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Summary

� Relationships between crop genetic and functional diversity are key to addressing contem-

porary agricultural challenges. Yet, there are few approaches for quantifying the relationship

between genetic diversity and crop functional trait expression. Here, we introduce ‘functional

space accumulation curves’ to analyze how trait space increases with the number of crop gen-

otypes within a species.
� We explore the potential for functional space accumulating curves to quantify genotype–
trait space relationships in four common annual crop species: barley (Hordeum vulgare), rice

(Oryza sativa), soybean (Glycine max), and durum wheat (Triticum durum). We also employ

these curves to describe genotype–trait space relationships in the wild annual Arabidopsis

thaliana, which has not been subjected to artificial selection.
� All five species exhibited asymptotic functional space accumulation curves, suggesting a

limit to intraspecific functional crop diversity, likely due to: dominant phenotypes represented

by several genotypes; or functional redundancy that might exist among genotypes. Our find-

ings indicate that there is a diminishing return of functional diversity with increasing number

of genotypes.
� Our analysis demonstrates the efficacy of functional space accumulation curves in quantify-

ing trait space occupancy of crops, with implications for managing crop diversity in agroeco-

systems, and genetic diversity in crop breeding programs.

Introduction

The intentional cultivation of greater crop diversity both within
and among agricultural systems is a crucial strategy for addressing
the complex challenges faced by modern agriculture including
food security, environmental sustainability, and resilience to glo-
bal change (Kremen et al., 2012; Jones et al., 2014; Renard &
Tilman, 2019; Beillouin et al., 2021; Rasmussen et al., 2024).
Crop genetic resources play a critical role in achieving these out-
comes associated with crop diversification (McCouch & Riese-
berg, 2023), and in influencing whether or not greater crop
diversity ultimately fulfills a suite of functions in an agricultural
system (Garnier & Navas, 2012; Wood et al., 2015; Isaac
et al., 2021). With many advances in understanding the role of
crop genetics in breeding, we still lack a clear conceptualization
of the point at which a genotypic pool can still be improved in
terms of functional diversity. Achieving the goals of crop diversi-
fication therefore requires a deeper understanding of the

correspondence between genetic and functional diversities within
crop populations.

Genetic diversity within crop species is largely assessed on the
basis of the number of varieties, alleles, or genes (Perales & Goli-
cher, 2014; Thormann et al., 2016). Crop functional diversity is
broadly quantified as the variability in proxies of plant functions,
or ‘functional traits’ (Martin & Isaac, 2015; Milla et al., 2015;
Wood et al., 2015; Khoury et al., 2022). Functional traits encom-
pass a multitude of phenotypic characteristics related to plant
performance in response to the environment as well as
plant effects on ecosystem processes (Lavorel & Garnier, 2002;
McGill et al., 2006; Violle et al., 2007; Garnier et al., 2016; Ship-
ley et al., 2016; Sobral, 2021). Due to their close dependence on
environmental conditions and ecological contexts, functional
traits can also serve as meaningful indicators of the range of envir-
onmental conditions to which species are exposed, or ‘niche
breadths’ (Violle & Jiang, 2009; Schellenberger Costa et al.,
2018). Following this, quantifying functional trait variation
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within and among crop populations can contribute to our under-
standing of how specific traits influence various agroecological
outcomes, including crop performance (Murphy et al., 2008;
Rolhauser et al., 2022), resource utilization (Vicente et al., 2019;
Borden et al., 2020), and adaptability to changing environmental
conditions (Reynolds et al., 2005; Martin et al., 2017). While all
traits are functional within particular contexts (Sobral, 2021),
traits have rarely evolved in isolation from one another due to
pleiotropy and/or ecophysiological and biomechanical trade-offs,
cumulatively leading to phenotypic integration (Ackerly et al.,
2000; Denison, 2012). As such, a more comprehensive view of
plant trait variation is offered through analyses of multi-trait
functional spaces, which reflect both within-trait variation and
between-trait covariation (Cornwell et al., 2006; Blonder
et al., 2014; Laughlin & Messier, 2015; Carmona et al., 2016).

Functional spaces of crop species are determined by the struc-
ture of trait variation and covariation in wild ancestors, and the
subsequent influence of domestication (Wood et al., 2015;
Nimmo et al., 2023). During domestication, crops undergo
intentional selection for specific performance traits including
increased yield, uniformity, and adaptation to cultivation prac-
tices (Gaut et al., 2018). These selection pressures, when applied
for specific growing conditions, can result in the fixation of favor-
able alleles and a decrease in genetic variation within crop popu-
lations, and as a result, this process potentially decreases
the range of phenotypic trait values (Streit Krug et al., 2023).
Alternatively, the introduction and adaptation of crops to new
growing environments can result in the emergence of distinct
phenotypes within crop species that expand trait ranges
(Ross-Ibarra et al., 2007). Such increases in phenotypic diversifi-
cation have been achieved through several processes, such as
regional adaptation or the incorporation of wild relatives in
breeding programs (Streit Krug et al., 2023). Instead, trait covar-
iation, unlike trait ranges, has been largely overlooked in plant
breeding, particularly in biotechnological applications (Deni-
son, 2012).

