Anadon (2011) 
demonstrates the interdependence of energy and water. Furthermore, Ouassissou et al. 
(2022) incorporated water and energy in irrigated agriculture, thus finding that farming 
systems in Morocco are characterized as water-intensive and energy-inefficient, and that 
this situation is caused by government subsidies. Other studies explore the relationship 
between water, energy, and food (Zarkik and Ouhnini 2022; Meir et al. 2022; Sang-Hyun 
et  al. 2020; El Youssfi et  al. 2020), but without including the environment, and not at 
farm level. One key observation highlighted in the review paper by El Youssfi et al. (2020) 
is the lack of consideration for interdependencies within the WEF nexus in Morocco, as 
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well as the absence of comprehensive policies that address all components of the nexus. 
Some of the challenges faced by dryland farmers, including those in Morocco, are water 
scarcity, soil erosion, land degradation, and food security. Innovations in the water–
energy–food–ecosystem nexus in farming systems are crucial for achieving sustain-
able and resilient agricultural practices (Ansari et  al. 2023). These innovations should 
encompass diverse approaches aimed at enhancing the resilience, productivity, and sus-
tainability of farming systems while mitigating their impacts on water, energy, food, and 
the ecosystem, based on the characteristics of the area. The elaboration of innovations 
focuses on agro-ecology, conservation agriculture (CA), and financial incentives (Fig. 1).

Methodological approach and case study description
The methodological flow is illustrated in Fig. 2, and consists of five main steps: (i) inno-
vation selection that combined a literature review with expert validation; (ii) stakeholder 
mapping with experts, which aims to ensure the diverse representation of farmers, 

Fig. 1 The potential direct or indirect impact of innovations on WEFE (water, energy, food, and ecosystem). 
Source: Authors’ own elaboration

Fig. 2 Method used to assess innovations for smallholdings’ adaptation to climate change in drylands
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government officials, researchers, engineers, and agribusiness entrepreneurs; (iii) the 
assessment of innovations by building the framework which served as a structured guide 
for stakeholder interactions and evaluations; (iv) a stakeholder focus group which 
allowed for dynamic discussions and evaluations of criteria and innovations by partici-
pants; (v) the prioritization of innovations by synthesizing stakeholder input and multi-
criteria analysis findings to identify the most suitable innovations for the study area.

Assessment method

This research is initially supported by a literature review that identified many innova-
tions related to the issue identified (climate change), all of which have already been 
implemented, or whose implementation feasibility has been identified for dryland 
areas. From this initial list, only measures adapted to the drylands that could have an 
impact on water, energy, food, and ecosystem were kept and further analyzed. These 
innovations were then validated as part of a focus group discussion by a small team of 
local experts working closely with farmers in Morocco, in particular in the Fès–Mek-
nès area.

A multi-criteria analysis can also be useful in WEFE-related climate innovation 
assessment: it makes it possible to identify the most suitable climate innovations to be 
implemented in farming systems, due to its ability to provide a structured approach 
for evaluating and comparing various innovations (Champion et  al. 2023), and by 
considering a wide range of indicators—for instance, economic, environmental, and 
technical—and including various stakeholders (USAID 2013). In addition, it can 
facilitate the integration of expert judgment and local knowledge, thus making it a 
valuable tool for assessing climate adaptation and mitigation strategies, especially at 
farm level (Houngue et al. 2022; Setyantho et al. 2021). Therefore, careful considera-
tion of the criteria, stakeholder engagement, and transparency is essential to ensure 
the credibility of the MCA results. The research undertakes a thorough evaluation 
of adaptation strategies based on the multi-criteria analysis methodology. The MCA 
methodology stands out with its stakeholder-inclusive approach, and not only incor-
porates normative judgment but also integrates technical expertise, thus providing a 
nuanced and comprehensive assessment process (De Brucker et  al. 2013). By using 
MCA, the framework designed facilitates the identification and prioritization of inno-
vations, by strategically aligning them with the critical needs of farmers following the 
adverse effects of climate change. This strategic combination ensures a robust and 
thorough evaluation, attuned to the dynamic nature of climate change and responsive 
to the different needs of vulnerable communities (USAID 2013). By embedding these 
methods within our research, we aim to contribute to a more effective and tailored 
approach to climate change adaptation in drylands. The primary objective is to con-
duct an initial evaluation of innovative strategies from the perspective of local farm-
ers and experts. This assessment, which addresses the challenges posed by evolving 
risks in the context of climate change, employs a qualitative multi-criteria analysis 
methodology.
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Regional context and case study description

