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A B S T R A C T

One of the primary applications of satellite Land Surface Temperature (LST) observations lies in their
utilization for modeling of actual evapotranspiration (ET) in agricultural crops, with the primary goals of
monitoring and enhancing irrigation practices and improving crop water use productivity, as stipulated by
Sustainable Development Goal (SDG) indicator 6.4.1. Evapotranspiration is a complex and dynamic process,
both temporally and spatially, necessitating LST observations with high spatio-temporal resolution. Presently,
none of the existing spaceborne thermal sensors can provide quasi-daily field-scale LST observations, prompting
the development of methods for data fusion (thermal sharpening) of observations from various shortwave and
thermal sensors to meet this spatio-temporal requirement. Previous research has demonstrated the effectiveness
of combining shortwave-multispectral Sentinel-2 observations with thermal-infrared Sentinel-3 observations to
derive daily, field-scale LST and ET estimates. However, these studies also highlighted limitations in capturing
the distinct thermal contrast between cooler LST in irrigated agricultural areas and the hotter, adjacent dry
regions. In this study, we aim to address this limitation by incorporating information on thermal spatial
variability observed by Landsat satellites into the data fusion process, without being constrained by infrequent
or cloudy Landsat thermal observations and while retaining the longwave radiance emission captured by the
Sentinel-3 thermal sensor at its native resolution. Two approaches are evaluated, both individually and as a
complementary combination, and validated against in situ LST measurements. The best performing approach,
which leads to reduction in root mean square error of up to 1.5 K when compared to previous research,
is subsequently used to estimate parcel-level actual evapotranspiration. The ET modeling process has also
undergone various improvements regarding the gap-filling of input and output data, input datasets and code
implementation. The resulting ET is validated using lysimeters and eddy covariance towers in Spain, Lebanon,
Tunisia, and Senegal resulting in minimal overall bias (systematic underestimation of less than 0.07 mm/day)
and a low root mean square error (down to 0.84 mm/day) when using fully global input datasets. The enhanced
LST sharpening methodology is sensor agnostic and should remain relevant for the upcoming thermal missions
while the accuracy of the modeled ET fluxes is encouraging for further utilization of observations from Sentinel
satellites, and other Copernicus data, for monitoring SDG indicator 6.4.1.
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1. Introduction

Accurate modeling of actual evapotranspiration (ET) with satellite
data requires observations in shortwave optical and thermal infrared
spectral domains (García-Santos et al., 2022). For robust estimates,
those observations should match the spatial resolution of the dominant
landscape features (Kustas et al., 2004; Burchard-Levine et al., 2021)
and be frequent enough to capture the main temporal dynamics. In
agricultural landscapes, where the size of fields can be a couple of
hectares and surface conditions can change from day to day, this
implies a spatial resolution of tens of meters and preferably a daily
temporal resolution. As none of the currently operational satellite sen-
sors can provide such data, especially in the thermal infrared domain,
various data fusion methods have been developed to meet this spatio-
temporal requirement (Pu and Bonafoni, 2023). For the purpose of
modeling ET, those data fusion methods can be split into two cat-
egories: semi-empirical shortwave-thermal land surface temperature
(LST) sharpening methods exploiting physical relations between short-
wave data with higher spatial resolution and LST with lower spatial
but same or higher temporal resolutions (e.g. Gao et al., 2012; Bisquert
et al., 2016a), and disaggregation approaches which are usually more
complex and require the fusion to be performed at the level of low and
high spatial resolution ET products which were derived with low and
high spatial resolution LST respectively (e.g Norman et al., 2003; Guzin-
ski et al., 2014). When considering the Copernicus Sentinel satellites
the second category is generally not applicable since that constellation
does not include a high resolution thermal sensor. However, combining
data from Sentinel-2 satellites, providing shortwave observations with
10–20 m resolution and 5-day geometric revisit time at the equator, and
Sentinel-3 satellites, acquiring daily LST observations with nominal res-
olution of 1 km, in a LST sharpening approach was previously shown to
produce inputs highly suitable for field-scale ET estimations (Guzinski
and Nieto, 2019; Guzinski et al., 2020, 2021).

One of the promising applications of satellite-derived ET is consis-
tent estimation of actual evapotranspiration from field to continental
scales which is critical for reliable monitoring and reporting of Sus-
tainable Development Goals (SDG) indicator 6.4.1 (Change in Water
Use Efficiency) (O’Connor et al., 2020). With this in mind the Food
and Agriculture Organization of the United Nations (FAO) is running
an online portal called WaPOR (wapor.apps.fao.org/, last accessed:
27.06.2023), which provides access to dekadal (10-day) ET estimates
at spatial scales ranging from 30 m (referred to as Level 3 data by
WaPOR) through 100 m (Level 2 data) to 250 m (Level 1 data)
derived from satellite observations (FRAME Consortium, 2020). As
of version 2 of the WaPOR portal (launched in June 2019 and the
latest publicly available version as of June 2023) the satellite data was
based on observations from Landsat, PROBA-V (replaced by Sentinel-2
since 2020) and Terra and Aqua satellites. A recent study (Guzinski
et al., 2021) demonstrated the use of Copernicus data, especially ERA5
meteorological data (Hersbach et al., 2020) from Copernicus Climate
Change Service and combined observations from Sentinel-2 (S2) and
Sentinel-3 (S3) satellites, for consistent estimation of ET from 20 m to
300 m spatial resolutions with WaPOR-like specifications. That research
showed that Copernicus data, together with advanced data fusion
methods and physically-based models, greatly improved the accuracy
of ET retrieval at scales in which Terra and Aqua (MODIS sensor)
data was previously used. This guided FAO in the evolution of the
WaPOR portal towards version 3 (https://data.apps.fao.org/wapor, last
accessed: 25.10.2023), and especially in the adaption of the thermal-
optical data fusion method and the use of ERA5 data (https://bitbucket.
org/cioapps/wapor-et-look/wiki/Home, last accessed: 14.07.2023).

However, Guzinski et al. (2021) also exposed an inherent limitation
of the thermal-shortwave data fusion approach, which is used to derive
high-resolution LST by enhancing spatial resolution of S3 LST observa-
tions (acquired at around 1 km resolution) using S2 optical observations
2

(acquired at 20 m spatial resolution). This is on one hand the inability
of detecting short-term stress/wetting events, due to different physio-
logical response time between shortwave and thermal bands. And on
the other hand, the inability to reproduce very low LST values present
in irrigated fields, thus leading to underestimation of ET from those
fields. The reason for this is the difficulty in predicting values which are
far beyond the LST range of the original Sea and Land Surface Thermal
Radiometer (SLSTR) LST. The most extreme LST values will not be
present in the SLSTR data since LST from different landscape features
aggregate within the 1 km pixels. Other studies also reported similar
findings when evaluating the same data fusion approach (Bellvert et al.,
2020). The underestimation of ET in irrigated fields could represent
a critical issue when it comes to SDG indicator 6.4.1 reporting since
irrigated agriculture is a focus area of this indicator.

The main purpose of the current study is to improve the ability
of S2–S3 data fusion approach to reproduce low LST values present
in irrigated fields by incorporating Landsat LST into the data fusion
methodology. It is however important to ensure that the inclusion of
Landsat LST, with its lower revisit time, does not compromise the
capability of the data fusion approach to produce high-resolution LST
on all dates on which cloud-free S3 observations were acquired. In
addition, energy must be conserved when re-aggregating sharpened
LST back to S3 scale to ensure physical plausibility and consistency
in ET retrieval across spatial scales. To our knowledge such fusion of
Sentinel-2 shortwave observations with Sentinel-3 and Landsat thermal
observations to derive high resolution LST estimates has not yet been
reported in literature. Other smaller improvements to the sharpening
approach were also developed and evaluated. Field measurements of
LST from southeastern Spain from 2018 and 2019 were used for directly
validating high-resolution LST produced through data fusion.

Similarly to Guzinski et al. (2021), the sharpened LST is subse-
quently used in two ET models: TSEB-PT (Kustas et al., 2016) and ET-
Look (Bastiaanssen et al., 2012). In the previous research the validation
of Copernicus-based ET was focused on sites in semi-arid Mediterranean
climate. In this study the validation was extended to a site in Senegal
with a distinct dry and wet seasons, with the interest of evaluating
Copernicus data availability and performance of the proposed method
also in climates with more prevalent cloud cover. This necessitates
evolution of the input and output data gap-filling methods to allow
ET modeling in cloudy climates and periods. Finally, in this study new
ancillary data sources (in particular land-cover map) were introduced
to mitigate some of the limitations observed in Guzinski et al. (2021).

Section 2 of this paper describes the method for modeling ET with
Copernicus-based inputs with the focus on changes implemented in the
current study. In Section 3 the field validation sites are introduced. The
validation of sharpened LST against field measurements from southeast-
ern Spain and the validation of ET estimates produced in this study
and obtained from the WaPOR portal against in situ measurements are
presented in Section 4. Section 5 interprets those results while Section 6
contains recommendations and conclusions reached as a result of this
study.

2. Methods

The methods used to model ET with Copernicus inputs are as
described in Guzinski et al. (2021) and summarized in the paragraph
below, apart from the modifications presented in Sections 2.1–2.4.

Atmospherically corrected and cloud masked shortwave multispec-
tral observations from Sentinel-2 satellites are used to determine sur-
face biophysical properties (green and total leaf area index, albedo,
etc.) at 20 m spatial resolution. The thermal infrared Sensor on board
Sentinel-3 satellites provides LST observations that are sharpened from
the native resolution of around 1 km to 20 m using Data Mining
Sharpener (Gao et al., 2012; Guzinski and Nieto, 2019) with Sentinel-
2 reflectance and digital elevation model (DEM) derived parameters
used as explanatory variables. Meteorological forcing comes from the

ERA-5 reanalysis (Hersbach et al., 2020) as provided by Copernicus

http://www.wapor.apps.fao.org/
https://data.apps.fao.org/wapor
https://bitbucket.org/cioapps/wapor-et-look/wiki/Home
https://bitbucket.org/cioapps/wapor-et-look/wiki/Home
https://bitbucket.org/cioapps/wapor-et-look/wiki/Home


International Journal of Applied Earth Observation and Geoinformation 125 (2023) 103587R. Guzinski et al.