Quantifying how the functional trait space of crops changes
with greater crop genetic diversity is therefore a key challenge in
agriculture. Here, we propose characterizing ‘functional space
accumulation curves’ to explore the potential for phenotypic
diversification within crop populations, as a means to further
extend our understanding of the functional consequences of crop
genetic diversification and/or erosion. These curves specifically
quantify how the accumulation of functional trait space changes
as a function of the number of genotypes within a crop species
(Fig. 1). Functional space is measured here as the size of the
n-dimensional trait space or ‘hypervolume’: a multivariate quan-
tification of the total trait space for a given set of organisms
(Blonder et al., 2014). These curves are constructed by randomly
selecting subsets of genotypes from a species and calculating the
n-dimensional hypervolumes occupied by each subset. Similar
approaches have been used for identifying the number of indivi-
dual samples (i.e. the number of individual plants or
farms) necessary to achieve a detailed understanding of crop func-
tional diversity across multiple spatial scales (Isaac & Martin,
2019), but have yet to be tested as a means of quantifying

genotype–phenotype diversity relationships in crops. Here we
show that functional space accumulation curves can be used to:
evaluate whether additional genetic diversity indeed results in a
trait expression that occupies novel functional space; assess the
effectiveness of different sampling strategies for capturing func-
tional diversity in crops and agroecosystems; and quantify the size
of a genotypic pool necessary to meet a certain functional diver-
sity target (Fig. 1).

We test our ideas by employing published datasets of four key
crop species including barley (Hordeum vulgare L.), rice (Oryza
sativa L. subsp. japonica), soybean (Glycine max (L.) merr.), and
winter durum wheat (Triticum turgidum ssp. durum (Desf.)
Husn.). We then use these datasets to quantify functional space
accumulation curves for each species, based on phenotypic traits
associated with crop growth, development, and resource-use effi-
ciency: time to reproduction, plant height, specific leaf area, and
leaf N concentration (Table 1). These species were chosen due to
their agricultural significance, contributing to c. 38.5% of agri-
cultural lands globally (Martin et al., 2019), along with a wealth
of available genotype and trait data. We also estimate functional
trait space accumulation curves of Arabidopsis thaliana (L.)
Heyhn, an annual species commonly employed as a model spe-
cies in plant eco-evolutionary research (Koornneef et al., 2004)
which has not been subjected to artificial selection pressures. We

Observed
hypervolume

species 1
(35; 39% of Asymp)

Observed
hypervolume

species 2 
(51; 72% of Asymp)

Estimated Asymp sp. 1 (90)

Estimated Asymp sp. 2 (70)

Fig. 1 Functional space accumulation curves describe the relationship
between the size of crop functional spaces (or hypervolumes; a unitless
metric of multivariate trait space) and the number of genotypes. Gradients
of genotype numbers are created by drawing random subsets of different
sizes from a pool of genotypes. In this example, the hypervolume of crop
species 1 (blue) is 35 with 20 genotypes, while the hypervolume of crop
species 2 (orange) is 51 with 80 genotypes (continuous lines and
diamonds). The extrapolated portion of the curves (dashed lines) indicates
that the potential diversity of crop species 1 (the one with smaller
observed hypervolume) is higher than that of crop species 2, as the
estimated hypervolume asymptotes are 90 and 70 (dot-dashed lines along
the y-axis). Indeed, observed hypervolumes (diamond points along the y-
axis) account for 39% and 72% of their respective asymptotes, or total
theoretical crop trait diversity. Furthermore, both species would require
120 genotypes to reach 80% of their respective asymptotes. This exercise
shows that asymptote calculation can reveal patterns that could not be
seen based on differences in observed hypervolumes alone.

New Phytologist (2024)
www.newphytologist.com

� 2024 The Author(s).

New Phytologist� 2024 New Phytologist Foundation.