The Saïss plain in Morocco is a vast and fertile plain with semiarid climate whose aver-
age annual rainfall ranges from 207 to 677 mm. The plain is located between the Rif and 
the Middle Atlas mountain range, and covers a land area of about 2200  km2 in northern 
Morocco (El Ansari et al. 2023), of which 1910  km2 are used for agriculture, thus making 
it an important agricultural region (Ameur et al. 2020; Bossenbroek et al. 2015). It is tra-
ditionally oriented toward rainfed crops (cereal crops, grain legumes, fodder) (Hossard 
et al. 2021; El Ansari et al. 2020; Baccar et al. 2017; Dugué et al. 2015). The smallholdings 
in this area are family-owned, and present homogenous production systems with lim-
ited access to market, services, and production factors (Baccar et al. 2017), which makes 
them less likely to adopt innovations in their farming practices (Harmanny and Malek 
2019). Moreover, the cultivation area for these small farms is less than 20 ha, and they 
are equipped with minimal agricultural machinery (Dugué et al. 2015) (Fig. 3).

The resilience of this area is in jeopardy due to many issues caused by climate change 
or human pressures. In the region, the inefficient adoption of agricultural practices such 
as organic agriculture (slow progress (El Ghmari et al. 2022), limited access to improved 
seeds (Irhza et al. 2023; Yigezu et al. 2021)) has led to market limitations. Water scarcity 
and decreased and irregular rainfall have forced farmers to turn to costly coping mecha-
nisms such as digging wells or abandoning plots of land (Meddi and Eslamian 2021). 
The depletion of the Saïss aquifer directly threatens agriculture, as over 82% of the water 
from the Sebou-Saïss basin is used for agriculture. Furthermore, the cost of agricultural 
production has been increasing (El Ansari et al. 2023; Ameur et al. 2020; El Ansari et al. 
2020; Quarouch et  al. 2014), for instance, the price of seeds (Sahnouni 2023), energy 
(Rahhali 2022), and fertilizers; a strong drop in grain production has also been observed 
(Meddi and Eslamian 2021). Additionally, poor water and electricity infrastructure, as 
well as the loss of agricultural land to urban expansion (Soulard et al. 2017) are consid-
ered key challenges for local farmers. Within this complex and challenging context for 
farmers, efforts have been made to improve the climate resilience of agricultural systems 
in the plain, in order to address these challenges by switching from unsustainable prac-
tices to sustainable ones, and implementing climate-resilient infrastructure. The 2020–
2030 Green Generation Plan (GGP) is working toward improved and more sustainable 
agricultural development in Morocco, to transition from resource-intensive agriculture 

Fig. 3 Location of the “Saïss plain” study area
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to climate-resilient practices (Hossard et al. 2021; Ameur et al. 2020). The Fès–Meknès 
region has been identified as a priority zone by the GGP, with the specific objective to 
convert 200,000 hectares to conservation agriculture as part of the 1 million hectare ini-
tiative (Essiari and Fadlaoui 2023). However, concerns have been noted, starting with 
the Green Morocco Plan: these issues are mainly related to investment climate reforms, 
water and land resource pressure, missing links between its goals and implementation, 
and outdated data used for its assessment (Faysse 2015).

Data collection

Scenario design

The meeting was set up in January 2023, initially to validate the study area and poten-
tial innovations, then later to identify the stakeholders. After considerable deliberations 
with local stakeholders, a consensus was reached that innovations would take several 
forms, but they would concern Conservation Agriculture2 and agroecological practices, 
followed by financial incentives which would impact four elements directly or indirectly: 
water, energy, food, and ecosystem. In such a context, several innovations expressed 
as adaptation strategies were put forward for more eco-efficient agricultural systems, 
better-balanced food production, and a sustainable provision of ecosystem services. 
These strategies were often considered with a relative degree of interest by stakehold-
ers (including farmers) due to the specificity of the challenges posed and the diversity of 
agricultural systems at a territorial level. The meeting was divided into four main stages: 
(i) first, a presentation highlighting the study area and objectives; (ii) a discussion con-
cerning the proposed innovations from the literature review with stakeholders (iii) a 
general discussion aimed at identifying the impacts of innovations on WEFE, (iv) the 
creation of a list of potential stakeholders.

Stakeholder mapping

(ii) Once the innovations had been validated, together with local experts, we went 
through the list of potential stakeholders and mapped them based on their operational 
level: local, regional, and national. Active participation from farmers, government offi-
cials, researchers, engineers, and agribusiness entrepreneurs was sought to foster a well-
rounded understanding of the potential impacts and effectiveness of the innovations. 
This approach not only enriches the assessment process but also makes sure that the 
perspectives of key stakeholders are adequately represented, thus contributing to a more 
informed evaluation (Table 1).