−
b
(
t
d
l
a

T
l
h
s
T
t
a

m
e
t
s
a
u
t
s
i
t
T
t
s
f
L
s
i
m
t
t
D
w
r
A
p
c

p
v
f
p
t

Climate Change Service and is subsequently corrected for topographical
effects using a DEM at 300 m resolution before being resampled to
20 m resolution using bilinear interpolation. Finally, surface parameters
that cannot be directly determined from Sentinel-2 data (e.g. vegetation
height, canopy clumpiness or leaf angle orientation) are set using a
land-cover map and a look-up table. All those data are used as inputs
into two ET models: TSEB-PT (Kustas et al., 2016) and ETLook (Basti-
aanssen et al., 2012). The output daily ET estimates are gap-filled and
aggregated into 10-day (dekadal) composites in order to correspond to
WaPOR ET product.

2.1. Improvements to thermal sharpening

One of the major challenges in modeling ET with Copernicus data
is overcoming the limitation of low spatial resolution thermal data.
In Guzinski and Nieto (2019), Guzinski et al. (2020, 2021) it was
demonstrated that good results can be obtained when modeling high-
resolution ET using Sentinel-3 LST sharpened with the Data Mining
Sharpener (DMS) approach. However, certain limitations were also
observed and they are addressed with the methodological modifications
presented in the sections below.

2.1.1. Modifications to data mining sharpener
Two small modifications were incorporated in the Python im-

plementation of DMS (https://github.com/radosuav/pyDMS, last ac-
cessed: 28.06.2023) used in this and previous studies. Firstly, in the
DMS method a linear regression model is applied to all data points
falling within one regression tree leaf node (see Gao et al., 2012; Guzin-
ski and Nieto, 2019). This linear regression model was changed from
Bayesian Ridge (https://scikit-learn.org/stable/modules/generated/sk
learn.linear_model.BayesianRidge.html, last accessed: 28.06.2023) to
Ridge (https://scikit-learn.org/stable/modules/generated/sklearn.line
ar_model.Ridge.html#sklearn.linear_model.Ridge, last accessed:
28.06.2023). The original model was supposed to be more robust but
it was found that it often resulted in linear interpolation with very low
coefficient of determination and slope close to zero. This resulted in
very limited interpolation and extrapolation of LST values assigned to
a specific leaf node.

The second change, concerns the selection of pixels used for training
the DMS model. The original approach was to select 80% of the most
homogeneous Sentinel-3 resolution reflectance pixels (i.e. pixels from
Sentinel-2 reflectance image resampled to Sentinel-3 grid) based on
coefficient of variation (CV - standard deviation over mean) of the
Sentinel-2 pixels falling within each Sentinel-3 pixel (see Gao et al.,
2012; Guzinski et al., 2020). The inverse of CV was also used as a
weighing factor during the model training, penalizing heterogeneous
pixels and advancing homogeneous ones. However, it was observed
that agricultural areas, and in particular irrigated agriculture in semi-
arid climate, often exhibited the largest heterogeneity. Therefore those
areas were often excluded from the model training set, even though
they were of most interest in the later process of ET modeling. There-
fore, the methodology was modified to use all available pixels during
the training of the DMS model but to penalize the most heterogeneous
20% by further dividing their already low weight by a factor of two.
This is expected to improve model fit in agricultural areas while not
significantly degrading model performance in other areas through the
introduction of extra noise in the training data.

2.1.2. Thermal contrast enhancement
One of the limitations of sharpening low-resolution thermal data is

the dampened range of temperatures present in the sharpened high-
resolution representation of LST (Guzinski and Nieto, 2019). This is
because regression models generally output data with a similar value
range to the input data and the input LST is dampened due to spatial
aggregation at the 1 km spatial resolution. For example, a cold irrigated
agricultural parcel next to a hot bare field falling within the same
3

Sentinel-3 LST pixel would result in the sensed thermal radiance of that
pixel being area weighted average of those two extremes. The DMS tries
to address this limitation with a limited extrapolation allowed within
the linear interpolation of values falling within one regression tree leaf
node (see Gao et al., 2012 for details). However, it is still observed
that the sharpened LST is overestimating the coldest temperatures and
underestimating the hottest ones.

Another possibility of addressing this issue is to use ancillary
dataset of higher resolution LST observation to enhance the contrast
of the sharpened LST. In this study we used Landsat −7, −8 and

9 LST (acquired at spatial resolution between 60 m and 100 m
ut provided as a 30 m product) from Collection 2 L2 A product
https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-
emperature, last accessed: 14.07.2023) as high-resolution LST. Ad-
itional cloud masking was performed by removing any values 2 K
ower than the air temperature. There are three [options] of using this
ncillary data:

1. Using the high-resolution LST directly in the ET models instead
of the sharpened LST

2. Using the high-resolution LST, either directly or as a spatial or
temporal statistics (e.g. standard deviation) as an explanatory
variable in the DMS model

3. Using the high-resolution LST during the post-processing of the
DMS-produced sharpened LST

he first option was not suitable for the current study since it would
ead to inconsistencies between the dates and areas with and without
igh-resolution LST observations and also would lead to lack of con-
istency between ET and LST products at 20 m and 300 m resolutions.
he second and third options were implemented as described below and
he results validated against field observations of LST in an agricultural
rea in southeastern Spain, with the results presented in Section 4.1.

LST exhibits high temporal variability due to its dependence on
ultiple factors including weather conditions, surface biophysical prop-

rties (e.g. vegetation cover), and soil water availability. At the same
ime, Landsat satellites do not provide daily observations of the land
urface. Therefore, to include high-resolution LST as explanatory vari-
ble in the DMS model, the temporal statistics were calculated first
nder the assumptions that those are more robust to temporal changes
han the absolute values of the LST observations. Those statistics con-
isted of standard deviation, minimum and maximum values observed
n each high-resolution pixel over a period of ± 16 days centered on
he date of Sentinel-3 acquisition which was undergoing sharpening.
his compositing period was chosen to be as short as possible to limit
he uncertainty due to the temporal variability of LST while still being
ufficiently long to provide a reasonable probability of multiple cloud-
ree LST observations. Given the 16-day geometric revisit time of each
andsat satellite at the equator and the availability of two Landsat
atellites (7 & 8 or 8 & 9) at a given time, this compositing period results
n at least 5 possible observations (both cloudy and cloud-free) with
ore closer to the poles. The three statistics were selected to capture

he expected range and variability of possible LST values while not
o excessively increasing the number of explanatory variables used in
MS which would impact model complexity and execution time. They
ere used in addition to standard explanatory variables (Sentinel-2

eflectance, digital elevation model and solar illumination conditions).
limitation of this approach is that no sharpened LST values are

roduced in pixels in which no Landsat LST was observed during the
ompositing period.

Finally, the procedure of using high-resolution LST during the post-
rocessing of sharpened LST to enhance the thermal contrast (spatial
ariability) within the sharpened scene is shown in Fig. 1. In the
irst step, a closest-pixel temporal aggregation of Landsat LST was
erformed using Landsat observations from ± 16 days centered on
he date of Sentinel-3 acquisition. This produced a high-resolution LST
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Fig. 1. Outline of the method for enhancing the thermal contrast (spatial variability)
within a sharpened LST scene using the thermal contrast present within Landsat
observations.

composite image with gaps due to clouds minimized. This composite
was then resampled to the grid of the Sentinel-3 image being sharpened
by computing a 1 km focal coefficient of variation from all Landsat
30 m LST pixels falling within each Sentinel-3 1 km pixel (𝐶𝑉𝐿𝑎𝑛𝑑𝑠𝑎𝑡).
Similarly, CV of the DMS sharpened LST (𝐶𝑉𝐷𝑀𝑆 ) was also calculated.
Based on this, the contrast enhancement scaling factor 𝑆 was calculated
as

𝑆 = max(
𝐶𝑉𝐿𝑎𝑛𝑑𝑠𝑎𝑡
𝐶𝑉𝐷𝑀𝑆

, 1) (1)

The scaling factor was resampled to Sentinel-2 resolution using
bilinear interpolation, to avoid S3-pixel blocks, before being applied
to the sharpened LST image:

𝐿𝑆𝑇𝑜𝑢𝑡 = 𝐿𝑆𝑇𝐷𝑀𝑆,𝑆3_𝑚𝑒𝑎𝑛 +

𝑆 ∗ (𝐿𝑆𝑇𝐷𝑀𝑆 − 𝐿𝑆𝑇𝐷𝑀𝑆,𝑆3_𝑚𝑒𝑎𝑛) (2)

where 𝐿𝑆𝑇𝑜𝑢𝑡 is the final sharpened and contrast enhanced high-
resolution LST, 𝐿𝑆𝑇𝐷𝑀𝑆 is the LST after sharpening with DMS and
𝐿𝑆𝑇𝐷𝑀𝑆,𝑆3_𝑚𝑒𝑎𝑛 is the mean of all 𝐿𝑆𝑇𝐷𝑀𝑆 pixels falling within original
resolution Sentinel-3 LST pixel.

By applying the contrast enhancement in this way, similar to a
standard rescaling correction (Yilmaz and Crow, 2013), the thermal
energy of the original Sentinel-3 pixel is conserved while the within-
pixel cooler areas become cooler, and warmer become warmer based
on the spatial variability of Landsat LST. It can be assumed that spatial
variability of Landsat LST within a 1 km area is more temporarily
stable than the individual LST pixel values and therefore the Landsat
acquisition does not have to fall on the same date as Sentinel-3 ac-
quisition. Also if no valid Landsat LST observations are present during
the compositing period for a given Sentinel-3 pixel then the contrast
enhancement is not applied to that pixel (i.e. 𝑆 = 1) and the output of
DMS is used directly for this pixel.
4

2.2. Gap-filling of input and output data

In Guzinski et al. (2021) the focus was on semi-arid areas in
Lebanon, Tunisia and Spain. Those Mediterranean areas are character-
ized by infrequent cloud cover for the majority of the year. Therefore,
simple gap-filling approaches were chosen for both input and output
data (temporal closest pixel composite and ratio of actual to reference
ET respectively). In this research, additional focus area in the Senegal
was added. In this area the cloud cover is more prevalent during the
rainy season and therefore other gap-filling approaches need to be
explored.

