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SUMMARY  
 
Bovine Respiratory Disease (BRD) poses a significant challenge in beef fattening due to its 

complex causes. Relying solely on data-driven sensor methods for early detection may yield 
false alarms. This paper introduces an innovative approach that integrates a deep learning 
model with a BRD mechanistic model, utilizing pulmonary ultrasounds and clinical exams as 
sensor data and ground truth, respectively. By employing reliable clinical diagnostics, three 
crucial biological parameters were inferred, enabling the forecast of the number of 
asymptomatic animals up to 30 days. The deep learning model achieves 70% accuracy in 
diagnosis, and the BRD mechanistic model forecasts disease dynamics with less than 5% error. 
However, the hybrid method's weakness lies in clinical exams' uncertainty for some animal 
diagnosis, and improvements to the BRD model have been addressed in existing literature. 
Future work could explore incorporating biological exams or utilizing a pathogen-specific 
model for enhanced accuracy. 

  
 

INTRODUCTION 
 
The Bovine Respiratory Disease (BRD) poses significant challenges to farmers, as it results 

in substantial economic losses, accounting for as much as 20% of farmers' incomes (Bareille 
et al., 2009). This disease raises critical concerns for animal welfare, as it can lead to fatal 
pneumonia in calves (Delabouglise et al., 2017; Engler et al., 2014). The predominant treatment 
for BRD relies on antimicrobials, however, practices like systematic collective treatments and 
misdiagnosed BRD, including false detection, contribute to antimicrobial misuse. It is crucial 
to ensure proper and judicious administration of these antimicrobials to prevent the emergence 
of antibiotic resistance. The complexity of diagnosing BRD stems from numerous factors, 
including the involvement of multiple pathogens such as bacteria and viruses, as well as 
susceptibility to external and environmental influences like weaning, stress, breed, immunity, 
and farming conditions (Hay et al., 2016; Kudirkiene et al., 2021). On a more positive note, 
farms are generating a wealth of valuable data, providing significant potential for insights. 
Farms are also increasingly incorporating sensor technologies to enhance and automate data 
collection. Consequently, precision livestock farming emerges as a promising tool for real-time 
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monitoring and farm management, with the potential to improve animal health and welfare 
(Berckmans, 2014). 

 
Various approaches have been explored to leverage farm data and study the spread of 

diseases. One type uses data-driven methods in sensors, excelling at detecting straightforward 
symptoms or events, such as heat (Kosanovic et al., 2022), heat stress (Hoffman et al., 2022), 
calving and hyperthermia. However, these sensors have limitations when it comes to complex 
diseases like BRD, which involve intricate underlying epidemiological processes (Concordet 
et al., 2022; Pfeiffer et al., 2022). For instance, hyperthermia, a symptom of BRD, can result 
from causes other than BRD, such as overexertion. Thus, relying solely on early detection of 
hyperthermia infectious episodes may also lead to false alarms. Additionally, cattle tend to hide 
early symptoms as a survival behaviour (Griffin, 2010), reducing the quantity of observations 
needed to adjust data-driven methods. Alternatively, knowledge-driven methods, like 
mechanistic models, are widely used to understand how pathogens spread across different 
scales and according to contrasted scenarios, from individual animals to entire regions (Ezanno 
et al., 2020). As such, mechanistic models have contributed a lot to modelling and 
understanding the spread of pathogens involved in BRD (Picault et al., 2022; Sorin-Dupont et 
al., 2023), however their calibration remains a substantial challenge. 

 
The hypothesis of this paper suggests that by combining data-driven and knowledge-driven 

methods, an integrated and innovative approach can be developed. This approach is applied to 
automatically diagnose male beef cattle and forecast the dynamics of BRD. The designed 
workflow integrates a spatiotemporal convolutional neural network with a stochastic 
mechanistic models and pulmonary ultrasound videos used as sensor data. 