Research

New
Phytologist2

 14698137, 0, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.20050 by M

ontpellier SupA
gro, W

iley O
nline L

ibrary on [16/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



take advantage of the extensive genetic and phenotypic informa-
tion available for this wild species (Przybylska et al., 2023) to
broadly explore if functional trait space accumulating curves may
also inform our understanding of the role domestication plays in
shaping functional trait space occupancy. Our analysis specifically
asks: (1) do functional space accumulation curves of crops exhibit
saturating asymptotic shapes? If so, (2) what percentage of this
theoretical maximum trait space is occupied by the available gen-
otypic pools of these crops; and (3) how many genotypes are
needed to account for a high and biologically meaningful percen-
tage of the asymptotic space among species? We also ask (4) are
functional trait space accumulation curves able to capture the
influence of domestication on plant trait expression? Finally, we
ask (5) do theoretical maximum trait spaces vary across species in
relation to trait ranges and trait covariation?

Materials and Methods

Target species and data gathering

We assembled a trait dataset for a total of n= 324 genotypes
belonging to barley (n= 73), rice (n= 47), soybean (n= 25),
and winter durum wheat (n= 179). Based on most recent (2021)
data from the Food and Agricultural Organization (FAO) of the
United Nations (FAO, 2021) barley, rice, soy, and wheat contri-
bute to c. 48.9, 165.3, 129.5, and 220.8 million ha, respectively,
of agricultural land globally (though note that the FAO does not
differentiate wheat types). Therefore, our analysis was designed
to inform an understanding of phenotypic trait variation across
the primary crops in 3.3%, 11.3%, 8.8%, and 15.1% of

agricultural land globally, for a total of 38.5%. In addition to
their importance in the global food system, these crops have long
been among the most intensively studied in terms of crop
responses to environmental change (e.g. Liu et al., 2019) and
agricultural management (e.g. Cartter & Hartwig, 1962). By
extension, these crops represent model systems for research sur-
rounding crop biology and ecology (e.g. Izawa & Shima-
moto, 1996; Dawson et al., 2015), and receive among the most
attention in large-scale crop breeding programs (e.g. Wissuwa
et al., 2016; Loskutov & Khlestkina, 2021).

Winter durum wheat is an annual cereal crop that exhibits a
considerable range of environmental adaptability. Different
wheat varieties are cultivated in various regions world-wide
including those in temperate, Mediterranean, and semi-arid cli-
mates (Mariani et al., 2021). We gathered trait data for 179 win-
ter durum wheat genotypes that are publicly available in
Montazeaud et al. (2020) and Lemoine et al. (2023). The 179
inbred lines of durum wheat derived from a diversified evolution-
ary prebreeding population, built from the crossing between the
different compartments of the domestication history of durum
wheat, from wild and primitive Triticum turgidum sub-species to
elite types (David et al., 2014). The experiment was set up on the
field in randomly arranged single-genotype plots in November
2017 at Mauguio, southern France (INRAE – UE DIASCOPE).
Each plot consisted of six 1.5 m long rows with 20 cm between
rows (i.e. plot width was 1.2 m) and 2–3 cm between plants of
the same row, which resulted in a planting density of 240 plants
m�2. Plant height (H) was measured at heading (i.e. when the
spikes began to form) on three plants per plot as the distance (in
cm) between soil surface and the highest spike using a low-cost

Table 1 Ecological and agronomic significance of the four traits considered here to characterize functional trait space accumulation.

Trait (Units) Ecological significance Agronomic significance

Plant height, H
(cm)

Taller plants possess a competitive advantage in light acquisition.
However, tall plants necessarily invest resources in
nonphotosynthetic supporting organs, thereby generating a
trade-off between growth and survival in closed canopies
(Westoby et al., 2002)

Breeding for taller plant varieties leads to higher yield potential,
as greater H allows for greater light interception and
photosynthetic capacity. However, excessive height can lead to
lodging (stem breakage), which negatively affects crop
productivity. Also, height at the stand level can compromise
yield (Anten & Vermeulen, 2016)

Time to
reproduction or
heading (degree-
days)

A key phenological trait, determines the timing of reproduction
and seed production (Wolkovich et al., 2014). Influences the
interactions of reproductive parts with the abiotic environment,
as well as other organisms such as pollinators, herbivores, and
seed dispersers

Knowledge of heading guides farmers in crop management and
planning, by informing optimized planting schedules, estimates
of time required for crop maturation, and synchrony of
planting with favorable environmental conditions. This trait is
used to improve the yield and quality of agricultural produce
(Egli, 2011)

Specific leaf area,
SLA (m2 kg�1)

Quantifies light capture per unit investment in leaf biomass. High
SLA enables rapid growth, although high SLA is hypothesized to
relate to greater vulnerability to abiotic stress, herbivory, and
other forms of damage (Poorter et al., 2009). Therefore, SLA
represents a trade-off between resource acquisition and
conservation