2.2.1. Gap-filling of input biophysical parameters
The gap-filling of input data focuses producing continuous land

biophysical traits using Sentinel-2 observations. Those traits include
leaf area index, spectral reflectance of leaves and soil, and fraction of
LAI that is green. In Guzinski et al. (2021) a temporal closest pixel com-
posite of biophysical parameters was created from all S2 observations
falling within ± 10 days of the date on which ET was to be modeled.
In this study this was modified to be based on linear interpolation of
closest available observation before and after the central date within
a ± 30 day window. With Sentinel-2 observations having a geometric
revisit time of 5 days at the equator this results at least 6 observations
before and after the central date in which a cloud-free pixel could be
found. While the 60 day window seems large, changes in biophysical
traits follow the phenological cycle and therefore usually undergo
smooth transitions.

2.2.2. Gap-filling of evapotranspiration outputs
Despite gap-filling of the Sentinel-2 based inputs, gaps can still

occur in the output ET maps due to clouds during the Sentinel-3 LST
acquisition. In Guzinski et al. (2021), the gap-filling was performed
using the ratio of actual to reference ET (𝑟𝑎𝑡𝑖𝑜𝐸𝑇 ) at the objective date
(i.e. the date of the pixel that needs to be gap-filled) and closest valid
actual ET output within 10 days of the objective date. In this study,
𝑟𝑎𝑡𝑖𝑜𝐸𝑇 is still used. However, two modifications were applied to the
method.

Firstly, instead of using temporarily closest available 𝑟𝑎𝑡𝑖𝑜𝐸𝑇 , a
linear interpolation is performed between closest 𝑟𝑎𝑡𝑖𝑜𝐸𝑇 before and
after the objective date. This should better account for drying out of
the soil. If there is only one available 𝑟𝑎𝑡𝑖𝑜𝐸𝑇 within the gap-filling
window (i.e. only either before or after the objective date) then it is
used directly without linear interpolation.

Secondly, recent research (Delogu et al., 2021) suggests that rainfall
should be considered when performing ET gap-filling for periods longer
than a couple of days. We account thus for soil re-wetting by calculating
a simple water balance (𝑊𝐵) for each date (𝑖) within the gap-filling
window as

𝑊𝐵𝑖 = max(0.75 ∗ 𝑊𝐵𝑖−1 + 𝑃𝑅𝑖 − 𝐸𝑇𝑟𝑒𝑓 ,𝑖, 0) (3)

where 𝑃𝑅𝑖 is rainfall and 𝐸𝑇𝑟𝑒𝑓 ,𝑖 is reference ET estimated using
the standard FAO equation for short grass crop and terrain adjusted
ERA5 meteorological forcing on day 𝑖 and 0.75 approximates other
water sinks (e.g. runoff or percolation to deeper layers) . If 𝑊𝐵𝑖 is
larger than 2 (mm) on a given day then 𝑟𝑎𝑡𝑖𝑜𝐸𝑇 for that day is set to
maximum 𝑟𝑎𝑡𝑖𝑜𝐸𝑇 observed within the gap-filling window. The linear
interpolation of 𝑟𝑎𝑡𝑖𝑜𝐸𝑇 is then performed on the values corrected using
the water balance approach.

The gap-filling window was set as ± 15 days from the objective date.
This is shorter than the gap-filling window selected for biophysical
parameters for two reasons. Firstly, with both Sentinel-3 A & -3B
satellites the thermal data is acquired with daily geometric revisit and
therefore the duration of the gaps is expected to be shorter. Secondly,
ET is more dynamic than the biophysical traits because it is more
strongly influenced not only by phenology but also by meteorology
(accounted for to a certain extent in 𝑟𝑎𝑡𝑖𝑜𝐸𝑇 ) and water availability in
the soil, which can change quickly due to rainfall, irrigation or drying
out of the soil.
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Fig. 2. Landcover maps from CGLC (left panel) and WorldCover 2020 (right panel) in
Bekaa valley in Lebanon. Pink color indicates agriculture, red — urban areas, yellow —
grassland/herbaceous vegetation, orange — shrubland and green — tree cover/forest.

2.3. New data sources

In Guzinski et al. (2021), the Copernicus Global Land Cover (CGLC)
map was used to set surface parameters that could not be directly de-
termined from Sentinel-2 or Sentinel-3 observations, such as vegetation
structure/roughness. One of the two main limitations of this data was
the 100 m spatial resolution, which would lead to box-shape artifacts in
the output ET maps on the borders of very different land cover classes
(such as agriculture and forest).

In this study we replaced CGLC by WorldCover land cover map,
which has a 10 m spatial resolution (Zanaga et al., 2022). Both maps
have global coverage and similar reported accuracies, with 77% over-
all accuracy for all classes and 80% producer and user accuracy for
agriculture class for WorldCover (Zanaga et al., 2022) and 80% over-
all accuracy for all classes, 81% producer’s accuracy and 73% user’s
accuracy for cropland class for CLGC (Tsendbazar et al., 2020). CGLC
currently contains yearly updates from 2015 till 2019 while World-
Cover maps are available for years 2020 and 2021. Despite not being
a Copernicus product the use of WorldCover in this study is justified
based on the fact that it is derived using Sentinel-1 and Sentinel-
2 observation timeseries. However, WorldCover cannot overcome the
second major limitation of CGLC, which is the presence of only one
agricultural land cover class. This means that herbaceous fields are
classified as agriculture and thus they will be assigned the same values
for vegetation height and other structural parameters. Furthermore, in
WorldCover map woody fields can be classified as agriculture, shrub-
land or tree cover (see Fig. 2 for an example from Lebanon), thus
sometimes being assigned different structural parameters to herbaceous
crops. However, it is not clear whether this is by accident or design and
how consistent it is across different geographical regions.

The second change in ancillary data concerns replacement of SRTM
DEM with Copernicus 30 m DEM (COP-DEM GLO-30 European Space
Agency and Airbus, 2022). The DEM is used during atmospheric cor-
rection of Sentinel-2 reflectance, during sharpening of Sentinel-3 LST
and in terrain correction of meteorological parameters. The change of
DEM is expected to have minimal impact on the final ET maps but fits
with the aim of using mainly Copernicus data in the study.

2.4. New WaPOR ETLook code

Similarly to Guzinski et al. (2021), in this study WaPOR ETLook
model was run with the same Copernicus inputs as used in the TSEB-PT
model. The TSEB-PT implementation (https://github.com/hectornieto/
pyTSEB, last accessed: 29.06.2023) is practically unchanged (see Ni-
eto et al., 2021 and Nieto et al., 2023 for comparison). However,
the version and Python implementation of the ETLook model has
changed between the studies. Previously, version 2 (v2) of the ETLook
code which was available at https://bitbucket.org/cioapps/wapor-et-
5

look.git repository as of June 10th 2020 was used. The code was
further modified by Guzinski et al. (2021) to improve execution effi-
ciency and allow the use of Copernicus data, with the actual ETLook
code used available at https://github.com/DHI-GRAS/wapor-et-look/
commits/copernicus_run (last accessed 29.06.2023).

In this study, ETLook code v3.2.4 which was available from https:
//bitbucket.org/cioapps/pywapor repository as of February 2nd 2023
was used. The code has undergone a lot of refactoring, bug fixing
and efficiency improvements which is expected to result in higher
accuracy outputs of ETLook model. The code allows running of ETLook
v2 and v3 and we used v2 (same version as in Guzinski et al., 2021).
The ETLook code has undergone further changes in this study to
allow the use of Copernicus data, with the final code used available
at https://github.com/DHI-GRAS/pywapor/tree/et4fao (last accessed
29.06.2023). When using the pyWaPOR code with Copernicus data in
both phases of ET4FAO project, only the soil moisture and ET modeling
functions (se_root and et_look respectively) were called since input data
preparation was performed as described in this section.

3. Field validation sites

3.1. Southeast Spain

This validation site is located in and close to the Barrax exper-
imental site and is the same as used in Guzinski et al. (2021). It
contains instrumentation including large weighing lysimeters located
in irrigated potato field (López-Urrea et al., 2016), irrigated festuca
grassland López-Urrea et al. (2006), drip-irrigated vineyard (Sánchez
et al., 2019) and eddy covariance (EC) towers located in drip-irrigated
almond orchard (Sánchez et al., 2021) and rainfed wheat, codified as
‘‘ES-LTs’’ and ‘‘ES-FcO’’, respectively, in the European Fluxes Database
Cluster (http://www.europe-fluxdata.eu/home/sites-list, last accessed:
01.08.2023).

3.2. Tunisia

The ET data from the field were collected at the El Koudia experi-
mental station (36.546◦ N; 9.013◦E, Fig. 3) of the National Institute of
Field Crops (INGC). The site is located in the Governorate of Jendouba,
northwest of Tunisia. This station is equipped with an EC station
installed by the National Institute for Research in Rural Engineering,
Water and Forests (INRGREF), which has expertise in this ET determi-
nation methodology and operates several other eddy covariance sites
across Tunisia.

The field itself consists of Mio-Pliocene and Quaternary sedimentary
rocks. The average annual temperature is 18◦C, with peak temperatures
reaching 35◦C in July and August, and minimum temperatures of
around 5–6◦C from December to February. The average annual rainfall
is 542 mm, with more than 70%–75% occurring between October and
March. July has the lowest average precipitation with only 4 mm, while
December has the highest with approximately 83 mm. The site features
deep clay soils.

The eddy covariance station system were installed in a 2.4 ha plot
(130 m 𝑥 185 m) located in the center of the farm, positioned at least
62 m away from the edge, in the middle of the plot. Energy balance
was ensured by assigning residual energy to the latent heat flux (Twine
et al., 2000).