Defining the criteria for assessing the feasibility of innovations

(iii) These criteria play the most important role in ensuring a comprehensive evaluation 
of the innovations. Despite suggestions from prior studies that a simplified approach 
might be more practical (Baills et al. 2020; Boruff et al. 2005), ten criteria were defined to 

2 Conservation agriculture consists in conserving and improving soil properties, conserving moisture, stabilizing and 
increasing crop yields (Hobbs et al. 2008; FAO 2022). Conservation agriculture relies on three principles: (a) minimiza-
tion of soil disturbance by using methods such as no-tillage (NT), minimum tillage (MT), or strip tillage (ST); (b) con-
tinuous maintenance of soil cover which includes crop residues and cover crops; (c) implementing practices such as crop 
rotation, combination, or diversification within the field to optimize agricultural output and ecological balance (Marenya 
et al. 2017; El Bakali et al. 2023a).
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assess the innovations in this study. The chosen criteria were categorized into three main 
groups: technical, economic, and environmental (Table 2).

Criteria weighting and scoring

(iv) The fourth step aimed to include technical expertise in the assessment process, and 
focused on the involvement of stakeholders through a focus group discussion as well as 
on criteria weighting and innovation scoring. The judgments of experts were crucial for 
the assessment of innovations by mobilizing a technical, economic, and environmental 
nexus analysis.

Criteria weighting was at the heart of group discussions, as it could ultimately change 
the ranking of innovations. Each criterion was evaluated independently by each stake-
holder using their knowledge and experience of the suggested innovations. In this step, 
the stakeholders decided which criteria should be given more or less weight with respect 
to others based on their interest. The criteria were ranked from most important to least 
important, where the most important (first ranked) criterion was rated as 1, the second 
most important criterion as 2, the third one as 3, and so on.

To calculate the weight of each criterion, we used the following formula:

where the Value is the number given by the stakeholder from 10 to 100, the ∑Values is 
the sum of all values given to each criterion by the stakeholder.

Prioritization of options

(v) In the fifth step, innovation scoring is followed by a second stage called standardi-
zation of scoring values, which involves neutralizing the influence of different criteria 
on ranking results, thus ensuring a fair and unbiased assessment, and allowing for a 
more accurate and meaningful overall ranking. Consider a scenario where the stake-
holder rates the “technical capacity” as 5, which means that a specific innovation needs 
a very high level of technical capacity, and this is a barrier for the innovation to be 
implemented: despite the fact that the total score will contribute to a better ranking. To 
address this, we applied standardization, by assigning a standardized value, in this case 
of 1, to the original score of 5 (Table 3). The criteria subjected to scoring standardization 

(1)Weight of criteria =
(

Value /
∑

Values
)

× 100

Table 1 List of the stakeholders consulted

Stakeholder profiles Power 
scale

Four smallholder farmers Local

Decision-maker Regional

Decision-maker Regional

Extension services Extension services (private) Regional

Extension services (public) Regional

Researchers Researcher Local

Researcher Regional

Researcher National
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Table 2 Explanation of criteria

1 Assessing technical capacity is essential for understanding the resources and capabilities of a farming system (Meuwissen 
et al. 2019)
2 It is essential to recognize that farmers are at the core of innovation adaptation. Their willingness to adopt innovations 
significantly impacts the feasibility and success of implementation efforts (Darnhofer et al. 2010b; Hall and Clark 2010; 
Asayehegn et al. 2017)
3 Burrell (2010) emphasizes that if farmers are to take action, they need to see that the benefits of adaptation outweigh the 
costs
4 Understanding market dynamics enables farmers to align their adaptation efforts with market demands and opportunities 
for economic growth. If there is no market for what is produced on the farm with the help of the adapted innovation, then 
the innovation can be considered as not feasible (Feenstra and Lewis 1999)
5 This comprehensive view aligns with the neo-institutional school of thought
6 A crucial criterion to be considered in the drylands due to water scarcity for innovation assessment is water use efficiency
7 Energy plays a significant role in agricultural operations, from powering machinery and equipment to processing and 
transportation. Assessing energy use efficiency involves the identification of opportunities to reduce energy consumption 
(Burrell 2010)

Groups Criteria Explanation

Technical capacity Technical capacity1 This refers to the infrastructure, equipment, and resources avail-
able for farming. It encompasses buildings and facilities, equip-
ment, road network, and labor (Meuwissen et al. 2019)

Social complexity2 Refers to the acceptance of farmers of the innovation strategies 
suggested, as well as to the consensus between the parties con-
cerned, their views, and cooperation (Darnhofer et al. 2010b; Hall 
and Clark 2010; Asayehegn et al. 2017)
Specific questions included:
How willing are you to adopt the proposed innovations?
How would you describe the level of consensus among various 
stakeholders (e.g., farmers, government officials, researchers) 
regarding the proposed innovations?
Do these innovations consider cultural norms?
How would you rate the level of cooperation among farmers 
regarding the adoption of these innovations?
What are the main challenges you foresee in implementing these 
innovations, also those arising from cultural and institutional 
barriers?