Crops with higher SLA can potentially achieve higher
photosynthetic rates and growth rates. Farmers can choose
cultivars with specific SLA values to match their production
goals and environmental conditions. However, high SLA can
also increase the susceptibility of crops to water stress, pests,
and diseases (Zhou et al., 2020)

Leaf nitrogen
concentration,
LNC (%)

A key indicator of plant nutrient status that influences plant–
environment interactions (Chapin III, 1980). N is an essential
nutrient for plant growth and can limit primary production. Leaf
N concentrations are closely correlated with photosynthetic
rates, plant growth rates, and the availability of nutrients to
other organisms such as herbivores and decomposers

Measuring LNC helps determine crop nutritional status. This trait
therefore aids in diagnosing nutrient deficiencies, optimizing
fertilizer applications, and ensuring efficient use of N-based
inputs. Balancing LNC is crucial to avoid excessive fertilization,
which can lead to environmental issues (Gastel &
Lemaire, 2002)
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ultrasonic device for semi-automated measurements (Monta-
zeaud et al., 2021). Leaf traits including specific leaf area (SLA)
and leaf nitrogen concentration (LNC) were measured at the end
of the tillering stage. For SLA and LNC, one foliar disk with a
diameter of 6-mm (surface area 28.27 mm2) was collected from
each of four healthy and mature leaves from randomly sampled
individuals within each plot (Montazeaud et al., 2020; Lemoine
et al., 2023). The disks were dried for a minimum of 48 h at
60°C and weighted to calculate SLA as area/mass. Leaf nitrogen
concentration was estimated using spectral reflectance measure-
ments of the foliar disk obtained with a LabSpec 4 Spectroradi-
ometer (Analytical Spectral Devices Inc., Boulder, CO, USA)
following in-house calibration (Ecarnot et al., 2013); see further
details in Montazeaud et al. (2020). A base temperature of 0°C
was used to calculate degree-days to heading, and heading date
was defined as the date at which spikes become visible in 50% of
the plants within a plot (Lemoine et al., 2023).

Barley is an annual cereal crop that can grow in diverse cli-
mates, ranging from cool temperate to subtropical regions, with
variations in temperature, rainfall, and day length (Verstegen
et al., 2014). We gathered trait data for 73 barley genotypes from
an unpublished trial that had the purpose of screening these gen-
otypes based on their functional traits (e.g. see Dı́az et al., 2016)
for further experiments. These genotypes represent all the malt-
ing barley genotypes maintained by the French ‘Small grain cer-
eals Biological Resources Centre’ (https://www6.clermont.inrae.
fr/umr1095_eng/Organisation/Experimental-Infrastructure/
Biological-Resources-Centre), which is a reference list for
Europe. These genotypes included 61 modern varieties, seven
landraces, and six breeding lines. The 73 genotypes were
grown in February–July 2021 in Montpellier, France, in con-
trolled glasshouse conditions. Single plants were grown in 4-l
pots, with four pots (replicates) per genotype. Temperature was
maintained between 18°C and 25°C, and plants were irrigated
twice a week. Plant height and leaf traits were measured at head-
ing on each plant. Plant height was measured as the distance (in
cm) between soil surface and the base of the spike borne by the
tallest tiller. A mature N-1 leaf (i.e. that below the flag leaf) was
collected from each plant, rehydrated overnight, scanned,
weighed, and then dried at 60°C for 72 h. The pictures of
scanned leaves were then measured using the IMAGEJ software
(Wayne Rasband; National Institute of Health, Bethesda, MD,
USA) to calculate SLA. Then LNC was determined on the same
leaf after grinding using a CN Elemental Analyser (CHN model
EA 1108; Fisons Instruments, Glasgow, UK). The heading date
was measured for each plant and converted to degree-days using a
0°C base temperature.

Rice is a staple annual cereal crop primarily grown in tropical
and subtropical regions (Chauhan et al., 2017). We gathered trait
data for 47 rice genotypes that are publicly available from de
Tombeur et al. (2023). These genotypes were selected from the
European Rice Germplasm Collection (Courtois et al., 2012) to
maximize phenotypic and genotypic diversity (de Tombeur
et al., 2023). The experiment was conducted in 8.8-l pots in out-
door conditions in an experimental field of the Centre d’Ecologie
Fonctionnelle et Evolutive (CEFE, Montpellier, France), from

June to September 2021, with one plant per plot and four pots
(replicates) per genotype. Traits were measured at the beginning
of the flowering stage. Plant height was measured as the distance
(in cm) between soil surface and the base of the spike borne by
the tallest tiller. A mature N-1 leaf (i.e. that below the flag leaf)
was collected from each plant, rehydrated overnight, scanned,
weighed, and then dried at 60°C for 72 h. The pictures of
scanned leaves were then measured using IMAGEJ software
(Wayne Rasband; National Institute of Health) to calculate SLA.
Then, LNC was determined on the same leaf after grinding using
a CN Elemental Analyser (CHN model EA 1108; Fisons Instru-
ments). A base temperature of 10°C was used to calculate
degree-days to heading for each plant.

