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Abstract: The isoflavones in the cotyledon of soybean seeds mimic human estrogen in structure,
conferring them complex effects on health. Their regulation represents a major challenge for the
sustainable breeding of new varieties with lower levels of potential endocrine disruptors. To develop
a rapid, nondestructive, and eco-friendly analysis method, this study explores how sample grinding
affects the results of near-infrared spectroscopy (NIRS) and the preprocessing methods. The prediction
of the daidzein and genistein content would help the specific reduction in isoflavones in the cotyledon
without harming seed development. The potential of a nonlinear approach (artificial neural network)
is also compared with the more conventional partial least squares (PLS) regression. The isoflavone
content of cotyledons from 529 soybean samples (65 genotypes) was quantified by HPLC, and the NIR
spectra of these samples were collected using a Brucker multi-purpose analyzer. The spectra of whole
and ground cotyledons were also collected for 155 samples. The results show that grain fragmentation
improves the model calibration, although spectral preprocessing can harmonize this effect. Although
the best PLS regression in cross-validation did not suffice to quantify the daidzein and genistein
percentages, the artificial neural network (ANN) approach allowed us to develop much more reliable
models than PLS. The performance of ANNs in external validation is remarkable in terms of both
precision and applicability (R2 = 0.89 and a ratio of prediction to deviation of 2.92), making ANNs
suitable in the breeding context for screening soybean grains regarding their isoflavone content.

Keywords: near-infrared spectroscopy; soybean; isoflavones; sustainable analysis

1. Introduction

Soybeans are an excellent source of protein and are rich and balanced in essential
amino acids, making them ideal for a healthy diet. Soy foods (tofu, soy milk, etc.) are a
major sustainable alternative to meat products. They are usually made from fractionated
seeds, using only the cotyledons [1]. Soybeans can also accumulate isoflavones in greater
amounts than other legumes, making soy production the main source of isoflavones in
alimentation [2]. Since their discovery in the 1940s, the impact of isoflavones on health has
been extensively explored and widely detailed in the scientific literature [3]. With a structure
closely mirroring human estradiol, soy isoflavones can bind to estrogen receptors [4],
producing agonist or antagonistic effects that can have a variety of beneficial and adverse
effects on health. On the positive side, isoflavones help prevent and treat hormonal cancers,
menopausal symptoms, osteoporosis, and cardiovascular diseases [5–11]. However, despite
these positive health aspects, isoflavones are endocrine disruptors and can adversely affect
fertility in young individuals and disrupt the proper functioning of the thyroid [12–14].
Thus, the consumption of isoflavones is not recommended for children and pregnant
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women. Reports have raised concerns among the population, urging industry to label
products and develop more restrictive regulations [15,16]. To offer a more sustainable
variety of soybeans, breeders are developing a soybean line with lower isoflavone levels in
the cotyledons.

Apart from their impact on health, isoflavones play a critical role in plant development
and physiology. Roots exude isoflavones into the soil, triggering a symbiotic associa-
tion with Rhizobium japonicum, which fixes atmospheric nitrogen [17]. As phytoalexins,
isoflavones are also involved in defending against microbial pathogens and in signaling abi-
otic stress [18]. Isoflavone molecules have a common skeleton of 3-phenylchromen-4- [19].
Soybean seeds have 12 isoflavone molecules: three aglycones (daidzein, genistein, and
glycitein), each with four decoration forms (Figure 1). The three aglycones appear mainly
in the malonyl form (≈90%) and glycosyl form (≈10%) [20]. The acetyl or free aglycone
forms are the only traces that may increase with seed degradation, either through fermen-
tation or the influence of heat on the tissues [21,22]. Although the coat’s seed is devoid
of isoflavones, cotyledons are the main reservoir in absolute quantities (predominantly
conjugated daidzein and genistein). Despite constituting only 2–3% of the entire seed,
the embryo axis accumulates 4 to 10 times more isoflavones than the cotyledon (mainly
glycitein and daidzein), although the accumulation of isoflavones in these two parts of the
seed is not correlated [23,24]. The challenge for soybean breeders is to reduce the isoflavone
content in cotyledons used for human consumption without affecting the isoflavones of the
embryo axis, which are required for proper plant development. Therefore, the isoflavone
content in cotyledons should be specifically phenotyped to distinguish cotyledon-specific
genistein from daidzein.
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Isoflavones are commonly quantified after separation by HPLC, followed by mass
spectrometry or UV detection. Capillary electrophoresis and/or testing by enzyme-linked
immunosorbent assay may also be applied [25–28]. These methods are widely used to
quantify each isoflavone separately in various media such as seeds, tofu, milk, or flour.
However, such techniques require training, equipment, time, and environmentally harm-
ful chemicals and supplies. Thus, the exponential cost of HPLC methods for the envi-
ronment and for breeders makes them unsuited for the significant sample output from
plant-breeding programs.

In contrast, near-infrared spectroscopy (NIRS) is a versatile tool that can predict both
the quantitative and qualitative properties from a wide range of matrices. It is applied
in quality control for industrial processes and the quantification of macro and micro
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components in both raw materials and final products [29,30]. The strength of NIRS lies
in its rapid, nondestructive analysis, environmental compatibility due to its solvent-free
operation, user-friendly interface, and cost-effectiveness. Since the 2000s, NIRS applications
for soybeans have been numerous and thoroughly documented. Today, industry and
breeders apply classic chemometric tools to process NIR spectra for the quality control of
soybean seeds [31,32]. The major parameters targeted by NIRS are protein, oil, moisture,
and seed viability [33–35]. Two decades of calibration improvements, with new samples
added each year, have made prediction models for single seeds or bulk samples remarkably
robust and accurate [36,37].

Isoflavone phenotyping by NIRS has been widely investigated (Table 1). The different
studies vary significantly in database size, analytical instruments, soybean matrixes, spectra
preprocessing, statistical approaches, modeling tools, and validation methods. Despite
varying results for the coefficient of determination (R2), the root-mean-square error (RMSE),
and the ratio of prediction to deviation (RPD), the overall conclusion is that NIRS is
promising for rapidly and reliably predicting isoflavone content. However, grey areas
remain for modeling in a breeding context.