Institutional complexity Refers to any barrier from institutions, both public (e.g., govern-
ment agencies, regulatory bodies) and private (e.g., banks, finan-
cial institutions), such as bureaucratic procedures to go through, 
not providing financial support for the farmers, etc. (Darnhofer 
et al. 2010b; Hall and Clark 2010; Asayehegn et al. 2017)

Economic Profitability3 How much profit will farmers gain from this strategy?
(Fadina and Barjolle 2018)

Cost of action These opportunities arise from changes in market trends, shifts in 
consumer preferences, new technologies, and emerging markets. 
(Fadina and Barjolle 2018; Burrell 2010)

Market opportunities4 Potential revenue streams and access to value-added markets 
through innovations
(Feenstra and Lewis 1999)

Transaction costs5 Includes uncertainty (related to market conditions, weather 
variability, and the performance of new technologies), frequency 
(how often transactions occur), and asset specificity associated 
with technology adoption. (Obińska-Wajda 2016)

Environment Water use efficiency6 The extent to which the adaptation strategy can help conserve 
water resources

Energy use efficiency7 The extent to which the adaptation strategy can help save the 
energy

Environmental emergency How soon does the option need to be implemented due to envi-
ronmental emergency? (FAO 2007a)
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are: technical capacity, social complexity, institutional complexity, costs, and transaction 
costs.

The last step involved the prioritization of options, where innovations were ranked 
based on the final weighted scores. The formula for weighted scores considered the 
weight of each criterion and the score of each option in relation to that criterion. The 
stakeholders assigned numerical scores from 1 to 5 to each option against specific 
criterion.

The following Eq.  (2) was used to calculate the value of attribute score  (xi) for each 
criterion multiplied by the weights  (wi), thus giving the weighted sum (S) for each inno-
vation criterion.

To calculate the total of all the criteria for each innovation option, we used the following 
formula:

Findings
WEFE weighting criteria obtained from farmers and other stakeholders

Farmers and stakeholders taking part in the focus group discussion ranked a list of ten 
criteria based on the importance accorded to their objectives.

According to Dessart et al. (2019), if resources are abundant and farmers perceive an 
immediate threat, they may prioritize the environmental criteria in their decision-mak-
ing process. This is applicable in the study area, where there is a scarcity of resources. 
Although it is unclear to what extent farmers perceive this scarcity as a threat, they are 
aware of it. Despite this awareness, they do not prioritize environmental criteria when 
selecting innovations. The results showed that there is a consensus among farmers 
regarding the crucial role of profitability and the cost of action when it comes to adopt-
ing innovations in farming practices (Table 4).

Both the mean and median values indicate a strong consensus and highlight a unan-
imous agreement on the significance of these factors. However, the reasoning behind 
this choice goes beyond farmers simply wanting to minimize costs and maximize profits. 
We must consider various factors that influence their decision-making process. These 
include educational and awareness levels (Ben Khadda et al. 2021; Moinina et al. 2018; 
Berni et al. 2016), previous experience with innovations, economic considerations, lim-
ited resources, risk management, and market dynamics. Additionally, the high level of 

(2)S = �wi ∗ xi;

(3)S1 = �w1 ∗ x1 + w2 ∗ x2 + w3 ∗ x3 . . .wn ∗ xn

Table 3 Scoring standardization

Criteria to be standardized Initial scoring Standardization

Technical capacity 1 5

Social complexity 2 4

Institutional complexity 3 3

Costs 4 2

Transaction costs 5 1
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cooperation among farmers in the study area, which leads to shared interests, is another 
reason for this choice. However, these choices can also be impacted by family composi-
tion and farmers’ life cycle stage. For instance, larger families may have more labor avail-
able, while younger farmers might be more open to adopting new technologies. This 
approach may influence their preferences and priorities differently compared to older or 
smaller family units.

Technical capacity emerges as a key concern for farmers, with a consensus and mini-
mal divergence in viewpoints, as it directly affects their ability to adopt and successfully 
integrate new practices into their existing farming practices. Farmers in the Fès–Meknès 
region recognize the need to enhance their technical capacity not only to remain com-
petitive, but also to adapt to climate change.