Soybean is a leading annual oilseed crop predominantly culti-
vated in warm temperate to subtropical regions (Wilcox, 2004).
We gathered trait data for 25 soybean genotypes from a field
experiment conducted by Rotundo et al. (2014). Elite soybean
cultivars from maturity groups IV–V were evaluated on a Vertic
Argiudoll located in Zavalla, Santa Fe, Argentina. Planting was
carried out in November 2009 and December 2010, with the
plants placed in plots measuring 5.5 by 0.52 m at a density of
38 plants m�2, with three replicates per genotype. Traits were
measured at the beginning of the flowering stage (R1), which was
defined at the plot level when at least 50% of the plants reached
that stage (Fehr & Caviness, 1977). A base temperature of 10°C
was used to calculate degree-days to reproduction (R1, generically
referred to here as heading). Plant height was measured as the dis-
tance from the soil surface to the tallest node in the main stem
having an expanded leaf (as defined in Fehr & Caviness, 1977).
In each plot, the height of 10 consecutive plants was measured
and a mean per plot was recorded. After height measurements,
plants were hand clipped from 0.5 m of the two central rows in
each plot (c. 20 plants). Upon sampling, plants were kept
in water to avoid dehydration. Leaves were detached from the
plants and total sample leaf area was measured using a LICOR
3100 leaf area meter (LICOR Biosciences, Lincoln, NE, USA).
After this, leaves were dried at 60°C for at least 96 h and weighed,
and this was used to calculate SLA. Leaf N concentrations in
leaves were obtained on ground subsamples using a TruSpec N
Analyzer (LECO Corp., St. Joseph, MI, USA).

Arabidopsis thaliana is a winter–spring annual native to Europe
and central Asia, but it has expanded and naturalized across the
world (Koornneef et al., 2004). Arabidopsis thaliana is known for
its broad ecological distribution and adaptability to various envir-
onments, resulting in a large latitudinal range from North Scan-
dinavia to central Africa (Koornneef et al., 2004). We compiled
data on the four target traits for 75 A. thaliana genotypes by
intersecting two data sources. Time to heading, SLA, and LNC
was extracted from the AraDiv database (publicly available; Przy-
bylska et al., 2023), which contains information on a total of 730
accessions selected to maximize the geographic and genetic cover-
age of A. thaliana. Plants were grown between February and July
2021 in 80-ml pots (one plant per plot and three replicates per
genotype) in a glasshouse under controlled conditions in the
experimental field of CEFE, Montpellier, France (Przybylska
et al., 2023). For SLA, one leaf per plant was cut and
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photographed, and the one-sided projected leaf area was mea-
sured using IMAGEJ software (Wayne Rasband; National Institute
of Health). Harvested leaves were then dried at 60°C for at least
72 h to calculate SLA. Leaf nitrogen concentration was estimated
using a predictive model developed by Vasseur et al. (2022) that
is based on near-infrared spectroscopy measurements; see further
details in Przybylska et al. (2023). Time to flowering (generically
referred to here as heading) was calculated for each plant as the
number of degree-days between sowing and the appearance of
the first flower using a base temperature of 4°C. Plant height data
was extracted from Vasseur et al. (2018), such that height corre-
sponds to the length of the main flowering stem measured with a
ruler at the end of reproduction after the plant was fully dried. In
this experiment, plants were grown in four replicates (300-ml
pots, one plant per plot) per accession in a glasshouse between
December 2015 and May 2016.

Across all datasets, the target traits employed in our final analy-
sis were all quantified using methods outlined in trait collection
handbooks (Pérez-Harguindeguy et al., 2013), therefore facilitat-
ing the first conversion into common units (Table 1). Moreover,
all traits were collected at similar plant growth stages, across simi-
lar replication levels among studies. Therefore, while direct
cross-species comparisons were not the main focus of our analysis
here, our datasets remain comparable in a manner consistent with
meta-analyses of functional trait variation within and among
plants (e.g. Dı́az et al., 2016).

Data analysis

Before analysis, we first pooled together the five trait datasets,
averaged the replicates to obtain one mean value per trait per
genotype, and then standardized this resulting trait data to zero
mean and unit variance. Standardizing after this merging of data-
sets allows plotting accumulation curves on the same, common
scale across datasets. We then used a principal components analy-
sis (PCA) based on these data to: visualize observed functional
spaces occupied by each species; and select uncorrelated traits for
hypervolume calculations. Based on this analysis, plant height,
SLA, and LNC (all standardized to zero mean and unit variance)
were selected for hypervolume calculations and estimation.