First, the seed is consistently considered as a single entity, neglecting the independent
contribution of the cotyledon and embryo axis to isoflavone content. Thus, NIRS prediction
for isoflavones intended for food processing should be specific to each part of the seed. The
primary aim of this study is to investigate the feasibility of predicting cotyledon isoflavone
content from whole-seed spectra. Comparing the predictive capabilities of the seed and
cotyledon spectra should validate this objective. Differences between whole or ground
(higher homogeneity) matrices can affect the quality of the calibration [38,39]. Ground
and peeled matrices enhance calibration quality due to better homogeneity [40] (although
this point is still debated [41]). Thus, we compare the calibration performed on whole
and ground cotyledons with the calibration performed on the overall seed matrix. In
addition, prior studies have not investigated how the preprocessing method affects the
results (Table 1). Savitsky–Golay, multiplicative scatter correction (MSC), standard normal
variate (SNV), normalization of the mean, or raw spectra are commonly used to predict
isoflavones from soybean spectra. However, the emphasis of these techniques is optimizing
the calibration, leaving the direct applicability of the spectral transformation less explored.
Calibrating NIRS thus also requires comparing matrix spectra.

Second, since breeders want to reduce cotyledon isoflavones in food without affecting
plantlet symbiosis, which is linked to isoflavones in the embryo axis, we should consider
the diverging composition of these two seed parts. As described above, the 12 isoflavones
can be classified into 3 subtypes based on their aglycone structure. Daidzein is present in
both the cotyledon and embryo axis, whereas genistein is more specific to the cotyledon and
glycitein than to the embryo axis. Contrary to quantification by NIRS of the total isoflavone
content, aglycone profiling remains poorly investigated, making it challenging to reduce
genistein specifically. From an NIRS perspective, the ability to phenotype the percentage of
daidzein and genistein is as important as phenotyping their absolute quantities to reduce
cotyledon-specific isoflavones. Although several studies have aimed to predict the content
of each conjugation of each aglycone, the performance varies without explanation and
no attempt has been made to predict the aglycone percentage [38,42,43]. Rectifying this
situation is the second objective of the present work.

Third, the use of nonlinear approaches such as artificial neural networks (ANNs)
remains under-investigated, even in the studies using the largest and most complete
database [43] or in the most recent work published confirming the results of Berhow’s
team [39]. RPDs between two and three open the possibility of using Berhow’s calibra-
tion for rough screening [44]. Unfortunately, neither of these two studies explores the
possibilities offered by ANNs or tests the direct applicability of the prediction method on
whole seeds.
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The present work seeks to fill the remaining grey areas (or thresholds) by developing
an NIRS-based calibration method adapted to soybean breeders for the rapid phenotyping
of isoflavone concentration in cotyledons (Figure 2).
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Table 1. Properties and results of published work modeling isoflavone content from soybean seeds
NIRS (SNV: standard normal variate; SG: Savitsky–Golay derivative; MSC: multiplicative scatter
correction; ANN: artificial neural network; PLS: partial least squares regression; MPLS: modified
partial least squares regression; MLR: multiple linear regression).

Coulomb et al.,
2004 [45]

Sato et al., 2008
[38]

Baianu et al.,
2012 [31]

Zhang et al., 2017
[42]

Berhow et al.,
2020 [43]

Amanah et al.,
2022 [39]

Collection size 500 48 50 269 3159 310

Number of
cultivars 162 20 50 / / 65

NIRS system FOSS NIR System
6500 InfraAlyzer 500 FT-NIR Perkin

Elmer Spectrum

Foss NIRS DS
2500 with

standard 1.5 m
210/7210 bundle
fiberoptic probe

FT-NIR Perkin
Elmer Spectrum

FT-IR Nicolet
6700

Matrix analyzed
by NIRS Whole seeds Whole and

ground seeds Cut in half seed Whole seeds Ground seeds Individual seed
and ground seeds

Replicate
spectrum 1 1 3 2 1 21

Spectrum range 400 to 2500 nm 1100 to 2500 nm 800 to 2500 nm 400 to 2500 nm 1000 to 2500 nm 2500 to 25,000 nm

Preprocessing SNV detrend and
1st SG

1st. 2nd and
3rd SG MSC SNV 1st SG 1st and 2nd SG.

MSC and SNV

Variable
predicted Total isoflavones Each and total

isoflavones Total isoflavones Each and total
isoflavones

Each aglycones
and total

isoflavones
Total isoflavones

Isoflavone
content range

1.74 to
10.35 mg/g

1.33–6.33 mg/g
dry matter 0.3–6.0 mg/g 0.247–2.512 mg/g 0.27–9.55 mg/g 0.72–4.33 mg/g
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Table 1. Cont.

Coulomb et al.,
2004 [45]

Sato et al., 2008
[38]

Baianu et al.,
2012 [31]

Zhang et al., 2017
[42]

Berhow et al.,
2020 [43]

Amanah et al.,
2022 [39]

Modeling tool ANN MLR and PLS PLS MPLS MLR PLS

Validation set External 25% External 25% of
database Cross Validation Cross Validation External 25% External 30%

R² from
prediction set 0.74

0.82 from whole
seeds and 0.95
from ground

seeds

0.997 0.77 0.8

0.80 from whole
seeds and 0.92
from ground

seeds

RMSE from
prediction set 0.74 mg/g

0.66 mg/g dry
matter from

whole seeds and
0.40 mg/g dry

matter from
ground seeds

0.017% 0.122 mg/g 0.616 mg/g

0.30 from whole
seeds and 0.33

g/mg from
ground seeds

RPD from
prediction set 1.85

1.78 from whole
seeds and 2.93
from ground

seeds

/ 3.58 2.13

2.56 from whole
seeds and 2.33
from ground

seeds

2. Materials and Methods
2.1. Soybean Materials

The soybean seeds (Glycine max) used in this study came from six experimental fields
cultivated over four years. The collection includes 529 soybean samples from various
experiments spanning from 2017 to 2022 (Table 2). Locations 1–3 are in southern France;
locations 4 and 5 are in northern France; and location 6 is in southern Germany.