The experimental site is situated in the Boussalem region, which
is known for its predominant cultivation of herbaceous crops. During
the winter season, the main crops cultivated in this experimental farm
include durum wheat, faba bean, sugar beet, and rapeseed, utilizing
conventional or direct sowing methods. In the summer, the fields are
typically left fallow due to water scarcity for irrigation. Irrigation was
not applied due to water issues during the summer, and during the
winter rainfall predominantly supports the crops. Glyphosate herbicide
is commonly used during sowing. The crop rotation for the different

https://github.com/hectornieto/pyTSEB
https://github.com/hectornieto/pyTSEB
https://github.com/hectornieto/pyTSEB
https://bitbucket.org/cioapps/wapor-et-look.git
https://bitbucket.org/cioapps/wapor-et-look.git
https://bitbucket.org/cioapps/wapor-et-look.git
https://github.com/DHI-GRAS/wapor-et-look/commits/copernicus_run
https://github.com/DHI-GRAS/wapor-et-look/commits/copernicus_run
https://github.com/DHI-GRAS/wapor-et-look/commits/copernicus_run
https://bitbucket.org/cioapps/pywapor
https://bitbucket.org/cioapps/pywapor
https://bitbucket.org/cioapps/pywapor
https://github.com/DHI-GRAS/pywapor/tree/et4fao
http://www.europe-fluxdata.eu/home/sites-list
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.

Fig. 3. Location of the validation site in Tunisia.

seasons consisted of maize (July 19, 2020–November 3, 2020), faba
bean (December 19, 2020–May 26, 2021), and sorghum (August 9,
2021–November 2, 2021).

This is a different Tunisian site to the one used in Guzinski et al.
(2021). The main reason for this choice is that the new site features a
flux tower over an arable land and thus with greater crop variability,
as compared to the former rainfed olive site of Taous.

3.3. Senegal

The Niakhar site is situated in central Senegal within the Sereer
region, in a rural area 150 km from Dakar. Established in 1962, the
Niakhar observatory holds the distinction of being the oldest opera-
tional population observatory in Africa (Delaunay et al., 2018). Since
2018, a long-term collaborative observatory focused on agroforestry
ecosystem services, such as food security and greenhouse gas fluxes, has
been established by the UMR Eco&Sol research institute from France in
association with Université Cheikh Anta Diop de Dakar (Rahimi et al.,
2021).

The study area (Fig. 4) was established within active agro-silvo-
pastoral bush fields managed by local farmers, where the dominant
tree species is apple-ring acacia (Faidherbia albida) (Roupsard et al.,
2020). Within a 15 ha area surrounding the flux tower, the density
of Faidherbia trees was 6.8 trees per hectare, with a canopy cover of
5.14%. An understory in this area is present and consisted of a mosaic
of crops including pearl millet, groundnut, watermelon, cowpea, and
fallow areas. The Faidherbia-Flux site (https://lped.info/wikiObsSN/
?Faidherbia-Flux, last accessed: 01.08.2023) is located at coordinates
14◦29’44.916’’N, 16◦27’12.851’’W, and is registered with FLUXNET as
’Sn-Nkr’.

The soil in the area is sandy and several meters deep, overlaying
limestone bedrock. There is a brackish water table at approximately
6 m depth. The climate is characterized as soudano-sahelian, with a wet
season spanning from June to October, followed by an eight-month dry
season. Rainfall in the region decreased from 900 to 400 mm between
1950 and 1995 (the driest period), then partially recovered to around
500 mm by 2015. The seasonal distribution of rainfall shifted during
this recovery period, with less rain occurring in the early part of the
wet season and more towards the end.

The site is equipped with instruments and facilities for monitoring
micro-meteorology, eddy-covariance fluxes of sensible heat, latent heat,
and CO , soil water content, land surface and soil temperatures, NDVI
6
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Fig. 4. Location of the validation site in Senegal.

Fig. 5. Location of the validation site in Lebanon.

(Normalized Difference Vegetation Index), soil respiration, sapflow,
leaf area index (LAI), tree growth, fine root growth, crop productivity,
and yield. Energy balance was ensured by assigning residual energy to
the latent heat flux (Twine et al., 2000).

3.4. Lebanon

In Lebanon, the Tal Amara Research Station, operated by the
Lebanese Agriculture Research Institute (LARI), serves as the site for
ET field measurement and experiments. It is situated approximately 70
km northeast of Beirut (35.987927◦E, 33.860117◦N, Fig. 5).

The region, known as Bekaa Valley, experiences a typical Mediter-
ranean climate, but its characteristics are influenced by two elevated
mountain ranges flanking the Bekaa and Baalbeck-Hermel Governorates
The area is characterized by hot and dry summers, as well as relatively
cold and rainy winters. Rainfall is concentrated between October and
April, with minimal rainfall in May and September. On average, the
annual rainfall is around 600 mm, with the majority (95%) occurring

https://lped.info/wikiObsSN/?Faidherbia-Flux
https://lped.info/wikiObsSN/?Faidherbia-Flux
https://lped.info/wikiObsSN/?Faidherbia-Flux
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between November and March. January stands out as the rainiest
month, with an average of approximately 150 mm rainfall. Summers
are completely dry, without any rain. The rainy season typically ends
in mid-May and rarely starts again in mid-September. Temperature
variations are significant throughout the year, with average summer
temperatures hovering around 25◦C and winter temperatures averaging
around 6◦C. The yearly average temperature stands at approximately
15◦C. During July and August, temperatures can soar as high as 40◦C,
while certain winter days can experience freezing temperatures.

In this area, ET is measured thanks to the presence of a weighing
lysimeter. However, due to travel restrictions due to COVID-19 the
access to the lysimeter was heavily restricted throughout 2020 and
2021 leading to increased uncertainties in the measurements as time
progressed. Repairs were resumed in August 2022, and thus in situ
lysimeter data from this site between those dates should be treated with
caution.

The cultivated land area encompassed approximately 9000 m2.
Ploughing and land leveling constituted routine procedures, accompa-
nied by an intensive initial weed control practice. Prior to sowing in
each season, the soil underwent moistening through a 10-hour sprinkler
irrigation process, conducted approximately 20 days in advance. Faba
bean crop was cultivated at the site from Dec. 3, 2020 till May 6, 2021
and this was followed by summer maize from June 17, 2021 till Oct.
8, 2021.

4. Results

4.1. Validation of thermal sharpening methods

During the summers of 2018 and 2019 a field campaign was con-
ducted in ‘‘Las Tiesas’’ experimental farm at the Barrax site in Spain
during which transect of LST were collected at the time of Sentinel-3
overpass, covering different crops and irrigation practices. A set of four
hand-held infrared radiometers (IRTs) Apogee MI-210 were available
for the LST transects, in addition to a multispectral radiometer CIMEL
Electronique CE 312-2. Transects were conducted carrying back and
forth the IRTs, at a rate of 5–10 registers/min, and covering as large
area as possible within 10 min centered on the S3 overpass time.
Ground LST were then obtained as the average value of the 50–100
punctual IRT measurements registered in every plot/site, covering an
area representative of a grid of 3 × 3 Sentinel-2 20 m pixels. More
details about the campaign and data can be found in Galve et al. (2022)
and Sánchez et al. (2020). This field data was used to validate the
modifications of the DMS sharpening method presented in Section 2.1.

The results of this exercise are presented in Fig. 6. The comparison
of Sentinel-3 LST at its original resolution (around 1 km) against the
field transects is shown if Fig. 6(a). If all the cases are considered it
results in RMSE of 8.3 K. When only larger (≥ 1 ha) and not recently
irrigated (closed circles in the plot) cases are evaluated this error
reduces to close to 4.7 K. From now on those data points will be
called ‘‘selected cases’’. Applying DMS as implemented in Guzinski et al.
(2021) reduces the RMSE to 6.2 K for all cases and 2.5 K for selected
cases (Fig. 6(b)). The correlation has also increased, especially when
all cases are considered from 0.57 for S3 LST to 0.82 for DMS LST.
However, it can be observed that the sharpened LST overestimates the
coldest LST values and underestimates the warmest.

The improvements to the DMS method itself (described in Sec-
tion 2.1.1) results in plots and statistics shown in Fig. 6(c). Compared
to DMS model implementation in Guzinski et al. (2021), the RMSE for
all cases is reduced by further 0.6 K. When recently irrigated cases are
excluded the reduction in RMSE is 0.9 K. However, the reduction of
RMSE in selected cases is only 0.2 K. This indicates that the largest
improvements were in the smallest parcels, which by their nature
would lie in the more heterogeneous pixels when resampled to Sentinel-
3 resolution. In the rest of this section, this plot (Fig. 6(c)) is treated
as a baseline against which to evaluate the impact of the different
7

methods for inclusion of Landsat observations within in LST sharpening
approach.

Using temporal Landsat LST parameters as explanatory variables in
DMS (option (2) from Section 2.1.2) results in degradation of RMSE
when considering both all cases and selected cases (Fig. 6(d)). However,
the largest increase in RMSE (of 1.3 K) is obtained when the recently
irrigated cases are excluded and it can be observed that for the recently
irrigated cases (open circles) the error actually decreases. This implies
that using Landsat data in this way is relevant for the main issue
being addressed (overestimation of LST in irrigated agriculture) but
this improvement is overshadowed by the general increase in noise in
the sharpened LST. It might be that despite its infrequent acquisitions
Landsat is able to capture at least one very low LST (present soon after
irrigation) within the compositing period, in regions such as southern
Spain where irrigation is frequent and cloud cover is minimal.

When Landsat LST is used for contrast-enhancement during the post-
processing of sharpened LST (Fig. 6(e)) it results in reduction of RMSE
of 0.3 K for all cases, 0.6 K for not recently irrigated cases but no
significant change for selected cases compared to the improved DMS.
This implies that contrast enhancement is especially useful for smaller
parcels but does not have a significant effect on the LST of recently
irrigated plots.

Finally, when Landsat LST is used both as explanatory variables
in DMS and for contrast enhancement (Fig. 6(f)) the resulting RMSE
for all cases decreases slightly compared to that of improved DMS.
However, if the recently irrigated parcels are removed the error in-
creases significantly by 0.8 K. This again shows that using Landsat LST
as input to the DMS model can improve the accuracy of sharpened
LST in the recently irrigated parcels. In addition, the usage of contrast
enhancement also makes that the spatio-temporal variability of LST
between the sharpened and the in situ has similar values (i.e. scale
statistic with values closer to 1).