 
 

MATERIALS AND METHODS 

Figure 1 illustrates the overall workflow and unfolds as follows: in the first section (Fig.1a), 
pulmonary ultrasound videos are employed as sensor data. These videos were selected to test 
the pipeline because they provide an internal view of the lungs, potentially serving as a reliable 
sensor for detecting respiratory symptoms. Moving to the second section (Fig.1b), clinical 
observations (categorized as either healthy or diseased) are considered as ground truth. These 
states are determined by a veterinarian through clinical assessments, including physiological 
parameters like rectal temperatures and other clinical signs (cough, nasal or ocular discharge, 
depression, etc.). The underlying hypothesis is that animals exhibiting a certain number of 
clinical signs (symptomatic) are considered diseased. In the third section (Fig.1c), sensor data 
and ground truth are utilized to train and compare multiple deep learning models, specifically 
spatiotemporal convolutional neural networks. Their objective is to accurately predict the 
clinical health state of each animal. During training, the predictions are statistically evaluated 
for potential use in real farm conditions. However, in operational conditions, clinical 
assessments will not be necessary as the best-trained deep learning model would automatically 
predict clinical health states using pulmonary ultrasound videos. In the last section (Fig.1d), 
reliable clinical health states serve as input to calibrate parameters of a mechanistic model. The 
performance of various parameter inference methods was compared for three crucial 
parameters of an average pathogen stochastic mechanistic model (Picault et al., 2022). This 
calibration enables a 30-day forecast of the number of asymptomatic animals within specific 
batches across two farms with contrasting configurations. 



   
 

 
 

 
 

Figure 1. Workflow of the “deep mechanistic model” approach. This hybrid approach 
integrates a deep learning model (data-driven) with a mechanistic model (knowledge-driven) 

 
Data acquisition, sensor data and ground truth 

 
The experiment encompassed nine fattening farms, each simultaneously managing up to 

three batches of male beef cattle, with each batch comprising eight to twelve calves. In terms 
of breed distribution, 78% of the cattle were Charolais, 12% Limousin, and the remaining 10% 
were of mixed races. The Charolais breed was predominantly chosen due to their clearer 
display of clinical symptoms. Data collection started on the day the cattle arrived at the farm 
(Day 0) and extended for one month, considering it as the period when cattle are most 
susceptible to BRD (Babcock et al., 2009). Data collection spanned from January 2023 to June 
2023, encompassing a total of 480 beef cattle in the experimentation. 

 
Sensor data (Fig.1a): portable ultrasound scanners were used to assess the animals' lungs on 

multiple days: Day 0, Day 2, Day 5, Day 14, Day 21, and Day 28. The selection of dates varied 
across farms, based on the availability of farmers and a veterinarian. The ultrasound scanner 
captured lung images in video format, with 28 frames per second in black and white, lasting 
up to 20 seconds each, and 480x560px resolution. The animals' lungs were divided into eight 
intercostal zones, following a standardized scanning protocol from the shoulder to the stomach. 
A veterinarian validated the dataset to ensure accuracy. Recording a video with an ultrasound 
scanner is time-consuming, tedious, and challenging, requiring animals to be kept in a fixed 
position, which is not an easy task. This led to prioritizing cases for study, considering only 
lesions larger than 1 cm2 as meaningful (Masset et al., 2022). For each intercostal zone, a video 
of only the largest lesions is saved. On Day 0, one-third of each batch was examined, while 
from Day 2 to Day 28, all animals in a selected batch were examined. To maintain balance in 



   
 

 
 

the dataset, videos of clinically healthy lungs (without lesions) were also recorded, resulting in 
a total of 255 lung ultrasound videos. 

 
Ground truth (Fig.1b): several veterinarians participated in annotating the ground truth data, 

having undergone the same training to minimize annotation bias. The determination of ground 
truth for identifying diseased animals relied on clinical assessments. The decision rule utilized 
was established in various publications (Timsit et al., 2019, 2011). An animal was considered 
diseased if it had a rectal temperature exceeding 39.7°C and displayed at least one clinical 
symptom. These clinical symptoms were defined based on a clinical assessment table (Table 
1) established by veterinarians. This method of diagnosing diseased animals is widespread in 
France, with three out of nine farms in this experiment already using it. Every animal in each 
batch underwent clinical examinations, following the same frequency as the collection of 
sensor data. 