In this case, farmers are likely to change their priorities in response to government 
interventions, subsidies, and other support programs (Taramuel et al. 2023).

The importance placed on water and energy use efficiency, as well as environmental 
emergency, by other stakeholders is highlighted in Table 5. This consensus among them 
is driven by government policies and incentives such as the 2020–2030 Green Gen-
eration Plan, vulnerability to climate change, and the increase in energy consumption 
despite policy efforts (Fragkos 2023).

Experts recognize a connection between the environment and economic criteria, 
where sustainable resource use, specifically water, and energy efficiency, contribute to 
long-term cost savings and enhance the overall economic viability of the agricultural 
sector. While social complexity was given less weight compared to other criteria, this 
does not imply that it is negligible (Table 5). Rather, it reflects the perspective that farm-
ers and other stakeholders will not be a barrier to the adoption of these innovations. 

Table 4 Criteria weighting by farmers

S—stakeholder, V—values given by farmer from 10 to 100, W—weights, the bold indicates the criterion ranked as the 
highest

Farmers

S1 S2 S3 S4

Category of 
criteria

Criteria W (%) W (%) W (%) W (%) Mean (%) Median (%) St 
deviation 
(%)

Feasibility Technical capacity 
required

11.8 9.7 13.8 9.9 11.3 10.8 1.9

Feasibility Social complexity 2.0 4.8 4.6 11.3 5.7 4.7 4.0

Feasibility Institutional com-
plexity

3.9 6.5 4.6 11.3 6.6 5.5 3.3

Economic Profitability 19.6 16.1 13.8 12.7 15.6 15.0 3.1
Economic Cost of action 17.6 14.5 15.4 12.7 15.1 15.0 2.1
Economic Market opportu-

nities
5.9 11.3 10.8 11.3 9.8 11.0 2.6

Economic Transaction costs 7.8 8.1 10.8 4.2 7.7 8.0 2.7

Environmental Water use effi-
ciency

13.7 11.3 9.2 14.1 12.1 12.5 2.3

Environmental Energy use effi-
ciency

11.8 9.7 9.2 5.6 9.1 9.5 2.5

Environmental Environmental 
emergency

5.9 8.1 0.08 7.0 7.2 7.4 1.0
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Additionally, technical capacity is acknowledged as an important criterion, but they 
assigned it a moderate weight to avoid the risk of not capturing the broader challenges 
and considerations that impact implementation feasibility and success.

Prioritization of WEFE innovations

Based on the findings of the MCA assessment, the two groups of stakeholders that took 
part in the focus group discussion made different choices regarding the innovations to 
be adopted in the study area (as shown in Tables 6, 7). The proposed innovations were 
generally well aligned with local cultural and traditional farming practices, as well as 
local characteristics, which are key drivers of decision-making when adopting innova-
tions. However, the group of stakeholders believed that some of the innovations put 
forward, such as the loan initiatives for women, did not fit the local context. This mis-
alignment underlines the importance of tailoring innovations to the specific needs and 
conditions of the target area to ensure their successful implementation.

These findings collectively demonstrate the complex and multifaceted nature of the 
differences in prioritization of innovations in terms of their impacts on WEFE, and their 
implementation feasibility at the farm level.

The group of other stakeholders considers drought-resistant crop varieties to be cru-
cial innovations in the area due to their high water use efficiency and resistance to crop 
yield losses in drought-prone areas (Table  6), while the analysis of social complexity 
revealed that other stakeholders showed a high willingness to adopt drought-resistant 
crop varieties due to their potential to mitigate crop yield losses in drought-prone areas. 
This strategy scored notably high in water use efficiency (0.78) and environmental emer-
gency (0.76). Overall, the group stated that addressing water scarcity and promoting the 
economic viability of drought-resistant crops make this strategy a comprehensive choice 
for sustainable agriculture in the Fès–Meknès area. Likewise, intercropping secured the 
second position in the prioritization process among other stakeholders, thus highlight-
ing its importance in addressing water scarcity, just like drought-resistant crop varieties. 
It is worth noting that intercropping has a moderate level of technical complexity (0.45), 
yet according to local experts, in order to successfully implement it, farmers need to have 
a certain level of technical knowledge, including understanding the compatibility of dif-
ferent crops, their growth patterns, and nutrient requirements. Additionally, intercrop-
ping is compatible with existing market systems and has the potential to improve market 
access (0.32), which makes it accessible and profitable as an agricultural innovation.