Table 2. Repartition of samples by origins and year of cultivation.

Location
Year

Total
2017 2018 2020 2021 2022

1 90 144 234
2 2 49 18 69
3 14 48 16 78
4 13 17 30
5 36 17 53
6 44 19 63

Total 90 144 29 177 87 527

Overall, the collection has a genetic diversity of 65 cultivars, mainly taken from
the current and former RAGT and LIDEA commercial ranges and enhanced with exotic
worldwide material. The genotypes making up the sample collection are representative of
those grown at all European latitudes. The addition of non-European varieties is motivated
by the need to improve the versatility and robustness of the models.

The days required for complete soybean development can vary significantly from
one variety to another [46]. The maturity group for late varieties is indicated by Roman
numerals from I to X. For varieties earlier than I, we added zeroes until “0000” for the
earliest. The maturity groups in the database range from 0000 to III.

Most samples came from genotypes with yellow seed coats (76%). Of these, two-thirds
had a black hilum, while the remainder had a yellow hilum. Some of the genotypes in this
study had mottled seed coats with frequent dark patches of varying size. Most of these
colored seeds had a black hilum, while only a fifth had a yellow hilum. All genotypes
in this study had yellow cotyledons. Seed quality varied according to the origin of the
soybean lots. A minority of whole-bean samples contained some pod debris.
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Most of the samples (65%) came from the “SOJAMIP” experiment described in [47]
and developed by INRAE at Auzeville (southern France) over two years (2017–2018) [47].

Of the 529 samples, 155 were investigated to collect spectra from whole cotyledons
and ground cotyledons. These are exclusively from location 1 and were collected during
the 2017 and 2018 experiments. They are composed of six genotypes, four of which are in
the maturity groups I and II, with the remaining two in the maturity group 000.

2.2. Sample Extraction and HPLC Analysis

The reference analysis for isoflavone content was performed using HPLC analysis of
ground cotyledons. After 72 h of freeze-drying, 30 g of seeds were processed following the
method of Ref. [23]. A 2 min 140 ◦C heat shock followed by manual beating broke up and
separated the seeds, allowing extraction of whole cotyledons. The cotyledons were then
ground into powder using a ball mill for 1 min 30 s at 30 shakes/s (Figure 3).
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Figure 3. The four stages of sample transformation for isoflavone extraction and HPLC analysis:
(a) whole seeds; (b) whole cotyledons; (c) ground cotyledons; (d) diluted ground cotyledon in
extraction solvent.

Extraction of isoflavones and HPLC analysis followed the method described in
Ref. [24]. An aliquot of 300 mg of ground cotyledons was diluted in 7 mL of methanol/water
(80:20). The extraction by agitation for two hours at room temperature [Figure 3d] was
followed by centrifugation at 3000 rpm for 10 min. A volume of 275 µL of the supernatant
was deposited in a 0.2 µm filtering plate and centrifuged 1 min at 2000 rpm. The sample
was then filtered down to the analysis plate, which was then sealed.

The HPLC device consisted of a Thermo Scientific Dionex Ultimate 3000. A gradient
mobile phase composed of two eluents ran through the system. The first eluent was Milli-
Q® filtrated water with 0.05% trifluoroacetic acid (Fisher Scientific, Bordeaux, France). The
second eluent was acetonitrile RS HPLC (Carlo Erba Reagents, Heudebouville, France).
The static phase used to separate molecules was a C18 analytical column (Turbo Gold 80
ODS-3 33 × 4.6 mm, 80 Å, made by CIL Cluzeau, 33220 Sainte-Foy-La-Grande, France).
The isoflavones were detected by a UV diode array detector at 260 nm. The software
Chromeleon (version 2.7.10) associated with the device allowed recovery of the 12 individ-
ual isoflavone peaks (Figure 4). The concentration of each isoflavone was calculated from
the dilution ratio of the extraction and by external calibration through a standard range of
daidzein, glycitein, and genistein and their glycosylated forms provided by ChromaDex
Standards (Longmont, CO, USA).
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sample.

2.3. Expression of Isoflavone and Aglycone Contents

The total isoflavone content (mg/g of seed dry weight) of the 12 isoflavones is the sum
of their individual concentration. Next, for each aglycone sub-type (daidzein and genistein),
the aglycone equivalent was calculated (molecular weight without considering the acetyl,
malonyl, and glucosyl decorations) and expressed in absolute values (mg aglycone equiva-
lent per gram of seed dry weight) or relative values (percentages). Aglycone decorations
have no estrogenic power and are not heritable traits for selection. The literature highlights
the need to estimate isoflavones in aglycone equivalent for reproducible monitoring in the
agri-food sector [48]. Nevertheless, to allow comparison with similar studies, we focused
on content in mg/g of seed dry weight.

Twenty percent of the samples were tested twice to verify repeatability. The RMSE
between the two measurements was divided by the calculated mean content to obtain the
percent error of the reference analysis method.

2.4. Acquisition of Near-Infrared Reflectance Spectra

The NIR reflectance spectra were acquired using a Bruker multi-purpose analyzer
equipped with a rotating bucket. Each sample was analyzed with 60 g of whole, untreated
seed; triplicates were made over three different days of acquisition. The device measured
64 scans in reflectance mode from 12,500 to 3600 cm−1 with a wavelength step of 0.25 nm.
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Outliers in the spectrum dataset were controlled by analyzing the F residuals and Hoteling
T2 values. The limits of acceptability were set at 5% for these indicators.

NIRS of whole cotyledons followed the method described for whole seeds. Acquisition
of NIR reflectance spectra from ground cotyledons differs only in the sample container:
approximately 4 g of ground cotyledons was analyzed inside a static quartz cup. The
preprocessing method and the parameters of partial least squares regression (PLSR) devel-
opment are the same for all the matrices.