 
Table 1. Data dictionary of the clinical assessments 

 
Observable 
Symptoms 

Tiredness Shape of 
flank 

Nasal 
discharge 

Cough Ocular 
discharge 

Breathing 
amplitude 

Breathing 
rate 

Levels Absent, 
Mild, 
Severe 

Hollow, 
Flat, 
Rounded 

Absent, 
Mucous, 
Purulent, 
Serous 

Absent, 
Weak, 
Strong 

Absent, 
Mucous, 
Purulent, 
Serous 

Normal, 
Augmented 

Regular, 
Irregular 

 
From Data to information: automatic diagnostics (Fig.1c) 

 
Data Preprocessing: four steps were taken in data preparation process. Initially, the 

distribution of the entire dataset of pulmonary ultrasound videos was adjusted to address a 
significant class imbalance. Only 23.2% of videos belonged to diseased animals, while 76.8% 
belonged to healthy animals. To rectify this, a downsampling strategy was employed, using 
stratified random sampling considering factors like the intercostal zone, lesion size, lesion 
count, and the day of clinical assessment. In the second step, the dataset was split with a random 
shuffle: 60% for training (80 videos), 19% for validation (22 videos), and 13% for testing the 
model's performance (16 videos). The validation dataset served to adjust the model’s weights 
during training, while the test set was exclusively used for accuracy evaluation after training. 
In the final step, ultrasound videos were cropped to eliminate areas containing text or 
watermarks. 

 
Handling ultrasound videos is challenging due to varying frame counts and noisy images. 

Some videos were shorter than expected due to technical issues related to the ultrasound 
scanner. A straightforward solution involved extracting images from the videos until reaching 
a maximum count. If a video had fewer images, the missing frames would be filled with zeros, 
which is a method similar to handling text sequences. 

 
Deep learning model: a video contains both spatial information within individual frames 

and temporal information across the entire sequence. To effectively address both aspects in 
video analysis, a hybrid architecture, specifically a spatiotemporal convolutional neural 
network was chosen. In our approach, we combined convolutional layers (CNN) with recurrent 
layers (RNN). The convolutional layers focus on extracting spatial features, such as lesions, 
pleura lines, or any other relevant anatomical details. Meanwhile the recurrent layers capture 



   
 

 
 

temporal information, which pertains to the sequence or frequency of appearance of spatial 
features. 

 
For the training phase (Fig.2), various convolutional layer architectures (spatial feature 

extractor) were compared. Depending on the number of layers, the depth, the structure, 
different architectures will extract different spatial features. The tested architectures include 
five classical networks pre-trained on imagenet, such as efficientNetB7, inceptionResnetV2, 
inceptionV3, VGG16, and a late fusion ensemble model of inceptionV3 with 
inceptionResnetV2. The temporal layer architecture is composed of eight layers: the first with 
sixteen neurons, the second with eight neurons, followed by a dropout layer that suppressed 
40% of the neurons, and a final dense layer with eight neurons using a ReLU activation 
function. The classification layer employes a softmax function with two output neurons. The 
loss function used is a sparse categorical cross-entropy with an Adam optimizer. In conclusion, 
this model analyses an entire pulmonary video and predicts the clinical health state (diseased 
or healthy). 

 

Figure 2. Deep learning Architecture Trained 

Evaluation: to evaluate the model's performance, four essential metrics were considered. 
The weighted precision measures the proportion of correctly identified positive cases among 
all cases predicted as positive. The weighted recall reflects the ability of the model to identify 
many actual positive cases, providing insights into the model's capacity to capture relevant 
instances. The weighted F1-score, as the harmonic mean of precision and recall, offers a 
balanced assessment, considering both false positives and false negatives. Lastly, the accuracy 
indicates the overall proportion of videos that were correctly classified, serving as a general 
measure of the model's predictive power and overall performance. These metrics together 
provide a comprehensive understanding of the model's effectiveness in distinguishing between 
healthy and diseased cases in the pulmonary ultrasound videos. 

 
From diagnostics to disease dynamic: prognostic (Fig.1d) 

 
Mechanistic model: to date, only two mechanistic models for BRD have been published. 