Considering all of the above results it was decided to use the con-
trast enhancement method (option (3) from Section 2.1.2 and Fig. 6(e))
during the production of sharpened LST to be used for ET modeling.
This was based on three major factors. Firstly this method resulted
in lowest RMSE when all the combinations of cases are considered.
Secondly, as explained in Section 2.1.2, this method results in sharp-
ened LST pixels even in the absence of Landsat LST. This is especially
important in tropical regions where frequent cloud cover could result
in very few Landsat LST observations. Thirdly, the LST dynamic range
showed similar values to the dynamic range of the measurements
(i.e. scale value closer to 1), and thus the over (under) estimation of
cold (hot) pixels is reduced.

4.2. Validation of ET fluxes

The following results will evaluate both TSEB-PT and ETLook mod-
els, utilizing Copernicus data as inputs as well as WaPOR ET data
obtained directly from the WaPOR portal. In all sites, 20 m Copernicus-
based ET was used to validate ET. For cases where a flux tower exists, a
buffer size of 5 × 5 pixels around the EC location coordinates was used
to match the spatial extent of the EC footprint (i.e. ca. 100 m footprint).
On the other hand a single pixel was used for the coordinates over the
sites with lysimeters.

4.2.1. Southeastern Spain
In this region of Spain, there are no available data from WaPOR

database, so the comparison only contains the results obtained with
TSEB and ETLook using Copernicus data (in subsequent figures referred
to as TSEB𝐶 and ETLook𝐶 respectively).

Table 1 presents the descriptive statistics of dekadal ET for both the
observed data and all evaluated products. Meanwhile, Table 2 displays
the error and agreement metrics between the observed values and the
modeled values. Fig. 7 illustrates the overall results for all sites through
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Fig. 6. Comparison of original resolution Sentinel-3 LST (a) and Sentinel-3 LST at 20 m resolution sharpened with different approaches (b–f) against in situ LST transects. Presented
statistics are total, systematic and unsystematic root mean square error (RMSE, RMSE𝑠 and RMSE𝑢 respectively), mean bias (satellite LST - in situ LST), scale (standard deviation
of in situ LST over standard deviation of satellite LST), Pearson Correlation coefficient (r) and Willmott’s Index of Agreement (d). Statistics with ‘‘Not recently irrigated’’ in the
header exclude the cases which were irrigated in the hours immediately before Sentinel-3 overpass (open circles in the plots).
a scatterplot representing the relationship between the observed values
and the predictions of the models.

The ability to track ET temporal changes as well as the error
deviations from the in situ measurement are shown in Fig. 8. In this
figure, and for the sites with EC towers, an uncertainty band around
the observed dekadal ET is displayed, due to energy closure imbalance.
8

Fig. 8(a) demonstrates the consistent underestimation of ET for
almond crops throughout the entire time series. This difference has
intensified compared to the results from (Guzinski et al., 2021), par-
ticularly during the summer months, and contrasts with the results
obtained for other crops, which exhibit an opposite trend. This differ-
ence reaches up to 2 mm at certain points and is more pronounced
in ETLook, reaching up to 2.5 mm. For this latter model, the change in
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Table 1
Descriptive statistics for estimated and in situ dekadal ET (mm/day) for Barrax site.
𝑂𝑏𝑠. and 𝑃𝑟𝑒. show the mean and 𝜎𝑂𝑏𝑠. and 𝜎𝑃𝑟𝑒. the standard deviations of ET values
for the in situ and model ET datasets respectively.

Site Source Model N 𝑂𝑏𝑠. 𝑃 𝑟𝑒. 𝜎𝑂𝑏𝑠. 𝜎𝑃𝑟𝑒.
All Copernicus TSEB-PT 119 3.39 3.32 1.92 1.72
All Copernicus ETLook 2.60 2.05

Festuca Copernicus TSEB-PT 36 5.08 4.91 1.66 1.17
Festuca Copernicus ETLook 4.58 1.48

Potato Copernicus TSEB-PT 14 4.69 4.92 1.96 1.87
Potato Copernicus ETLook 4.31 2.47

Grapevine Copernicus TSEB-PT 23 1.92 2.10 0.74 0.52
Grapevine Copernicus ETLook 1.29 0.48

Almond Copernicus TSEB-PT 26 2.53 1.88 0.75 0.59
Almond Copernicus ETLook 1.36 0.40

Wheat Copernicus TSEB-PT 20 2.22 2.61 1.31 0.81
Wheat Copernicus ETLook 0.95 0.77

Fig. 7. Scatterplot between the in situ and estimated dekadal ET (mm/day) for crops
n Spain, with Copernicus inputs and TSEB-PT model in top panel and ETLook model
n bottom panel.

rror has not been as drastic compared to Guzinski et al. (2021), which
as up to 2.3 mm.

The estimation of TSEB and ETLook for the lysimeters in Spain
ignificantly improves the results compared to Guzinski et al. (2021),
special for the grass site (Fig. 8(c)) where the majority of errors are
elow 1 mm/day. For the grapevine crop and potato, a similar effect is
bserved (Figs. 8(b) and 8(d)).

The validation results for the wheat crop (Fig. 8(e)) are quite similar
n both studies for the TSEB model. The error has been reduced by
.05 mm (9%), and the correlation has improved by 8% (r = 0.89 vs.
.84). The same pattern is observed in ETLook, where the error has
een reduced by 0.23 mm (13%), and the correlation has improved by
% (0.81 vs. 0.72).

.2.2. Tunisia
At this site also WaPOR Level 2 (100 m) data is available. The

alidation data was divided into three sets corresponding to the crops
rown in the area within the study period: maize, beans, and sorghum.
alidation statistics for each crop are shown in Table 3.
9

For the sorghum crop, WaPOR exhibits a very low and negative
correlation (−0.07), while TSEB and ETLook show significantly higher
orrelations (0.88 and 0.80 respectively). The errors in ET estimation
y TSEB are considerably lower (up to 70%) compared to the other two
odels.

These correlations are reduced for maize. The best results are ob-
ained by TSEB and ETLook, with a Pearson coefficient of 0.60 and
.49 respectively. Among these two models, TSEB achieves the lowest
MSE (0.51 mm/day), which is more than 59% lower than that shown
y WaPOR. On the other hand, the results of ETLook exhibit a lower
orrelation (0.49) than TSEB with a slightly lower RMSE than that
enerated by WaPOR (1.18 mm/day).

Finally, the data obtained for the beans crop yield similar results
o those for sorghum. In this case, the model with the lowest RMSE
0.59 mm/day) is TSEB, with a correlation of 0.92, followed by ETLook
r = 0.92 and RMSE = 0.81 mm/day) and WaPOR (r = 0.87 and RMSE

1.01 mm/day).
The time series for this site including all the available data for the

hree crops is depicted in Fig. 9(a). In general terms, TSEB exhibits the
est fit. Although the other models deviate slightly from the observed
T, TSEB maintains a consistent error rate around 1 mm/day, except
or February 2021. The other models have a relatively higher error rate,
specially for sorghum, ranging from 1.5–2 mm, and also particularly
uring the spring months.

.2.3. Senegal
At this site the WaPOR data used corresponds to Level 2 (100 m)

ata. Table 3 shows the degree of fit between the validation data and
he TSEB and ETLook models.

The model that performs best in this area is TSEB, which has an
MSE of 0.55 mm/day that is 50% lower than that of WaPOR and 47%

ower than that of ETLook. The degree of fit in this case is slightly better
or TSEB (1% better than WaPOR).

Fig. 9(b) depicts the complete time series data. It can be observed
hat the errors of TSEB do not exceed the 1 mm threshold throughout
he analysis period, except for October 2021, where it drops to −1.8

mm/day. The other models show an overestimation of ET ranging
from 1–2 mm/day, depending on the time of year, but still within the
uncertainty energy closure gap.

4.2.4. Lebanon
For this area, ET data are available from the following products:

TSEB, ETLook, Level 3 (30 m) WaPOR v2.
Table 3 shows the accuracy statistics of observed vs. predicted

values for faba beans and maize crops . The correlation of faba beans ET
is significantly higher (> 0.92) than that found for maize (< 0.40). In this
ase, the WaPOR product exhibits better correlation (0.98) compared
o Copernicus TSEB and ETLook (0.92), but both models have lower
rror rates (1.14 mm/day and 1.02 mm/day respectively) compared to
.55 mm/day of WaPOR.

On the contrary, a different trend is observed for maize. In this
ase, only TSEB shows a positive correlation (0.40), while ETLook and
aPOR yield lower and negative results (−0.16, −0.32 respectively).
Using the entire available timeseries of validation data, Fig. 9(c) il-

ustrates how the errors increase during the summer months, coinciding
ith the maize growing season, while for the rest of the year they are

lustered around 1 mm/day. The models that show the poorest fit to
he reference data is WaPOR, which consistently underestimates the ET
hroughout the entire analysis period.

Travel restrictions associated to COVID-19 lockdown in Lebanon
ade it impossible to access and maintain the lysimeter starting in early
020 and thus the results for this site should be treated carefully.
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Table 2
Error metrics between estimated and in situ dekadal ET (mm/day) for Barrax site. 𝑏𝑖𝑎𝑠 (mm/day) is the average bias, computed as the mean difference between the predicted and
the observed, MAE is the mean absolute error (mm/day), RMSE (mm/day) is the Root Mean Square Error, which is decomposed between its unsystematic (fMSE𝑢) and systematic
(fMSE𝑠) fractions (fMSE𝑢 + fMSE𝑠 = 1), a is the slope of the regression between the observed and the predicted, scale is the ratio between the standard deviation of the observed
over the predicted, r is the Pearson Correlation coefficient between observations and predictions, and d is the Willmott’s Index of Agreement.