2.5. Data Processing and Chemometrics
2.5.1. Descriptive Analysis of Isoflavone and Aglycone Contents

The variables were tested for normality (Shapiro–Wilk, alpha risk 5%). Correlation
between the variables was calculated using the Pearson method for a normal distribution.
The Spearman method was used for non-normal variables. The significance of the coeffi-
cients was tested by t-test (alpha risk 5%). The same methodology was used to determine
correlations between loadings and between weights of the PLS models to measure the
prediction specificity of the variables associated with cotyledon isoflavones. Co-variations
were also verified by correlation tests between two quantitative variables or by an analysis
of variance between a quantitative variable and qualitative sample parameters such as year
of origin, location of origin, or color of seed coat.

2.5.2. Preprocessing of NIR Spectra

Most preprocessing described in the literature and noted in Table 1 was applied
individually, with and without smoothing, by a window of 3.75 nm moving average.
We analyzed the first and second Savitsky–Golay derivatives (SG1 and SG2), an SNV
transformation with zero, one, or two detrending transformations, and MSC. These spectral
preprocessing methods were tested on the three matrices (whole seeds, whole cotyledons,
and ground cotyledons). The objective of the final application was to select the method that
produces the best PLSR results on the whole-seed spectra and apply it to the remaining
database samples. The effect of preprocessing was determined via cross-validation [29].

2.5.3. Development of PLSR Models to Quantify Total Isoflavone Content, Daidzein and
Genistein Contents, and Percentages

To predict aglycone content, the proposed approach was more ambitious than the
published methods in two ways. First, it assessed whether percentages could be predicted
with the same accuracy as absolute aglycone contents (daidzein and genistein). Second,
it determined which wavelengths were specific to the loadings of the model designed to
predict isoflavones or each aglycone. Models were developed based on the preprocessed
spectra. The PLSR was based on the absorbance of the 2307 absorbance variables to predict
isoflavone, daidzein, and genistein contents and daidzein and genistein percentages. The
weights of predictors and responses were initially defined as constant and equal. The first
20 factors were investigated as maximum components, and the factor choice was made at
the maximum explained variance. The model inputs were determined by the nonlinear
iterative partial least squares algorithm with maximum iterations set at 100. The maximum
increase in residual variance was set at 6.0%.

2.5.4. Development of ANN Models to Quantify Total Isoflavone Content

We compared the accuracy of the ANN model and the PLS regression model to predict
the total isoflavone contents (mg/g). A successful indirect NIRS technique to analyze
isoflavone content must enable breeding programs to phenotype unknown material with
calibration models. Thus, a realistic assessment of the predictive potential of candidate
models requires a sample set dedicated to validation (i.e., not involved in the model’s
development). We thus selected the Kennard–Stone sampling method because it withholds
a representative set of samples for calibration [49]. Repartition of the samples was per-
formed based on the average of the triplicate reflectance spectra from each sample. To
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fairly compare PLSR with the ANN method, both were constructed and externally tested
with the same samples. The training set for calibrating the ANN was determined using the
Kennard–Stone method and comprised 70% of the samples from the database. The same
algorithm assigned half of the remaining samples to the internal validation set needed to
calibrate the model (i.e., 15% of the samples in the database). The remaining 15% were
designated as the test set for prediction. The PLSR used the same subsets for external
validation (15% of the samples). PLSR calibration was performed using the training and
validation sets sampled for the ANN (85% of the samples). The ANN structure contained
2307 input neurons (one for each input variable) and one neuron for the output variable.
Two to twenty neurons were added as a hidden layer to find the best ANN architecture over
500 iterations with three replicates. The Akaike fitness criterion determined the number
of neurons in the hidden layer. The logistic, hyperbolic tangent, and linear activation
functions were tested for managing the hidden layer and output values. The network
was trained with the conjugate gradient algorithm over 500 iterations with the training
set, and the weights were automatically randomized by the software. The validation set
was used to retrain the network over 50 iterations based on the output error function (the
sum of squares method). Following the development and retraining phase, the model was
evaluated on the test set, which consisted of samples unknown to the model.

2.5.5. Evaluation of the Performance of Each Predictive Model

The performance of prediction models frequently involves the measurement of a
few selected parameters. The quality of the linear regression between the predicted and
reference data is given by R2, which gives the fraction of the reference variance explained
by the model. The RMSE is a measure of the error and is often used to assess the accuracy
of a model. It is defined as

RMSE =

√
∑n

i=1 (Predictedi − Referencei)
2

n

and can be expressed as a percentage when divided by the average value of the reference
data. The applicability of the prediction model can then be approached by the RPD [29,44],
which is the standard deviation of the reference values divided by the RMSE of prediction
and indicates the suitability of the model for screening classes or for the routine quantitative
determination of new samples. The use of a prediction model for rough screening is
appropriate for RDP values above two. Above three, the RPD indicates the applicability is
sufficient to allow quantitative analysis and quality control.

2.5.6. Software

The NIR spectra were obtained using OPUS (version 8.5.29), and the descriptive
statistics were produced by Xlstat (version 2023.2.0). Removing outlier spectra, principal
component analysis (PCA), spectral preprocessing, and PLSR model development were
performed using Unscrambler X by CAMO (version 10.4–64 bit). Kennard–Stone repartition
was performed using MATLAB R2020a with update 7 (9.8.01721703). Finally, the ANN was
developed using Alyuda NeuroIntelligence © (version 2.2).

3. Results and Discussion
3.1. Total Isoflavone, Daidzein, and Genistein Content in Cotyledons Determined by HPLC

The average percent errors of HPLC analysis for total isoflavone (mg/g), total isoflavone
(mg/g eq. aglycones), daidzein content (mg/g eq. aglycones), genistein content (mg/g eq.
aglycones), daidzein proportion (%), and genistein proportion (%) between two extractions
are 9.1%, 9.4%, 9.5%, 9.1%, 2.4%, and 1.9%, respectively.

The complete database comprises 529 samples, with total isoflavone contents rang-
ing from 0.26 to 8.56 mg/g and averaging 2.63 mg/g. The range for cotyledon contents
corresponds to the range of seed content reported in the literature for NIRS calibrations
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of isoflavones (Table 1). Samples with contents below 2.5 mg/g are overrepresented, and
samples with contents above 4 mg/g are underrepresented. The distribution is not ho-
mogenous, and the skewness is positive. All expressions of isoflavone content, specifically
aglycone content, and proportions correlate significantly with each other, with p values
significantly less than 0.05.