The model introduced in (Picault et al., 2019a) was mechanistic (to explicitly represent 
processes), stochastic (to account for intrinsic variability in biological processes), and 
individual-based (to ensure a fine-grained detail level). This model aimed to investigate the 



   
 

 
 

spread of BRD in French fattening pens by capturing the evolution of infection, emergence of 
clinical signs, detection, and subsequent treatment. To tackle the limited knowledge about 
interactions between multiple BRD pathogens, model parameters were calibrated assuming an 
average pathogen infection  (Picault et al., 2022). A sensitivity analysis was also carried out to 
understand its behaviour and the impact of parameter uncertainty. Results emphasized the 
significance of parameters such as the pathogen transmission rate, the average duration in the 
infectious state, and the average duration in the pre-infectious state, crucial for controlling 
antimicrobial usage and mortality rates. 

 
This study employed this average pathogen BRD model (Fig.3), utilizing the three 

biological parameters as essential input, with the output focusing on the count of symptomatic 
animals, encompassing those exhibiting both mild and severe clinical signs. Model predictions 
were given with a 12-hour time grain, aligning with the interval between successive visual 
assessments of beef cattle during feeding. Implementation was facilitated by the EMULSION 
platform (Picault et al., 2019b), allowing the depiction of all model components in a human-
readable, flexible structured text file processed by a generic simulation engine. This facilitates 
collaboration and model refinement by scientists with diverse backgrounds, including 
veterinarians and epidemiologists. 

 

 

Figure 3. Simplified process of how the average pathogen model was used  

Integrating a deep learning model with a mechanistic model: involves employing parameter 
inference, a computational approach used in various scientific disciplines to estimate the 
unknown parameters of a statistical model so that its predictions match, at best, observed data. 
The deep learning model predicts the clinical health state of an animal, distinguishing between 
symptomatic and asymptomatic states (Fig.4a). The total count of predicted diseased animals 
in a pen corresponds to the number of symptomatic animals. The average pathogen mechanistic 
model generates various outputs, only the count of symptomatic animals is considered (Fig.4b). 
Both the outputs of the deep learning model and the mechanistic model align, making 
parameter inference an ideal method to link two models, using deep learning predictions to 
estimate three parameters of the mechanistic model (Fig.4d), namely the pathogen transmission 
rate, the duration in infectious state and the duration in pre-infectious state. 



   
 

 
 

The average pathogen model is categorized as an implicit generative model, capable of 
simulating samples however its likelihood is hardly obtainable. Hence, to estimate its 
parameters, a likelihood-free inference method, namely Approximate Bayesian Computation 
(ABC) (Beaumont, 2019) was employed. This involved sampling 10,000 parameter values 
within a biologically acceptable domain and using them to generate simulated datasets through 
the average pathogen model. Chosen summary statistics, in this case, the count of symptomatic 
animals, captured essential features of the observed data. The similarity between simulated and 
observed data was assessed using distances in their summary statistics the closest 1% of 
sampled simulated parameters were accepted. This process allowed for the estimation of the 
distribution of potential values for the chosen parameters. One extension of the ABC method 
was selected for this study, the ABC-NN (neural network), as it gave the most consistent results 
in our use cases. 

 

Figure 4. Method of coupling a deep learning model with a mechanistic model. Inference 
of the three biological parameters of an average pathogen BRD model 

Evaluating the effectiveness of the inference method involved sampling values from the 
joint posterior distributions (Fig.4) and utilizing them to predict the number of symptomatic 
animals (also considered clinically diseased). This prediction was then compared to the actual 
number of detected diseased animals, using the mean absolute percentage error as the metric. 
The assessment of the inference method was carried out on two farms with different breeding 
practices, and the forecasting period was set at 30 days. 
 

 

 

 



   
 

 
 

RESULTS 
 

From Data to information: automatic diagnostics 
 
Training the hybrid (CNN-RNN) deep learning architecture, using various spatial feature 

extractors demonstrated varying performance (Table 2.) due to their distinct architectural 
characteristics, including differences in structures and depth. VGG16 exhibited the poorest 
performance with a weighted F1-score of 14%, while InceptionV3 outperformed the rest with 
a weighted F1-score of 70%.  