Site Source Model 𝑏𝑖𝑎𝑠 MAE RMSE fMSE𝑠 fMSE𝑢 a scale r d

All Copernicus TSEB-PT −0.07 0.69 0.84 0.20 0.80 0.81 1.11 0.90 0.94
All Copernicus ETLook −0.79 0.92 1.13 0.48 0.52 0.98 0.93 0.92 0.92

Festuca Copernicus TSEB-PT −0.17 0.64 0.79 0.62 0.38 0.64 1.42 0.91 0.92
Festuca Copernicus ETLook −0.50 0.63 0.80 0.52 0.48 0.83 1.12 0.93 0.94

Potato Copernicus TSEB-PT 0.24 0.72 0.85 0.17 0.83 0.87 1.05 0.91 0.95
Potato Copernicus ETLook −0.37 1.07 1.19 0.14 0.86 1.13 0.79 0.90 0.93

Grapevine Copernicus TSEB-PT 0.17 0.49 0.57 0.56 0.44 0.47 1.44 0.68 0.77
Grapevine Copernicus ETLook −0.63 0.69 0.89 0.79 0.21 0.35 1.54 0.54 0.63

Almond Copernicus TSEB-PT −0.65 0.93 1.11 0.72 0.28 0.09 1.28 0.11 0.46
Almond Copernicus ETLook −1.17 1.19 1.34 0.93 0.07 0.27 1.86 0.51 0.51

Wheat Copernicus TSEB-PT 0.39 0.69 0.79 0.78 0.22 0.55 1.61 0.89 0.86
Wheat Copernicus ETLook −1.27 1.27 1.50 0.91 0.09 0.48 1.69 0.81 0.65
Fig. 8. Timeseries at the Spanish validation sites of: in situ and estimated dekadal ET (mm/day), with black line indicating in situ observations (with energy imbalance correction
applied at the eddy-covariance sites) and grayed area indicating uncertainty of measured fluxes due to measured energy imbalance for the eddy-covariance sites (top panel);
differences between in situ and estimated dekadal ET, with grayed area corresponding to errors within ±1 mm/day of the black line from the top panel (bottom panel).
4.2.5. Summary statistics in Africa and Middle East

Tables 3 and 4 provide a statistical description of the models,
detailing the errors and deviations found in relation to the observed
data. Overall, for all the analyzed regions in Africa and Middle East
combined, TSEB has a deviation of the mean predicted value from
10
the mean observed value of 5.5%, while ETLook driven with Coper-
nicus data and WaPOR have deviations of 39% and 48%, respectively,
indicating underestimation of the ET.

In general terms, the standard deviation of the observed data is
greater than that of the predicted data. This may imply that the models
are capturing a portion of the variability in the observed data, but they
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a
𝜎
r

Table 3
Error metrics between estimated and in situ dekadal ET (mm/day) for Africa and Middle East sites where WaPOR data is produced. 𝑏𝑖𝑎𝑠 (mm/day) is the average bias, computed
as the mean difference between the predicted and the observed, MAE is the mean absolute error (mm/day), RMSE (mm/day) is the Root Mean Square Error, which is decomposed
between its unsystematic (fMSE𝑢) and systematic (fMSE𝑠) fractions (fMSE𝑢 + fMSE𝑠 = 1), a is the slope of the regression between the observed and the predicted, scale is the
ratio between the standard deviation of the observed over the predicted, r is the Pearson Correlation coefficient between observations and predictions, and d is the Willmott’s
Index of Agreement.

Site Crop Source Model 𝑏𝑖𝑎𝑠 MAE RMSE fMSE𝑠 fMSE𝑢 a scale r d

Tunisia

faba
Copernicus TSEB-PT 0.37 0.48 0.59 0.55 0.45 0.80 1.14 0.92 0.93
Copernicus ETLook −0.68 0.70 0.81 0.70 0.30 0.94 0.99 0.92 0.88
WaPOR ETLook −0.81 0.85 1.01 0.65 0.35 0.91 0.95 0.87 0.83

maize
Copernicus TSEB-PT −0.38 0.39 0.51 0.81 0.19 0.39 1.53 0.60 0.63
Copernicus ETLook −1.12 1.12 1.18 0.97 0.03 0.25 1.92 0.49 0.39
WaPOR ETLook −1.19 1.19 1.25 0.98 0.02 0.18 2.10 0.37 0.37

sorghum
Copernicus TSEB-PT −0.34 0.36 0.46 0.77 0.23 0.64 1.36 0.88 0.84
Copernicus ETLook −1.04 1.04 1.12 0.97 0.03 0.40 2.00 0.80 0.54
WaPOR ETLook −1.42 1.42 1.57 0.98 0.02 −0.02 3.06 −0.07 0.34

Senegal faidherbia
Copernicus TSEB-PT 0.10 0.43 0.55 0.18 0.82 0.83 1.09 0.91 0.95
Copernicus ETLook −0.87 0.92 1.05 0.76 0.24 0.79 1.13 0.89 0.83
WaPOR ETLook −0.97 1.03 1.12 0.78 0.22 0.85 1.05 0.90 0.82

Lebanon

faba
Copernicus TSEB-PT 0.32 0.88 1.14 0.84 0.16 0.53 1.75 0.92 0.88
Copernicus ETLook −0.54 0.84 1.02 0.63 0.37 0.71 1.30 0.92 0.92
WaPOR ETLook −1.10 1.16 1.55 0.98 0.02 0.49 1.99 0.98 0.79

maize
Copernicus TSEB-PT −2.41 2.41 2.51 0.99 0.01 0.17 2.42 0.40 0.36
Copernicus ETLook −2.90 2.90 3.13 0.94 0.06 −0.16 1.01 −0.16 0.27
WaPOR ETLook −3.20 3.20 3.36 0.98 0.02 −0.19 1.68 −0.32 0.25

All All
Copernicus TSEB-PT −0.14 0.68 1.00 0.53 0.47 0.55 1.43 0.79 0.85
Copernicus ETLook −1.01 1.08 1.36 0.75 0.25 0.63 1.32 0.83 0.79
WaPOR ETLook −1.23 1.27 1.57 0.82 0.18 0.56 1.44 0.80 0.72
Table 4
Descriptive statistics for estimated and in situ dekadal ET (mm/day) for sites in Africa
nd Middle East where WaPOR data is produced. 𝑂𝑏𝑠. and 𝑃𝑟𝑒. show the mean and
𝑂𝑏𝑠. and 𝜎𝑃𝑟𝑒. the standard deviations of ET values for the in situ and model ET datasets
espectively.
Site Crop Source Model N 𝑂𝑏𝑠. 𝑃 𝑟𝑒. 𝜎𝑂𝑏𝑠. 𝜎𝑃𝑟𝑒.

Tunisia

faba
Copernicus TSEB-PT

16 2.65
3.02

1.15
1.00

Copernicus ETLook 1.97 1.16
WaPOR ETLook 1.84 1.21

maize
Copernicus TSEB-PT

11 1.76
1.38

0.43
0.28

Copernicus ETLook 0.64 0.22
WaPOR ETLook 0.57 0.20

sorghum
Copernicus TSEB-PT

9 2.16
1.82

0.63
0.46

Copernicus ETLook 1.12 0.32
WaPOR ETLook 0.74 0.21

Senegal faidherbia
Copernicus TSEB-PT

38 2.13
2.22

1.29
1.18

Copernicus ETLook 1.25 1.13
WaPOR ETLook 1.15 1.21

Lebanon

faba
Copernicus TSEB-PT

16 2.50
2.82

2.11
1.21

Copernicus ETLook 1.96 1.63
WaPOR ETLook 1.40 1.06

maize
Copernicus TSEB-PT

9 5.41
3.01

0.78
0.32

Copernicus ETLook 2.51 0.77
WaPOR ETLook 2.21 0.46

All All
Copernicus TSEB-PT

99 2.53
2.39

1.61
1.12

Copernicus ETLook 1.52 1.22
WaPOR ETLook 1.30 1.11

are not fully explaining all the temporal fluctuations or patterns present
in the actual data. These trends are replicated for each individual crop
as well.

Overall, when considering the correlations, ETLook obtains the
highest correlation (0.82), followed by WaPOR (0.83) and TSEB (0.79).
Despite these results, the model that generates the lowest errors is
TSEB, with the MAE being 47% lower than WaPOR, the RMSE 36%
lower, and the unsystematic part of the error being 35% lower. ETLook
falls between the other two models. If we look at the bias (predicted -
observed) of the three models, in all cases it is negative, indicating an
underestimation of ET. Comparing the three models, TSEB shows the
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lowest bias (−0.14 mm/day), which is 88% lower than WaPOR (−1.23
mm/day). These differences suggest that there is a systematic tendency
to underestimate ET by WaPOR and ETLook, which is significantly less
pronounced in the case of TSEB. This trend can be observed again in
the time series graphs, where the error line of TSEB is always below
the other two models.

5. Discussion

5.1. Influence of method changes on accuracy of modeled ET

The interpretation of results from the Barrax site in Spain allows for
evaluation of the impact of the improvements presented in Section 2
on modeled ET. This is because exactly the same field measurements
were used in Guzinski et al. (2021) and in this study. By comparing
Table IV of Guzinski et al. (2021) with Table 2 of this study it can
be seen that the overall improvement in accuracy of modeled ET is
significant with bias reducing from −0.29 mm/day to −0.07 mm/day
(from −1.39 mm/day to −0.79 mm/day) and RMSE reducing from
0.96 mm/day to 0.84 mm/day (from 1.69 mm/day to 0.79 mm/day)
for TSEB-PT (ETLook) model. In certain crops this improvement is
even more significant with e.g. the RMSE of festuca modeled with
ETLook decreasing by 1.5 mm/day. There are three main sources of
this improvement: the improvements in sharpening of LST, the switch
from CGLC to WorldCover land cover map, and the use of new ETLook
code. The impact of the gap-filling approach is expected to be minimal
since the validation is performed mainly over the summer months with
very infrequent cloud cover.