Fermentation or temperature changes can degrade aglycone conjugations and influ-
ence the ratio between total content mg/g and aglycone equivalent content mg/g [50].
Thus, significant differences between these two isoflavone expressions must be monitored
for samples degraded by harvesting or storage. Overall, the two expressions of total
isoflavone content, as mg/g or as mg aglycone equivalent, are almost linear to each other
(R2 = 0.998). Samples from location 1 spent several years in outdoor storage and were
exposed to seasonal temperature variations. Using the Student’s t-test to determine the
ratio of conjugate content to aglycone equivalent content at different collection sites con-
firms this hypothesis. The ratio for samples from location 1 was significantly less than
that of samples from other locations (mean was 1.74 and 1.84, respectively, p < 0.0001).
Because these storage conditions led to a discrepancy between the two possible expressions
of isoflavones (in aglycone equivalence or not), we must monitor for bias in the prediction
of the content of these samples. Samples from location 6 were low quality because this crop
was damaged by rain and moth attacks. However, location made no difference in terms of
mg/g or aglycone equivalent mg/g ratio.

The samples have an average daidzein content of 40%, whereas genistein is predom-
inant in most samples. The percent contents of daidzein and genistein are dependent
variables with a high correlation coefficient (R = 0.905). Conversely, total content correlates
less with the proportions of the two aglycones: daidzein with R = 0.499 and genistein with
R = 0.303. The maturity group, expressed by a score ranging from 0 to 6 (for groups 0000 to
III of the panel), is not correlated with the total isoflavone content (R = 0.024), or with the
percent of daidzein (R = 0.129), or genistein (R = 0.102).

The analyses of the isoflavone content reference span multiple years of analytical
campaigns. As samples were harvested and collected from the collections, eight sessions of
sample transformation and HPLC extraction and analysis were conducted consecutively
between 2021 and 2023. Isoflavone concentration in soybean cotyledons is determined by
genetic and environmental factors. According to an analysis of variance, the isoflavone
content in cotyledons does not significantly affect the hilum and coat colorations. The sam-
ple characteristics depend considerably on the environment in which they were collected.
The variations observed in all samples studied are comparable to those described in the
literature for a panel of diversified varieties and cultivation sites [51].

Of the 529 samples, 29.3% were separated, and whole and ground cotyledons were
scanned. This database is characterized by fewer samples with high isoflavone levels
(Table 3). With respect to the database a with 529 samples, the database b contains half as
many samples with greater than 2 mg/g. Consequently, the variability in the database b is
significantly reduced, as is the average isoflavone content of the samples. The proportions
of genistein and daidzein in the samples are comparable between the two databases in
terms of both average and range, although they vary less.

The sets sampled for the ANN and PLS training are like all sets regarding total mean
content, standard deviation, and quartiles (Tables 3 and 4). The descriptive statistics of the
training sets are likewise equivalent to the results of the ANN validation set and the ANN
and PLS test set. Sets sampled with the Kennard–Stone method using averaged whole-seed
spectra are representative in terms of cotyledon isoflavone content.
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Table 3. Descriptive statistics of isoflavones content of cotyledons from (a) all samples (n = 529) and
(b) from the set of samples analyzed using all their cotyledon spectra and their ground-cotyledon
spectra (n = 155).

a Variable Average Standard
Deviation Minimum 1st Quartile Median 3rd Quartile Maximum

Total isoflavone
content (mg/g) 2.63 1.46 0.26 1.55 2.26 3.49 8.56

Total isoflavone
content (aglycone
equivalent mg/g)

1.45 0.78 0.15 0.87 1.27 1.96 4.53

Total daidzein
content (mg/g) 1.10 0.69 0.10 0.58 0.93 1.49 4.82

Total genistein
content (mg/g) 1.50 0.81 0.15 0.91 1.30 1.92 4.87

Proportion of
daidzein 40.4% 5.7% 23.4% 36.2% 39.9% 44.1% 63.2%

Proportion of
genistein 57.8% 5.1% 36.6% 54.6% 58.1% 61.2% 70.7%

b Variable Average Standard
Deviation Minimum 1st Quartile Median 3rd Quartile Maximum

Total isoflavone
content (mg/g) 1.67 0.74 0.26 1.14 1.56 2.09 3.82

Total isoflavone
content (aglycone
equivalent mg/g)

0.95 0.42 0.15 0.65 0.88 1.20 2.22

Total daidzein
content (mg/g) 0.68 0.36 0.10 0.41 0.61 0.89 1.75

Total genistein
content (mg/g) 0.95 0.40 0.15 0.69 0.89 1.23 2.06

Proportion of
daidzein 39.5% 3.7% 29.9% 36.8% 39.6% 42.1% 46.8%

Proportion of
genistein 57.8% 3.2% 47.3% 55.9% 57.8% 59.8% 65.3%

Table 4. Descriptive statistics of total isoflavones (mg/g) in cotyledons from Kenard–Stone-sorted set
as training, validation, and test for PLS and ANN regressions.

Number of
Samples Average Standard

Deviation Minimum 1st
Quartile Median 3rd

Quartile Maximum

Training set
for PLS 450 2.69 1.47 0.26 1.57 2.38 3.61 8.56

Training set
for ANN 370 2.75 1.47 0.26 1.63 2.41 3.70 8.56

Validation set
for ANN 80 2.41 1.41 0.42 1.33 2.08 3.24 6.30

Test set for ANN
and PLS 79 2.29 1.34 0.46 1.49 1.95 2.45 7.86

3.2. Raw and Preprocessed Near-Infrared Spectra

As highlighted by Ref. [43], the diversity in growing conditions contributes to the
robustness and applicability of NIRS prediction models for isoflavone content. This study
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involves the greatest number of different environments to date. The year and location of
origin affect the variability in whole-seed spectra, as shown by the distribution of samples
produced by the PCA (Figure 5). Samples from location 6 in 2021 stand out due to their
degraded seed quality caused by harvest conditions.
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Figure 5. PCA of whole-seed spectra from all sets with the first component plotted horizontally (84%
of variability) and the second component plotted vertically (11% of variability). (a) Origin location
and year are given by color and symbol (squares, triangles, etc.). (b) The samples from which the
whole-cotyledon and ground-cotyledon spectra were collected are shown by filled symbols. Sets for
PLSR and ANN are shown by color and symbol. The training sets for PLS and ANN are blue squares,
the validation set for ANN is green triangles, and the test sets for PLS and ANN are red circles.