 
Table 2. Deep learning performance 

 
Feature 

Extractor 
Weighted 
Precision 

Weighted 
Recall 

Weighted 
F1-score 

Accuracy 

EfficientNetB7 0.67 0.62 0.63 0.62 
InceptionResnetV2 0.71 0.50 0.49 0.50 

InceptionV3 0.72 0.69 0.70 0.69 
VGG16 0.09 0.31 0.14 0.31 

InceptionV3 
+ 

InceptionResnetV2 

  
0.71 

 
0.62 

 
0.63 

 
0.62 

 
In summary of the diagnostic phase, it is feasible to train a deep learning model using sensor 

data, particularly pulmonary ultrasound videos, to estimate the clinical health status of animals. 
However, it is important to note that the margin of error for the best model, when making 
predictions for 12 animals, is approximately ±	0.259 (or 25.9%) at a 95% confidence level. 
While the accuracy of the best model is reasonable considering it has been trained exclusively 
on ultrasound videos, using this model in real-life scenarios would result in an unacceptable 
margin of error. 

 
From diagnostics to disease dynamic: prognostic 

 
Due to the margin of error being too large for practical use on a farm with 12 animals, 

reliable data was used for the inference, specifically the ground truth. In Table 3 illustrates the 
estimated values of the three most critical biological parameters for two farms. The estimations 
are presented as the median, Q1, and Q3. Additionally, Table 3 includes the nominal values for 
these three parameters for comparison. In both farms, the estimated parameter values appear 
acceptable and closely align with the nominal values. 

 

 

 

 

 



   
 

 
 

Table 3. Inferred value of parameters vs nominal value of parameters 
 

Parameter 
name 

Farm 1 Farm 2 Default model 
values 

 Median Q1 Q3 Median Q1 Q3 calibrated 
Pathogen 

Transmision 
rate 

0.009 0.006 0.012 0.019 0.014 0.023 0.008 

Mean duration 
in infectious 

150 118 193 123 100 156 120 

Mean duration 
in pre-

infectious 

87 68 115 76 58 100 72 

 

Utilizing these estimated values, the number of animals considered asymptomatic over a 30-
day period in both farms (Fig.5) was projected. The mechanistic model was run at discrete time 
steps, with each step occurring every 12 hours. For farm 1, the forecasted trajectory 
demonstrates an average error below 5%. However, for farm 2, the projected trajectory 
indicates an average error close to 23%. 

 

Figure 5. Asymptomatic forecast, ground truth vs calibrated average pathogen mechanistic 
model 

 



   
 

 
 

In summary of the forecast phase, using clinical health status gives enough information to 
estimate the values of three crucial biological parameters: the pathogen transmission rate, the 
average duration in the infection state, and the average duration in the pre-infectious state. 
However, it is important to note that the average pathogen model is not suitable for every 
scenario. 

 
 

DISCUSSION 
 
This study demonstrated the feasibility of creating a hybrid approach that combines a deep 

learning model with a mechanistic model for diagnosing and predicting the dynamics of BRD. 
This adaptable approach can be implemented across various farms and scenarios, providing 
personalized diagnostics and predictions tailored to each farm's unique conditions. This has the 
potential to support the development of individualized control strategies and animal 
management practices based on specific farm circumstances. 

 
However, it is important to acknowledge certain limitations in the proposed pipeline. Firstly, 

relying solely on pulmonary ultrasound videos as sensor data may not be sufficient to 
accurately estimate the clinical health status of each animal. This limitation arises because 
some symptoms caused by BRD, especially those affecting the upper respiratory tract, may not 
be visible in the lungs. Additionally, lung lesions become apparent only in the advanced stages 
of the disease. To address this issue, incorporating diverse sensor data, such as audio data 
already at our disposal, could be beneficial.  

Secondly, the ground truth based on clinical symptoms may be more uncertain in detecting 
animals in the pre-infectious state. To tackle the challenge of a lack of a clear gold standard  
(Timsit et al., 2016) future research could explore the inclusion of biological exams, such as 
PCR and serological tests, which are presumed to provide more informative insights, especially 
regarding the type of pathogen infection.  

Lastly, the average pathogen model may not be universally applicable, particularly in 
scenarios involving viral infections. In such cases, depending on the type of infectious agent, 
employing a pathogen-specific model (Sorin-Dupont et al., 2023) could enhance the accuracy 
of forecasting. 
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