Rainwater harvesting is considered crucial for improving water resources and offer-
ing farmers an alternative to expensive external water sources such as groundwater or 
municipal supplies. This translates into cost savings, particularly in areas with water 
scarcity. On the social front, the level of social complexity is low (0.27), which high-
lights the need for community awareness, education, and, in some cases, collabora-
tive efforts. The success of rainwater harvesting initiatives not only depends on the 
technology itself but also on effective communication and community engagement. 
Given that the level of cooperation among farmers is generally high in the study area, 
this creates a positive environment for collective action in adopting innovations 
and addressing resource scarcity issues, especially for practices that provide clear 
mutual benefits, such as rainwater harvesting. However, unlike other strategies, the 
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implementation costs of rainwater harvesting are not low. Once the infrastructure 
is in place, maintenance involves routine checks and simple repairs, which leads to 
sustainable and cost-efficient water management, and results in a positive return on 
investment.

Lastly, the implementation of financial incentives to encourage farmers to adopt water 
conservation practices highlights the complex social and institutional factors involved. 
This suggests that financial incentives can be crucial in engaging farmers. Nonetheless, 
it is important to recognize that this strategy also carries the risk of becoming a malad-
aptation, based on past experiences. It is common for farmers to prioritize planting cash 
crops, such as vegetables, when they have ample water resources for crop production. 
This choice is driven by the desire to maximize profits, as these cash crops typically yield 
higher returns. However, it is crucial to note that such crops also require more water, 
thus creating a trade-off between profitability and water consumption. This trade-off 
goes against the original purpose of suggesting this innovation in the first place.

Meanwhile, the ranking carried out by farmers is influenced by the different per-
ceptions and priorities of farmers, as well as by their experience, local concerns, and 
interactions within the farming community. Based on farmer choices, it becomes evi-
dent that economic incentives outweigh the environmental benefits of innovations 
(Table  7). Farmers argue that the adoption of certain practices is not solely deter-
mined by their willingness, but rather requires favorable conditions, such as soil type, 
water availability, farmer experience, and cultural context, to be met beforehand.

Integrating olive trees with cereal crops is ranked as one of the top five priorities for 
both "other stakeholders" (in the third position) and farmers (in the first position). The 
preference of farmers for this integration reflects a localized understanding of the high 
economic benefits that come with diversified agroforestry. This understanding may be 
influenced by historical agricultural practices in the region and the demands of local 
markets. For instance, in the 2020–2021 agricultural year, the production of olives was 
623,539 t (Idrissi 2021). The scoring patterns among farmers indicate an increasing rec-
ognition of agroforestry as a multifaceted solution within sustainable agriculture. Practi-
cal experiences and challenges related to water scarcity in the region further reinforce 
the importance of technologies such as drip irrigation. This aligns with the findings of 
Elouadi et al. (2020), which highlight the positive impact of drip irrigation on crop water 
use efficiency and overall farm productivity. The high profitability score (0.62) empha-
sizes the economic attractiveness of drip irrigation. This choice aligns with the global 
trend of precision agriculture, which prioritizes resource-efficient practices.

Furthermore, regarding organic fertilizers, farmers still see their use as profitable 
(0.62), especially because they can obtain manure from their own livestock without 
incurring additional costs (0.45). While they are open to incorporating organic ferti-
lizers into their farming practices and recognize their benefits, they still prefer fertiliz-
ers that provide higher yields. As for pest control, only a small number of farms in the 
Fès–Meknès region use more sustainable methods. This finding is supported by a study 
conducted by Ben Khadda et al. (2021), which revealed that 85.6% of farmers rely solely 
on chemical methods. Nonetheless, the acceptance of the adoption of more sustainable 
practices indicates that awareness-raising efforts have been effective in this area.
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Lastly, it is worth mentioning that farmers ranking soil conservation and minimum 
tillage practices as their fourth and fifth preferences are in line with the objectives of the 
Green Generation Plan. This demonstrates that the government’s active promotion of 
and education in sustainable agriculture have likely played a role in influencing farmers 
to prioritize methods that align with national policy.

Moreover, the increasing awareness of environmental issues and the economic viabil-
ity of these practices among farmers also contributes to their selection. They are also 
inspired by success stories from other farmers, known as farmer leaders in the region, 
who have successfully implemented these practices. Additionally, access to resources 
and government support further influence the decisions of farmers.