The external validation and test sets for PLS and ANN (red circles in Figure 5b) are
also representative of the overall variability in whole-seed NIR spectra of the training set.
Samples with spectra of whole cotyledons and ground cotyledons (filled symbols on the
PCA in Figure 5) are concentrated in the center of the PCA. The variability in their spectra
is limited compared with all the samples surveyed. The distribution of samples on the PCA
based on maturity groups or coat and hilum color is evenly spread over the spectra’s PCA.
The genetic features of earliness or seed appearance have no effect on the outcome of the
NIRS measurement in this study.
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In terms of absolute absorbance, the spectra of the three matrices are well differentiated
as functions of wavelength (Figure 6). Ground cotyledons absorb less NIR radiation, and
whole cotyledons absorb more NIR than do whole seeds. The differences in absorbance
between matrices are corrected by preprocessing (Figure 7). The spectra of the three matrices
share common trends. These observations for the three matrices and their specific variations
can be seen in the spectra after treatment with SG1, SNV with or without detrending, and
MSC (Figure 6). However, processing with SG2 does not allow the matrices to be clearly
distinguished, nor does it produce the variations described above.
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Figure 7. Average absorbance spectrum from whole seeds (green curves), whole cotyledons (blue
curves), and ground cotyledons (yellow curves) after smoothing by moving average with a 3.75-nm
window and spectra transformation: (a) SG1, (b) SG2, (c) SNV, (d) SNV follow by detrending, (e) SNV
follow by twice detrending, and (f) MSC.
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3.3. Development of PLS Models for Predicting Total Isoflavone Content
3.3.1. Comparison of Preprocessing of Infrared Spectra (Whole Seeds, Whole Cotyledons,
and Ground Cotyledons)

The matrices exert the greatest influence on the calibration results. For each pretreat-
ment, R2, RMSE, percent error, and RDP for the whole-cotyledon spectra are improved
with respect to the whole seeds, and the same is true for ground cotyledons compared with
whole cotyledons (Table 5). Without pretreatment, predictions based on whole-cotyledon
spectra are more accurate than predictions based on whole-seed spectra. This result may
be explained by the presence of embryo axis isoflavones within seeds, which may interfere
with the quantification of cotyledon isoflavones. Grinding the NIRS sample improves
model performance, corroborating previous results [32,40]. Grinding the cotyledons in-
creases the surface area of interaction between infrared light and the sample constituents,
thus promoting more accurate data acquisition. At the same time, grinding homogenizes
samples, reducing potential variations between samples (density, thickness, etc.).

Table 5. (a) Calibration and (b) cross-validation results of PLSR based on whole-seed, whole-
cotyledon, and ground-cotyledon spectra (each n = 155 samples, 465 spectra) with different pre-
processing to predict isoflavone concentration (mg/g) (RS: raw spectra; MA: moving average; SG1:
first derivative of Savitsky–Golay, SG2: second derivative of Savitsky–Golay; SNVD1: standard
normal variate and single detrending; SNVD2: standard normal variate and double detrending; MSC:
multiplicative scatter correction).

a PreProcessing
Whole Seeds Whole Cotyledons Ground Cotyledons

R² RMSE Percentage
of Error RPD R² RMSE Percentage

of Error RPD R² RMSE Percentage
of Error RPD

RS 0.75 0.37 22% 2.01 0.76 0.37 22% 2.02 0.82 0.32 19% 2.35
MA 0.76 0.36 22% 2.04 0.76 0.37 22% 2.03 0.82 0.32 19% 2.36
SG1 0.64 0.45 27% 1.66 0.81 0.32 19% 2.30 0.82 0.31 19% 2.39
SG2 0.29 0.62 37% 1.19 0.03 0.73 44% 1.02 0.28 0.63 38% 1.18
SNV 0.78 0.34 21% 2.16 0.78 0.35 21% 2.11 0.78 0.35 21% 2.14

SNVD1 0.79 0.34 20% 2.20 0.76 0.36 22% 2.06 0.78 0.34 21% 2.16
SNVD2 0.78 0.35 21% 2.13 0.76 0.36 22% 2.06 0.78 0.34 21% 2.16

MSC 0.75 0.37 22% 1.99 0.78 0.35 21% 2.11 0.80 0.33 20% 2.25
MA SG1 0.73 0.38 23% 1.94 0.79 0.34 20% 2.19 0.81 0.33 20% 2.27
MA SG2 0.52 0.51 31% 1.45 0.66 0.44 26% 1.71 0.81 0.33 20% 2.28
MA SNV 0.78 0.35 21% 2.13 0.79 0.34 21% 2.16 0.81 0.32 19% 2.31

MA SNVD1 0.78 0.35 21% 2.14 0.77 0.36 21% 2.09 0.80 0.33 20% 2.27
MA SNVD2 0.80 0.33 20% 2.21 0.77 0.36 21% 2.09 0.80 0.33 20% 2.27

MA MSC 0.77 0.35 21% 2.09 0.79 0.34 21% 2.16 0.81 0.32 19% 2.29

b PreProcessing
Whole Seeds Whole Cotyledons Ground Cotyledons

R² RMSE Percentage
of Error RPD R² RMSE Percentage

of Error RPD R² RMSE Percentage
of Error RPD

RS 0.70 0.40 24% 1.83 0.72 0.39 23% 1.90 0.73 0.39 23% 1.92
MA 0.73 0.39 23% 1.92 0.73 0.38 23% 1.94 0.77 0.36 22% 2.07
SG1 0.47 0.55 33% 1.36 0.51 0.52 31% 1.42 0.47 0.55 33% 1.35
SG2 0.19 0.67 40% 1.11 0.00 0.75 45% 0.99 0.09 0.72 43% 1.03
SNV 0.73 0.39 23% 1.92 0.73 0.39 23% 1.92 0.70 0.41 24% 1.82