Then, for each species individually, we selected 1000 random
subsets of sizes 4 to n genotypes and calculated hypervolume sizes
for each subset using the ‘hypervolume_box’ function in the
HYPERVOLUME R package (Blonder et al., 2014, 2018). The hyper-
volume_box function creates a kernel density estimate by placing
box-shaped kernels on each data point and then generating ran-
dom points within each kernel. The density of the kernel at each
point is calculated by performing a range query on a tree that
divides the data recursively. This density information is then
used to resample the random points, making their density uni-
form and fixing their number. The function then estimates the
n-dimensional hypervolume (unitless) from this resampled set of
points. This procedure was used to calculate the mean hypervo-
lume and associated 95% confidence intervals for each subset size.

The relationship between trait hypervolume and subset
size was analyzed using tools developed for the analysis of

species–area relationships contained in the SARS R package (Mat-
thews et al., 2019). Specifically, we used the cumulative beta-P
distribution in this package – a highly flexible 4-parameter sig-
moid function – to estimate an asymptote in the number of
genotype–hypervolume relationship, usually fitting data sets clo-
sely and showing good extrapolation accuracy (Tjørve, 2003;
Dengler, 2009). Specifically, the cumulative beta-P distribution
is given by the following equation:

Hypervolume= d 1� 1þ n

c

� �z� ��f
� �

Eqn 1

where n is the number of genotypes, d is the theoretical asympto-
tic maximum hypervolume, c affects the shape and scaling of the
curve, z determines the curve steepness, and f influences the cur-
vature (such that higher values of f result in a more concave
shape). According to our own analyses, the beta-P model indeed
fitted our data consistently better than the other 10 asymptotic
models available in the ‘SARS’ R package (Supporting Information
Table S1). From the fitted functions for each species, we esti-
mated the asymptotic hypervolumes (parameter d ), and calcu-
lated both the percentage of the asymptotic space that is
represented in the available genotypic pools, and how many gen-
otypes are needed to account for a given percentage of the esti-
mated asymptote. For the latter, we are interested in relatively
high percentages that, while nearly saturating the asymptotic
space, would be accounted for a reasonable number of genotypes,
since the number of genotypes necessary to reach the asymptote
is infinite by definition. Thus, we rearranged Eqn 1 to obtain.

n= c 1�pð Þ�1
f �1

� �1
z

Eqn 2

where p is the target proportion of the asymptote, d. Here,
we used 0.8 (or 80%) as the target proportion to interpret as

SLA
LNC

H

Heading

Fig. 2 Principal components analysis (PCA) summarizing the trait
distribution of the five study species including A. thaliana, barley, rice,
soybean, and wheat. The PCA is based on four traits: time to heading
(Heading, number of degree-days), plant height (H, cm), specific leaf area
(SLA, m2 kg�1), and leaf nitrogen concentration (LNC, %).
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an approximate for ecologically meaningful diversity from
functionally and farmer-relevant traits (Khoury et al., 2022),
and we rounded up the estimations to the nearest whole

number. Eqn 2 (or the equivalents for other underlying
models) can be used to calculate genotype numbers for other
proportions.

(c) (d)

(a)

(e) (f)

(b)
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Results

Functional trait spaces of the five species differentiated along
a heading–height gradient depicted by PCA axis 1, which
explained 51.9% of the total trait variance across our pooled
dataset (Fig. 2; see also mean trait values in Table S2). Along this
gradient, soybean and A. thaliana were the shortest species which
were the quickest to reach the reproductive stage, while durum
wheat represented the tallest species that is slowest to reproduc-
tion; barley and rice were generally intermediary between these
two end points. PCA axis 2 accounted for 35.4% of the total var-
iance and mostly reflected intraspecific variability in LNC and, to
a lesser extent, SLA which was also associated with axis 1 (Fig. 2).
We selected height, LNC, and SLA for further hypervolume cal-
culations since these traits represent the first two PCs and their
bivariate correlations are relatively low (i.e. r< 0.5; Table S3).