Discussions
Both groups of stakeholders (farmers and other stakeholders) prioritize strategies with 
high water use efficiency, which aligns with the study of Rejekiningrum et  al. (2022), 
who emphasize the importance of maximizing water efficiency in dryland farming areas 
for resilience. Innovations such as drip irrigation and crop rotation directly address 
this need by conserving water resources, thereby helping farmers withstand periods of 
drought and water scarcity. However, while other stakeholders place a stronger empha-
sis on environmental considerations, farmers prioritize economic viability and market 
opportunities. For instance, integrating olive trees with cereal crops, thus ensuring a sus-
tainable source of income: this innovation not only enhances economic resilience but 
also promotes ecological benefits, such as improved soil health and biodiversity, and 
contributes to the overall resilience of dryland farming ecosystems (Table 8). Studies by 
Waha et al. (2017) and Szaboova (2023) also highlight the economic considerations of 
smallholders in adopting new agricultural practices.

Findings by Fadina and Barjolle (2018) and Burt et al. (2023) highlighted that finan-
cial support mechanisms are critical for the adoption of sustainable practices. Our study 
adds a layer of complexity by discussing the unintended consequences of financial incen-
tives, such as the prioritization of high water use cash crops. These insights suggest that 
while financial mechanisms can drive the adoption of sustainable practices, they must 
be carefully designed to avoid promoting unsustainable agricultural choices. It is essen-
tial to integrate these perspectives in order to develop sustainable water management 
policies that align with both ecological imperatives and the economic realities of local 

Table 8 Prioritization of adaptation options—Other stakeholders & Farmers

Other stakeholders Farmers

Options Total Ranking Options Total Ranking

Use of drought-resistant crop varie-
ties

4.36 1 Integration of olive trees with cereal 
crops

4 1

Intercropping 4.09 2 Drip irrigation 3.52 2

Integration of olive trees with cereal 
crops

3.97 3 Organic fertilizers such as compost 
and manure

3.52 3

Rainwater harvesting 3.90 4 Soil conservation practices 3.45 4

Providing financial incentives to 
farmers who adopt water conserva-
tion practices

3.78 5 Minimum tillage practices 3.27 5
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agriculture in the Fès-Meknes region. The collaborative identification of strategies that 
balance technical feasibility, economic viability, and environmental emergency is crucial 
for the successful implementation of innovations. Based on this work, we observed a 
gap in the perception of the impact of innovations between the two groups, even though 
some farmers in the area adopted several practices suggested in the WEFE assessment. 
This finding indicates that the impacts of these practices were not significant enough to 
be widely acknowledged. By comparing indicators, we observed that the same strategies 
scored better in terms of impacts on water use efficiency, energy efficiency, and the envi-
ronment, for instance, crop rotation or drip irrigation, and in the farmers’ group these 
same strategies received moderate scores in terms of these impacts.

There are several potential reasons for this perception gap. One of them is the lack 
of knowledge and awareness of certain practices, which influences their perception and 
ranking of the impacts of these practices. Smallholders in the region have a low level of 
education and rely mostly on their own experience or unreliable sources. Furthermore, 
we have observed skepticism among farmers about certain innovations, as some of the 
farmers tried to implement these practices but did not achieve satisfactory production, 
and perceived yield impact plays a role in decision-making as well. Given that the farm-
ers who took part in this study were men, the strategy we put forward to involve women 
in providing loans for farm investments was rejected by both the group of farmers and 
that of other stakeholders (Tables  6, 7). This indicates that cultural influence remains 
strong in Morocco. This is primarily due to the limited cases of women being in charge 
of farms: they cannot be head of the family even when the latter includes no men. 
According to cultural norms, another male relative will take responsibility for managing 
the family and the farm in such cases. These factors contribute to the gap in the percep-
tion of the impacts of agricultural innovations, which highlights the complex interplay 
of knowledge, experience, cultural dynamics, and perceived yield impact in shaping the 
attitudes and decision-making of farmers in the Saïss Plain. Addressing these challenges 
requires tailored approaches that consider the educational, cultural, and gender dynam-
ics within the farming community.

A key result of the Multi-Criteria Assessment revealed that other stakeholders do 
not prioritize Conservation Agriculture practices within their top five rankings. This 
is surprising not only due to its important role in enhancing the resilience of dryland 
farming within the WEFE nexus, but also since Morocco has made significant efforts in 
recent years for the extension of CA. In 2008, the implementation of no-tillage practices 
was limited to only 4000 ha (Kassam and Friedrich 2010), whereas the current plan is 
to convert 1 million hectares, and 200 k ha out of these are planned for the Fès–Mek-
nès region alone. Farmers rated CA higher than other stakeholders, even though the 
difference in scoring is very small and they still rank these practices in the 4th and 5th 
places rather than in their top three priorities. This could be explained by the proxim-
ity of these farmers to other leading farmers currently practicing CA. This can also be 
attributed to the country’s commitment to sustainable agricultural innovations. The 
Moroccan government has prioritized sustainable agriculture and food production as 
part of its economic and social development, thus recognizing the role of agriculture in 
achieving broad-based economic growth and reducing poverty. Furthermore, the pro-
motion of CA practices, and the commitment to water-saving technologies have helped 
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to strengthen resilience to drought and increased water scarcity due to climate change. 
These efforts and commitments create a conducive environment for the acceptance of 
CA practices by farmers in Morocco, nevertheless not enough to motivate them to be 
part of the implementation yet.