SNVD1 0.72 0.40 24% 1.87 0.72 0.40 24% 1.88 0.71 0.40 24% 1.86
SNVD2 0.71 0.40 24% 1.84 0.71 0.40 24% 1.86 0.70 0.40 24% 1.84

MSC 0.70 0.40 24% 1.83 0.73 0.39 23% 1.93 0.71 0.40 24% 1.84
MA SG1 0.63 0.45 27% 1.64 0.71 0.40 24% 1.86 0.69 0.42 25% 1.79
MA SG2 0.40 0.58 35% 1.28 0.26 0.66 39% 1.13 0.40 0.59 35% 1.25
MA SNV 0.75 0.37 22% 1.99 0.75 0.37 22% 2.02 0.76 0.37 22% 2.03

MA SNVD1 0.74 0.38 23% 1.96 0.74 0.38 23% 1.97 0.75 0.37 22% 2.01
MA SNVD2 0.75 0.37 22% 2.00 0.74 0.38 23% 1.96 0.74 0.38 23% 1.97

MA MSC 0.74 0.38 23% 1.94 0.76 0.37 22% 2.02 0.75 0.37 22% 2.01

In addition, the preprocessing correlates strongly with the matrices analyzed to cali-
brate the prediction models. Without pretreatment or with moving average alone, predic-
tions based on whole-cotyledon spectra are more accurate than those based on whole-seed
spectra, and predictions based on ground-cotyledon spectra are more accurate than those
based on whole-cotyledon spectra (Table 5). These results for cross-validation without
preprocessing corroborate the external validations based on preprocessed spectra [38].
Using ground-matrix spectra significantly improves R2 and decreases the prediction error
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compared with the results obtained from whole matrices. Reference [39] described the
same phenomenon at longer wavelengths, with the caveat that grinding slightly increases
the error level. However, the similarities with the literature stop at the calibration results
and cross-validation of spectra without pretreatment. Pretreatment has a stronger influence
on the cross-validation results than does the matrix that is analyzed.

The use of preprocessing seems to harmonize cross-validation results between the three
matrices. The choice of preprocessing becomes the dominant factor in the cross-validation
performance of the models, and the matrix involved becomes secondary. For all matrices,
smoothing the spectra by applying a moving average improves cross-validation predic-
tions for all preprocessing. The use of SG1 and SG2 severely degrades model predictions,
independent of the matrix analyzed by NIRS. This result conflicts with the preprocess-
ing recommended by Refs. [38,43,45], despite the fact that these studies cover the same
wavelength range as the present study. In the absence of moving-average smoothing,
MSC preprocessing has only a small effect on model quality. As reported by Refs. [39,42],
transforming spectra by SNV improves model prediction accuracy, and even more so with
preliminary moving-average smoothing. The best calibration and cross-validation results
based on whole-seed spectra were obtained by applying a moving average, followed by an
SNV transformation and double detrending. This preprocessing scheme was retained and
used for the next results of this study.

3.3.2. Modeling and Specific Wavelengths Selected for Aglycone (Daidzein and Genistein)
Content and Proportion Prediction

The prediction of isoflavone content in aglycone equivalents gives similar results for
R2, percent error, and RPD as the predictions of aglycone content (including decorations,
Table 6). This result is attributed to the strong correlation between the two variables.
The question of whether to consider aglycone conjugations is not a major issue for the
development of NIRS prediction models for soybean breeding. The conclusions are the
same for the following models of this study for predicting aglycone-equivalent content.

Table 6. Cross-validation results from PLS regressions of whole-seed spectra (n = 529 samples,
1587 spectrum) to predict various isoflavone properties.

Variable R² RMSE Percentage of Error RPD

Total isoflavone content (mg/g) 0.73 0.76 29% 1.91
Total isoflavone content (aglycone

equivalent mg/g) 0.72 0.41 28% 1.88

Total Daidzein content (mg/g) 0.71 0.37 34% 1.87
Total Genistein content (mg/g) 0.68 0.46 30% 1.77

Proportion of Daidzein (%) 0.41 0.04 11% 1.30
Proportion of Genistein (%) 0.31 0.04 7% 1.21

The cross-validation of the prediction of total daidzein content produces results com-
parable to those for the total content of all isoflavones, with a slightly larger error. In
contrast, the total genistein content has a lower R2 and RPD. This difference in prediction
between the two aglycones can be put into perspective by the fact that daidzein is present
throughout the seed, whereas genistein is more specific to the cotyledons. Given that
the models in this study are specific to cotyledon levels, the possibility of isoflavones in
the embryo axis disrupting the predictions should be explored. The cross-validation of
daidzein and genistein proportions produces very poor results. R2 and RPD are insuffi-
cient to reliably differentiate between samples dominated by daidzein in their cotyledons
from those containing a majority of genistein. With the resources allocated by this study,
profiling the type of isoflavones in soybean cotyledons is not recommended. In addition,
no wavelengths stood out as specific to daidzein content or genistein content in the model
loadings. Figure 8 shows the wavelengths emphasized by the four models (loadings) for
predicting content in daidzein, genistein, and total isoflavones. The wavelengths most
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actively addressed by the models are 1430, 1660, 2130, 2290, 2360, and 2460 nm. These
correspond to the second overtone regions of CH and H2O; the first overtone region of
CH3; and the band combination regions of CH, CH2, and CH3, respectively [52].
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3.4. Nonlinear Modeling of Total Isoflavone Content in Whole Seeds with Artificial Neural
Networks with External Validation