All functional trait space accumulation curves showed a satur-
ating asymptotic shape with extremely high model fits
(R2≥ 0.989 in all five cases; Fig. 3). In our datasets, rice and soy-
bean were very close to reaching their modelled potential trait
space asymptotes, reaching c. 84.6% (with 47 genotypes) and
97.4% (with 25 genotypes) of estimated maximum hypervolume
space, respectively (Fig. 3a,b). By comparison, barley (70 geno-
types), durum wheat (179 genotypes), and A. thaliana (75
genotypes) only attained between 60% and 65% of their poten-
tial estimated maximum trait space in our datasets (Fig. 3c–e).
Rice and soybean were also similar in that only a relatively small
number of genotypes (i.e. 28 and 5, respectively) accounted for
80% of their respective theoretical maximum trait space values
(Fig. 3a,b). This number of genotypes was orders of magnitude

greater for the other species in our analysis. Specifically, 346,
1097, and 4152 genotypes are needed to attain 80% of the maxi-
mum trait space for A. thaliana, barley, and durum wheat,
respectively (Fig. 3c–e). Plotting all curves together shows a clear
pattern of separation between species (Fig. 3f). Overall, estimated
asymptotes across the five species were positively and significantly
correlated with mean trait ranges (R= 0.97; t= 7.07, DF= 3,
P= 0.006), but not with mean trait correlations (R=�0.31;
t=�0.57, DF= 3, P= 0.607; Fig. 4). Furthermore, there was
no clear correlation between asymptotes and genotypic pool size
(R= 0.44; t= 0.85, DF= 3, P= 0.457) or between mean trait
ranges and genotypic pool size (R= 0.35; t= 0.64, DF= 3,
P= 0.565) across the five species (Fig. S1).

Discussion

The observed saturating asymptotic shape of the functional space
accumulation curves for all species in our study indicates that
there is a diminishing return of functional diversity with increas-
ing genetic diversity. That is, the increment in functional trait
space occupied due to the addition of a single genotype becomes
progressively smaller as we increase the number of genotypes.
Importantly, this implies a degree of functional redundancy that
exists among different genotypes, and further, that there exists a
limit to intraspecific functional crop diversity despite progressive
increases in the number of genotypes added to our analysis.

Asymptotic functional accumulation curves resemble the role
of species dominance in determining an asymptotic relationship
between species diversity and ecosystem function (Schwartz
et al., 2000; Loreau et al., 2001). In this context, our results

Fig. 3 Randomization tests evaluating variation in estimated three-dimensional hypervolumes for rice (a), soybean (b), barley (c), wheat (d), and A.
thaliana (e) as a function of the number of genotypes. Hypervolumes (HV) were calculated based on plant height, specific leaf area, and leaf nitrogen
concentration. Data points represent the mean hypervolume calculated for 1000 randomized datasets for varying number of genotypes. Error bars
correspond to 95% confidence interval based on the normal distribution. Cumulative beta-P models were fitted to mean hypervolume data
(continuous line); gray horizontal dashed lines show the asymptote estimated by these models. Results shown inside panels are model’s goodness of fit
(R2), the observed hypervolume (corresponding to the rightmost data point), the estimated asymptotic hypervolume (Asymp), the percentage of the
asymptote represented by the observed hypervolume (% of Asymp), and the number of genotypes needed to account for at least 80% of the asymptote
(n for 80%). Scales in (a–e) are adjusted proportionally to estimated asymptotes and are therefore not equal. Panel (f) shows all the predicted curves
together, and letters in parenthesis show significant differences between species in terms of asymptotic hypervolume based on their 95% confidence
intervals.

Fig. 4 Relationships between mean trait range,
mean trait correlation, and estimated asymptotes
from accumulation curves for the five species.
Mean trait ranges are the means across the three
traits that were used to estimate hypervolumes
(plant height, specific leaf area, and leaf nitrogen
concentration), while mean trait correlations are
the means of the three bivariate Pearson
correlations between these traits, all of them
calculated for each species separately.
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suggest that there are single phenotypes represented by several
genotypes within each species. This phenotypic dominance may
be unexpected and rather undesirable given the breeding efforts
on these major crops. However, it should be noted that such
breeding efforts have largely targeted yield rather than functional
traits (Milla et al., 2015). Crop diversification therefore requires
careful selection of genotypes that capture a substantial portion
of the functional diversity (Moore et al., 2023). For plant bree-
ders, this implies that strategic selection and breeding of geno-
types with distinctive trait values (sensu Violle et al., 2017) can
lead to significant gains in functional diversity and move crop
curves to higher asymptotes, but that these gains may nevertheless
decrease in terms of overall potential crop functional biology. For
farmers, particularly those interested in crop diversification via
variety mixtures (Kiær et al., 2009; Barot et al., 2017; Reiss &
Drinkwater, 2018; Wuest et al., 2021), asymptotic functional
accumulation curves imply that the greatest gains in intraspecific
functional diversity can be expected when farms transition from
extremely limited genetic diversity, like genetic monocultures, to
genotype mixtures with strategically distinctive trait values.