In CGLC map all the Spanish sites were located in agricultural class
(class 40 in Table III of Guzinski et al., 2021). According to WorldCover,
potato and wheat remain in agricultural class, festuca is assigned a
grassland class (class 30 in Table III of Guzinski et al., 2021) and
almond and vineyard are assigned a shrubland class (class 20 in Table
III of Guzinski et al., 2021). The main influence of the land cover
map on the TSEB-PT model is through setting the vegetation height.
In agricultural class the vegetation starts with a height of 15 cm and
reaches 150 cm once total LAI reaches 5. Similarly, grassland starts at
10 cm and reaches 100 cm once total LAI reaches 4. For shrubland,
the vegetation height remains constant at 2 m throughout the growing
season.
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Fig. 9. Timeseries at the Tunisia, Senegal and Lebanon validation sites of: in situ and
estimated dekadal ET (mm/day), with black line indicating in situ observations (with
energy imbalance correction applied at the eddy-covariance sites) and grayed area
indicating uncertainty of measured fluxes due to measured energy imbalance for the
eddy-covariance sites (top panel); differences between in situ and estimated dekadal ET,
with grayed area corresponding to errors within ±1 mm/day of the black line from
the top panel (bottom panel). Vertical bars indicate the start and end of respective
growing seasons.

Looking only at ET of potato and wheat modeled with TSEB-PT we
can isolate the influence of the improvements in LST sharpening. In
both cases the RMSE decreases slightly in the current study (from 0.99
to 0.85 for potato and from 0.84 to 0.79 for wheat) while change in
bias is also small but mixed (from −0.54 to 0.24 for potato and 0.21
to 0.39 for wheat). The improvements in accuracy of festuca (RMSE
decrease from 1.38 to 0.79 and bias decrease from −1.05 to −0.17)
are also mainly due to changes in LST sharpening since the height
parameterization is not significantly different. Since festuca and potato
are frequently sprinkler irrigated, and therefore exhibit the coldest
LST on the edge of the range which would be observed by Sentinel-
3, it was expected that the changes to LST sharpening methodology
would have the largest influence at those sites and this is indeed the
case (Figs. 10(a) and 10(b)). On the other hand, wheat is rainfed and
therefore with LST well within the range observed by Sentinel-3 and
as expected the improved sharpening has the least influence on LST
12
Fig. 10. Timeseries plots of Land Surface Temperature of selected crops parcels from
Barrax area, derived using the method from (Guzinski et al., 2021) (‘‘Previous study’’)
and option (3) from Section 2.1.2 (‘‘Current study’’).

(Figs. 10(c)) and therefore on the modeled fluxes at this site. Grapevine
and almond are both drip irrigated, so with quite high LST, and the
WorldCover parameterization as shrubland fits better with reality than
CGLC classification as agriculture. However here the results are mixed
with improved ET accuracy for grapevine but degraded accuracy for
almond. The worse accuracy of almond ET (as compared to other crops)
could be partly caused by the discrepancy between vegetation height
assigned by the landcover map (2 m) and the actual height of the
almond trees (3–4 m).

Regarding ETLook estimated ET, it shows improvements between
(Guzinski et al., 2021) and this study for all sites with especially
significant improvements for festuca, potato and grapevine. ETLook
is less influenced by vegetation height, and other land cover based
parameters, than TSEB-PT and is also not as sensitive to LST as TSEB-
PT. Therefore, most of those improvements can be associated with
improved implementation of ETLook model as described in Section 2.4.
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Fig. 11. Annual comparison of ET for products at WaPOR Level 3 resolution (20–
30 m) in the Bekaa Valley of Lebanon. Maps in the diagonal show cumulative annual
ET of each product. The off-diagonal shows products’ intercomparison, both in ET
differences (upper-right) and in standard deviations scale (lower-left). ‘‘i’’ and ‘‘j’’
represent products in row and column respectively.

Fig. 12. Annual comparison of ET for products at WaPOR Level 2 resolution (100 m)
for an area covering one Sentinel-2 tile (100 km by 100 km) in Tunisia. Maps in the
diagonal show cumulative annual ET of each product. The off-diagonal shows products’
intercomparison, both in ET differences (upper-right) and in standard deviations scale
(lower-left). ‘‘i’’ and ‘‘j’’ represent products in row and column respectively. Due to
the country boundary cropping performed by WaPOR, data for the western area of the
image is not available.

5.2. Model intercomparison

As observed in Section 4, TSEB-PT generally produces the highest ET
fluxes and WaPOR dataset contains the lowest values. When performing
spatial comparison of the modeled ET maps in Lebanon (Fig. 11),
13
Fig. 13. Annual comparison of ET for products at WaPOR Level 2 resolution (100 m)
for an area covering one Sentinel-2 tile (100 km by 100 km) in Senegal. Maps in the
diagonal show cumulative annual ET of each product. The off-diagonal shows products’
intercomparison, both in ET differences (upper-right) and in standard deviations scale
(lower-left). ‘‘i’’ and ‘‘j’’ represent products in row and column respectively.

Fig. 14. Annual comparison of 2021 annual sums of CHIRPS v2.0 rainfall and the three
ET products at WaPOR Level 2 resolution (100 m) for an area covering one Sentinel-2
tile (100 km by 100 km) in Senegal.

Tunisia (Fig. 12) and Senegal (Fig. 13) the same pattern can be ob-
served. This is especially evident in rainfed natural and semi-natural
vegetation, e.g the areas surrounding irrigation districts in Bekaa val-
ley (Fig. 11), and can also be noticed during dry or low vegetation
seasons (Figs. 8 and 9). It is unclear whether this is due to TSEB-PT
consistently overestimating or ETLook consistently underestimating ET
in such conditions. When looking at the timeseries plots of rainfed sites
where field measurements were acquired (wheat in Spain — Fig. 8(e),
maize and sorghum in Tunisia — Fig. 9(a), Faidherbia in Senegal —
Fig. 9(b)) there is no obvious under- or over-estimation by any of the
three ET datasets (the estimates usually lie within the measurement
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uncertainty band shown as gray area in the top-panels of each sub-
figure), apart from the wheat site in Spain where ETLook displays
quite strong underestimation. At the other sites, there are periods when
TSEB-PT is above the uncertainty band (e.g. winter and autumn 2021 in
Senegal and winter/spring 2021 in Tunisia) and where ETLook models
are below the uncertainty bands (e.g. winter/spring 2021 for both
Copernicus ETLook and WaPOR in Senegal and autumn 2020 and 2021
in Tunisia for WaPOR).

Looking at annual rainfall sums versus ET sums in Senegal points
to overestimation by TSEB-PT in semi-arid rainfed vegetation but does
not provide clear indication of the magnitude of this overestimation
or potential underestimation by ETLook (Fig. 14). The mapped area in
Senegal is spread over four provinces with mean 2021 annual rainfall
according to CHIRPS v2.0 dataset (Funk et al., 2015) of 497 mm
(ranging from 396 mm in the north to 671 mm in the south), while
both Copernicus ETLook and WaPOR annual ET sums are around 200–
400 mm and TSEB-PT annual sum is around 500–700 mm. However,
actual ET can sometimes exceed total rainfall even at annual basis as
some plants (e.g. Faidherbia albida Roupsard et al., 1999) can extract

ater from quite deep into the ground. Therefore, the apparent overes-
imation of TSEB-PT should be investigated with longer timeseries and
ith validating the model against more EC data collected in semi-arid
atural vegetated areas.

Another observation, which differs from the conclusions of Guzinski
t al. (2021), is that the outputs of ETLook model run with Copernicus
nputs and with WaPOR inputs (i.e. ET maps downloaded from WaPOR
ortal) are generally closer to each other than to TSEB-PT outputs. This
s especially the case with WaPOR Level 2 data, as can be observed
n the timeseries plots from Tunisia (Fig. 9(a)) and Senegal (Fig. 9(b))
nd maps from Tunisia (Fig. 12) and Senegal (Fig. 13). Those maps
ompare both spatial variability (in upper-right panels as difference
f the annual sums) and temporal variability (in bottom-left panels
s ratio of annual standard deviations) of the three datasets and for
oth of those the agreement between the ETLook models is stronger
han between ETLook and TSEB-PT data for most of the mapped areas.
t WaPOR Level 3 the differences between ETLook𝐶 and WaPOR are

larger, for example as observed in timeseries plot in Lebanon (Fig. 9(c))
where during the peaks of growing seasons the ET from ETLook𝐶 is
closer to TSEB-PT𝐶 than to WaPOR. However, the spatial and temporal
variability of WaPOR and Copernicus ETLook agree to a large extent
when looking at the whole Bekaa valley (Fig. 11). This improvement
in data agreement is mainly due to the use of new ETLook code (see
Section 2.4) which tries to replicate the code used in WaPOR data
production as closely as possible. This is an encouraging result for
further integration of Copernicus data within the WaPOR production
chain while maintaining a consistent timeseries of ET estimates.

Finally, while the improvements in gap-filling methods are perform-
ing well, they are still not robust enough for the most cloud-prone
areas. Firstly, the timeseries plots of modeled ET at the Spanish sites
from (Guzinski et al., 2021) and this study show similar temporal
patterns, especially in autumn, winter and spring where the influence
of changes in gap-filling method would be stronger than the influence
of change in the LST sharpening method. Secondly, in Tunisia and
Senegal where measurements were acquired throughout the year the
agreement between modeled and measured ET remains similar during
dry and wet months. Especially at the Niakhar site in Senegal, where
the peak of vegetation growth (and therefore ET) coincides with the
rainy season (June to October), the agreement between modeled and
measured fluxes remains high during the cloudy periods. Also, the
agreement between ETLook𝐶 and WaPOR data is very high throughout
the year at the Tunisian and Senegalese validation sites, despite Wa-
POR using different gap-filling methods. All this demonstrates that the
improvements in gap filling methods of both biophysical parameters
and ET (i.e. using the simplified water balance model) are robust and
14

improve the dekadal ET estimates. A
However, the improved gap-filling method still leaves some gaps
and also can result in blocky artifacts with the size of Sentinel-3 pixel
during the most cloudy periods. This can be observed on the maps
produced as part of the same study (shown in Fig. 15) and displayed
on an online portal (et4fao.dhigroup.com, last accessed 29.06.2023),
especially in tropical areas (e.g. Rwanda in the second dekade of
November 2021 or Mozambique in the last dekade of December 2021)
but also in other regions during the rainy season (e.g. in Sudan in the
second dekade of July 2021). The gaps present in Rwanda or Mozam-
bique are mainly due to the lack of cloud free Sentinel-2 observations
needed for biophysical parameterization of the surface. Especially in
Rwanda the distribution of the gaps displays clear pattern related to
Sentinel-2 orbits (less gaps in the western half, more in the eastern
half) which could indicate issues with Sentinel-2 data in addition to
cloud cover. In any case, using more robust interpolation techniques,
e.g. based on phenological cycles and outliers filtering (such as Whit-
taker smoother (Eilers, 2003) used in the WaPOR method) could help to
address those issues. Another possibility is the data fusion of Sentinel-2
and Sentinel-3 shortwave optical observations or biophysical products.
On the other hand, the artifacts visible in Sudan are mainly due to the
gap filling of the daily ET maps. This issue could be addressed by a
more advanced implementation of water balance model. However, a
balance needs to be established between producing seamless gap-filled
maps which are visually pleasing and the physical accuracy of those
maps. Those two aspects are not always in agreement and it might be
preferable to leave certain gaps and artifacts within the maps in order
to provide ET estimates with acceptable accuracy.