The best fitness scores are obtained with a hidden layer of two neurons for all combina-
tions of hidden layer activation and output functions. The ANN architecture was therefore
chosen for model development. Calibration and test performances depend on the functions
used for the hidden layer and the output (Table 7). The results of the retraining validation
set are less variable, with only the linear function for the hidden layer producing inferior
results. Overall, building the ANN model (70% of samples for training and 15% for internal
validation) and testing it on an external set (15% of samples) produces the best results when
using a logistic function for the hidden layer activation and hyperbolic tangent or linear
functions for the output activation function. With R2 = 0.89 and RPD = 2.92 for the external
validation, the ANN results of this study are better than those of the external validations
of Refs. [38,39,43] for models developed from whole-seed spectra. In the literature, only
models developed from cotyledon powder spectra or cross-validations produce better
results [38,39,42]. According to Ref. [44], an RPD value of this level (i.e., 2.92) means that
the model may be used for content screening and possibly quality control for a soybean
breeding program. This applicability is estimated by considering the complex nature of
bulk soybean seeds and the low concentration of the molecule investigated. The high
genetic and cultural diversity of the plant material facilitates model inclusiveness thanks to
variations in morphology and seed quality within the samples. In the future, the addition
of such diversity with high-content samples, which is lacking in this study, would improve
future calibrations.

Calibration of the PLS regression on the training set (85% of samples) gives R2 = 0.76
and RMSE = 0.72, for 27% relative error and an RPD of 2.03. The linear prediction model
produces the following results for external validation: R2 = 0.80, RMSE = 0.62, 27% relative
error, and RPD = 2.15. The ANN results are better than those for the PLS for both calibration
and external validation, regardless of the activation function chosen for the hidden layer
and the output (Table 7). Regarding the relative error, using nonlinear methods gives
a precision up to double that of HPLC between two extractions. In comparison, the
relative error of PLS is three times greater than the reference analysis. As pointed out by
Ref. [53], a low sample density at one end of the distribution can strongly influence the
RPD estimate. The difference in RPD between the PLS and ANN is mostly explained by the
better management of high-content samples by the nonlinear approach (Figure 9). A fair
comparison of the two approaches requires excluding the upper half of the range and only
considering samples with an isoflavone content less than 4 mg/g. On this reduced set, the
RPD of the ANN and PLS predictions are 1.73 and 1.50, respectively. Although ANN retains
its superiority on this reduced set, neither RPD result is satisfactory for discriminating
content between low grades. This change in perspective highlights the fact that the use
of the prediction models in this study should be directed toward detecting high levels
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rather than precise quantification. Each approach makes it possible to differentiate between
the lowest values (below Q1 of the test set) and the highest values (above Q3 of the test
set). No confusion between the two extreme classes occurs for the 237 predictions. The
results of the ANN models vary in the same way as those for PLS according to the choice of
preprocessing for whole-seed spectra (Table 5). In addition, the ANN models were tested
on preprocessing, and the predicted target was investigated in the same way as for PLS. The
results are not shown, but the conclusions remain the same as for the nonlinear approach:
relevant preprocessing is the same as for PLS; the prediction results for percent of daidzein
or genistein are poor; and no loadings stand out for aglycone or other.

Table 7. Results of training, validation, and test set from ANN models of preprocessed whole-seed
spectra (moving average + SNV + double detrending) to predict isoflavone concentration (mg/g).

Sets

Hidden Layer
Activation Function Logistic Hyperbolic Tangent Linear

Output Activation
Function Logistic Hyperbolic

Tangent Linear Logistic Hyperbolic
Tangent Linear Logistic Hyperbolic

Tangent Linear

Training
set

R2 0.87 0.89 0.89 0.88 0.87 0.85 0.87 0.87 0.84
RMSE 0.54 0.49 0.50 0.51 0.53 0.57 0.52 0.52 0.59

Percentage of error 19% 18% 18% 18% 19% 21% 19% 19% 21%
RPD 2.75 2.99 2.97 2.91 2.76 2.58 2.81 2.81 2.51

Validation
set

R2 0.80 0.79 0.80 0.80 0.80 0.80 0.78 0.77 0.76
RMSE 0.63 0.66 0.64 0.63 0.63 0.64 0.70 0.69 0.70

Percentage of error 26% 27% 27% 26% 26% 26% 29% 29% 29%
RPD 2.23 2.15 2.19 2.23 2.25 2.22 2.03 2.04 2.02

Test set

R2 0.83 0.88 0.89 0.85 0.86 0.85 0.84 0.85 0.82
RMSE 0.56 0.46 0.46 0.53 0.52 0.53 0.54 0.52 0.57

Percentage of error 24% 20% 20% 23% 23% 23% 23% 23% 25%
RPD 2.38 2.88 2.92 2.53 2.55 2.12 2.50 2.56 2.50
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4. Conclusions

This work demonstrates that it is possible to predict cotyledon content of isoflavones
from whole-soybean spectra with satisfactory accuracy, making this technique applicable
for sustainable screening. More accurate calibrations are generated with whole-cotyledon
spectra, and even more so with ground-cotyledon spectra. Spectral preprocessing har-
monizes cross-validation results between matrices, making it an essential element in the
development of reliable models for unprocessed seeds. These results highlight the value
of smoothing by moving average in combination with other preprocessing techniques.
SNV transformation, potentially followed by detrending, seems to be the most relevant
preprocessing option for isoflavone prediction. The models generated are homologous be-
tween the two expressions of total isoflavone (mg/g and mg equivalent aglycone per gram)
and have similar cross-validation results. This research also highlights the non-specificity
of PLS and ANN models for predicting daidzein and genistein contents. Furthermore,
the accuracy with which the models predict daidzein and genistein proportions (%) is
insufficient, so aglycone profiling is not recommended. The nonlinear approach is a major
improvement for the development of prediction models and should be prioritized for future
calibrations. With a logistic function for the activation of the hidden layer and a linear
function for the output, the prediction models demonstrate spectacular results for external
validation, with an error twice that of the reference analysis. This work also supports the
selection of soybean varieties that are more suitable from a health standpoint, as well as the
use of NIRS, which is more environmentally friendly than any other analytical alternative
for isoflavone quantification.
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