As shown in the literature review (see Fig.  1), studies not only examine the direct 
impacts that certain innovations will have on the WEFE nexus, but also consider the 
indirect impacts. According to the literature, one innovation can somehow affect the 
entire WEFE nexus, either directly or indirectly. Meanwhile, in our case, stakeholders’ 
perspectives on the impacts of innovations on the farming system mainly focus on the 
immediate effects on water, often neglecting the broader aspects (Fig. 4). Nevertheless, 
the identified innovations (Fig. 4) are related to water–food–energy–ecosystem, and are 
closely linked to the resilience of dryland farming, by addressing water scarcity (through 
innovations such as drip irrigation, rainwater harvesting, use of drought-tolerant varie-
ties), promoting environmental sustainability (through soil conservation practices and 
the use of organic fertilizers), improving energy efficiency (through minimum tillage), 
as well as improving economic viability, which is in the interest of farmers (such as 
intercropping).

Overall, stakeholders’ perspectives on the impacts of innovations are shaped by a 
combination of interests, economic priorities, knowledge gaps, and communication 
dynamics within the agricultural sector. This is influenced by various factors; firstly, 
stakeholders, in this case farmers, tend to prioritize issues with direct and immediate 
consequences, such as water scarcity and energy efficiency, due to their tangible impacts 
on production costs and resource availability. For instance, as minimum tillage practices 
directly affect water usage and energy consumption, they are more inclined to focus on 
these aspects, which they perceive as more immediately relevant to their operations. 
Consequently, the broader environmental implications of minimum tillage practices, 
such as soil health and biodiversity, may be overlooked in favor of more immediate eco-
nomic concerns. Similarly, financial incentives provided to farmers for adopting water 
conservation practices are perceived differently by academics and stakeholders. While 

Fig. 4 The potential impacts of innovations on WEFE (water, energy, food, and ecosystem) (according to 
stakeholders)
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studies suggest that such incentives primarily impact water resources and their man-
agement, both group of stakeholders considered the impact on energy consumption. 
Moreover, farmers may possess limited awareness or understanding of the multifaceted 
impacts of agricultural practices. This lack of comprehensive knowledge can result in a 
narrowed focus on the relationship between water, energy, food, and ecosystem. Addi-
tionally, there may be a communication gap between farmers, researchers, and policy-
makers, regarding the impacts that these innovations have on farming.

Conclusions
This work has developed a systems approach for assessing the resilience of the water–
energy–food–ecosystem nexus in arid and semiarid regions, by exploring innovative 
practices in dryland farming systems, and assessing their impact on water, energy, food, 
and ecosystem through stakeholder perceptions. In this study, we observed that farmers 
and local experts in dryland farming systems have differing priorities with regard to the 
impact of innovative practices on WEFE nexus resources. By identifying and prioritiz-
ing innovations that directly or indirectly impact the WEFE nexus in farming systems, 
this study emphasizes the significance of taking into account stakeholder perspectives, 
including those of farmers, when implementing innovation strategies in agriculture. 
Unlike previous literature that examined both the direct and indirect impacts of innova-
tions on the WEFE nexus, in the research case presented in this paper, stakeholder per-
spectives on the impacts of innovations on farming systems mainly focus on immediate 
effects on water, often neglecting the broader aspects of the WEFE approach. A deeper 
examination of stakeholder opinions makes it possible to further explore more systemic 
impacts of innovations on WEFE resources, beyond the positive effects on water scar-
city, such as environmental sustainability, energy efficiency, and farm economic viability, 
all of which contribute to the resilience of dryland farming systems.

While the adoption of innovations is rising, there is still a long way to go. There seems 
to be a knowledge gap both at farm and extension service levels, as well as among pol-
icymakers, which requires more tailored advice to know which innovations should be 
encouraged, and where. Future research should focus on including socioeconomic anal-
ysis to design appropriate incentives for the adoption of innovations by farmers. Fur-
thermore, as the Moroccan government is working toward more sustainable farming 
innovations, there is a need to work on information programs, not only designed for 
farmers but also for extension services and policymakers.
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