5.3. Comparison with previous studies

Most existing studies evaluating LST sharpening methods are based
on low-resolution thermal observations acquired by MODIS sensor on
Aqua and Terra satellites or by VIIRS sensor on Suomi NPP satellite.
Only a few studies use the low spatial resolution thermal observations
from the SLSTR sensor onboard the Sentinel-3 satellites. In Wang et al.
(2022) the Sentinel-3 LST was sharpened to 300 m using a DEM and
vegetation indices calculated from Sentinel-3 shortwave observations
and compared to Landsat −8 LST, while in Huryna et al. (2019)
Sentinel-3 LST was sharpened using Sentinel-2 NDVI and also compared
to Landsat −8 LST. Both studies indicated suitability of Sentinel-3
thermal data for use in thermal sharpening methods.

Similarly, not many studies compare high resolution LST, either ac-
quired at such resolution or sharpened, against ground-based transects
in heterogeneous agricultural landscapes. In Galve et al. (2022), Land-
sat −8 LST derived with different retrieval algorithms was compared to
ransects of LST ground measurements from the same ‘‘Las Tiesas’’ ex-
erimental farm as used in the current study. The results showed RMSE
f around 2 K and absolute values of bias ranging from 0.1 K to 1.2
depending on the retrieval algorithm used. Ground measurements of

ST from the same area were also used to validate a method for thermal
harpening of MODIS LST using Sentinel-2 vegetation indices (Sánchez
t al., 2020). When recently irrigated cases were excluded that study
eported RMSE of sharpened LST of 2.2 K to 2.7 K and bias of 0.2

to 0.4 K, depending on the sharpening method used. The results
rom those studies are comparable to the RMSE of 2.5 K and bias of
.7 K which were obtained when validating DMS sharpened LST with
ontrast enhancement (Fig. 6(e)) with recently irrigated cases excluded.

Sharpened LST has been used to estimate high resolution ET in
gricultural areas in number of studies. One of the earlier studies used
ynthetic low resolution LST data (i.e. Landsat observations resampled
o 960 m) sharpened to higher resolution to assess the impact of the
harpening on ET fluxes produced with TSEB model (Agam et al.,
008). The results indicated that while in rainfed agriculture the use
f sharpened LST reduced errors in ET by 30%–60% and significantly
mproved correlation, in irrigated agriculture the impact was marginal.
later study, in preparation for Sentinel-2 and Sentinel-3, used MODIS

https://et4fao.dhigroup.com
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Fig. 15. Example maps taken from online portal (et4fao.dhigroup.com) showing artifacts in average daily ET from a specified dekade due to persistent cloudiness during satellite
data acquisition.
LST sharpened with Spot 5 shortwave imagery in a simplified TSEB
model to obtain daily ET with RMSE of 1.2 mm/day and bias of
−0.4 mm/day when validated against flux measurements from the
‘‘Las Tiesas’’ experimental farm (Bisquert et al., 2016b). A more recent
study, combined thermal observations from Landsat, ECOSTRESS and
VIIRS sensors, all sharpened to 30 m resolution using Sentinel-2 and
Landsat shortwave reflectance, with a complex ET modeling and fusion
scheme to obtain daily high resolution ET estimates (Xue et al., 2022).
When validated against EC measurements in irrigated agriculture the
resulting RMSE and bias at a weekly timestep (1.01 mm/day and −0.24
mm/day respectively) were of comparable magnitude to the results at
the validation site in southeastern Spain from the current study for
both TSEB-PT𝐶 (0.84 mm/day and −0.07 mm/day respectively) and
ETLook𝐶 (1.13 mm/day and −0.79 mm/day respectively) at dekadal
timestep.

WaPOR evapotranspiration has been used for assessing irrigation
performance (Chukalla et al., 2022), evaluating potential improve-
ments in crop water use productivity (Seijger et al., 2023; Hajirad et al.,
2023) and other agricultural applications. In Blatchford et al. (2020)
the WaPOR actual ET was validated against EC tower measurements
spread across Africa and southern Spain. This validation was performed
using Level 1 (250 m) product and achieved an overall RMSE of
1.2 mm/day and bias of 0.5 mm/day. In irrigated agricultural areas
the accuracies were degraded (average RMSE of 1.5 mm/day and bias
of 1.4 mm/day) which could be due to the heterogeneous nature of
those landscapes. This compares to RMSE of 1.6 mm/day and bias of
−1.23 mm/day obtained when comparing WaPOR Level 2 and Level
3 data against measurements in agricultural areas in Tunisia, Lebanon
and Senegal (Table 3). ETLook𝐶 obtained RMSE of 1.4 mm/day and
bias of −1.0 mm/day while TSEB-PT𝐶 achieved RMSE of 1.0 mm/day
and bias of 0.1 mm/day at those same sites.

5.4. Relevance for upcoming thermal missions

In the period up to 2030 it is expected that at least four large
satellite missions focusing on thermal LST observations with high
spatio-temporal resolution will be launched. Those include LSTM from
Copernicus Expansion (Koetz et al., 2018), Indian-French TRISHNA
(Lagouarde et al., 2018), and SBG (Stavros et al., 2023) and evolution of
Landsat missions (Wu et al., 2019) from NASA. While all those missions
focus on improving both spatial and temporal resolution of thermal
observations, none of them will by itself achieve daily geometric revisit
time. Therefore, data fusion between different thermal and shortwave
sensors will still be necessary to obtain daily representation of LST at
field scale.

The method presented in Section 2.1.2 is sensor agnostic and there-
fore should be applicable with the above listed (and other) missions.
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The improved temporal resolution of future missions should also im-
prove the feasibility of using temporal statistics of high-resolution LST
as explanatory variables in the DMS model (option (2) in Section 2.1.2),
which showed the best ability to reproduce the low LST of recently
irrigated parcels (see Section 4.1). However, certain new issues could
arise, such as differences between local overpass times of the different
satellites (LSTM and other missions are planned to have overpass in
the early afternoon local time). The first step to evaluating the new
possibilities and issues is to use the LST product from the ECOSTRESS
sensor (https://lpdaac.usgs.gov/products/eco2lstev001/, last accessed:
14.07.2023) in the different data fusion approaches. Due to its place-
ment on the International Space Station, ECOSTRESS provides LST
observations at varying temporal resolutions and overpass times. This
will be the focus of upcoming research.

6. Conclusions

Reliable estimation of actual crop evapotranspiration at parcel scale
requires LST observations with spatial resolution on the order of tens
of meters and short revisit period. None of the currently operational
satellite thermal sensors can fulfill this requirement. To overcome this
limitation a number of thermal-optical data fusion methods have been
developed. In Guzinski et al. (2021) high-resolution LST derived with
fusion of Sentinel-3 and Sentinel-2 observations with Data Mining
Sharpener was used in an ET modeling framework to demonstrate the
feasibility of using Copernicus data for the purpose of SDG indicator
6.4.1 monitoring. However that study also exposed certain limita-
tions both within the thermal sharpening method and within the ET
modeling approach.

With the methodological improvements developed and implemented
in this study it was possible to achieve negligible bias (−0.07 mm/day)
and reasonably low RMSE (0.84 mm/day) when evaluating the mod-
eled fluxes against field measurements taken in Spanish irrigated and
rainfed agricultural sites. Extending the validation to sites in Africa
and Middle East also resulted in acceptable bias (−0.14 mm/day) and
RMSE (1.00 mm/day) despite high uncertainty of measurements at
the Tal Amara site in Lebanon. Those results improve on the findings
from (Guzinski et al., 2021), in large part due to improvements in the
LST sharpening which led to decrease in RMSE of up to 1.5 K when
comparing sharpened LST against in situ measurements.

Further investigation is required to determine the reasons why
using Landsat LST as a explanatory variable within the DMS model
improves the accuracy of LST in just-irrigated cases but degrades it
otherwise. This degradation could be caused by the long temporal
aggregation window (± 16 days) needed due to the infrequent Landsat
acquisitions. If this is the case, improvements would be expected with
new generation of thermal sensors with high spatio-temporal resolution
such as proposed Copernicus LSTM mission.

https://et4fao.dhigroup.com
https://lpdaac.usgs.gov/products/eco2lstev001/
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Further validation should be performed in irrigated and not-irrigated
agriculture in tropical regions to better understand the benefits and
limitations of different gap filling methods for input and output data.

This study confirmed the main finding from Guzinski et al. (2021),
namely the high suitability of Copernicus data for the production of
WaPOR-like ET products with 20 m spatial resolution and 10-day
temporal resolution. Those findings already led to incorporation of
some of the methods (e.g. thermal sharpening using DMS) and data
sources (e.g. ERA5 meteorological data or Sentinel-2 observations) into
the recently released version 3 of the WaPOR portal. This highlights the
utility of Copernicus satellite observations and services for monitoring
SDG goals and indicators at continental and global scales.
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