The identification of a small number of genotypes that can
account for a high percentage of the asymptotic space has impor-
tant implications for plant breeding. For instance, in rice and
soybean, only a few genotypes were necessary to capture 80% of
their respective asymptotic spaces (28 and 5 genotypes, respec-
tively). Targeted selection and breeding efforts focused on geno-
types with favorable functional traits can result in substantial
gains in functional diversity. However, achieving a high percen-
tage of the asymptotic space would require a much larger number
of genotypes in crops such as barley and durum wheat (1097,
and 4152, respectively) and to a lesser extent, A. thaliana (346).
This suggests that species like barley and durum wheat may pos-
sess a higher potential for functional diversification, but realizing
a significant portion of that potential would necessitate more
extensive efforts in terms of genotype selection and breeding.

A full cross-species comparison of functional accumulation
curves across species is not the main goal of this analysis, as data-
sets emerged from studies that employed different designs and
methods. Biases could also potentially arise from differences in
genotypic pool size, although our results do not show striking
biases in this regard. Rather, asymptotes correlated better with
trait ranges, a correlation that (only arguably, given the small
number of datasets analyzed) seems at least in part related to bio-
logical differences in terms of niche breath. Under more homoge-
neous data collection conditions, however, our methodological
approach would allow such comparisons of cross-species patterns
in genotype–trait space relationships. For instance, A. thaliana,
the only noncultivated species in our study, showed a distinc-
tively higher asymptote compared with crops, which is consistent
with the hypothesis that domestication has narrowed crop pheno-
typic space. Among crops, barley and wheat displayed higher
asymptotes compared with rice and soybean. The former two are
relatively cool-season species (base temperature 0°C) and were
domesticated c. 10 000 yr ago in the Fertile Crescent, western
Asia (Haas et al., 2019). The other two are considered
warm-season species (base temperature 10°C) that were

domesticated around the same time in eastern Asia (Molina
et al., 2011; Sedivy et al., 2017).

Moreover, the calculation of asymptotes and the extrapolation
of curves revealed patterns that could not be seen based on differ-
ences in observed hypervolumes alone. For instance, the observed
hypervolume for the A. thaliana genotypic pool (75 genotypes)
was almost twice as that of barley (70 genotypes), while the dif-
ference inverted for n for 80%, being more than three times lar-
ger for barley. This result stresses that the requirements for a
given genotypic pool to achieve a certain desired level of func-
tional space occupation cannot be directly inferred from observed
hypervolumes and highlight the utility of functional space accu-
mulation curves. In sum, when paired with our functional trait
space accumulation curve method, a larger sample containing
species with contrasting domestication histories and from differ-
ent biogeographic regions will allow to test the role of these
important factors on crop functional diversity, as well as the
mechanistic roles of niche breadth and ecophysiological trade-offs
in structuring genotype–trait space relationships.

Our approach can also be applied at different spatial scales. At
large scales which are relevant to breeding programs, asymptotes can
inform on the potential of genotypic pools to increase functional
diversity. This may be particularly relevant to prioritize and compare
crops with different levels of domestication, from existing crops, to
underutilized ones and wild species with cropping potential (Streit
Krug et al., 2023). Furthermore, as calls for transformation in agri-
culture gain momentum (Wezel et al., 2020), a more complete
understanding of how expanding crop portfolios, in terms of
enhanced genotypes on farms, will impact agroecosystem function is
essential. Our analytical approach can be extended to consider mul-
tiple crop species in order to guide the design of maximally diverse
farms. For instance, root trait space analysis has been used to deter-
mine coordination between crop species (Nimmo et al., 2023), and
by extension, our functional trait space accumulation curves can help
assess questions related to the species and genotypes required to satu-
rate root trait space to enhance nitrogen acquisition.

Our study underscores the importance of functional ecology in
the context of crop diversity management and plant breeding,
where our analytical framework can be used to: identify the mini-
mum set of genotypes to achieve desired trait expression outcomes;
and/or design parsimonious phenotyping experiments. The applica-
tion of functional space accumulation curves enables quantitative
assessments of the potential and limitations of functional trait space
occupation within and across crop populations. This knowledge
can guide the selection, breeding, and combination of genotypes
with desirable functional traits, ultimately leading to the
development of more resilient and sustainable agricultural systems.
Furthermore, our findings highlight the significance of considering
species-specific characteristics when designing diversification strate-
gies, as different crops exhibit distinct patterns of functional diver-
sity and potential for diversification.
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Pérez-Harguindeguy N, Dı́az S, Garnier E, Lavorel S, Poorter H, Jaureguiberry

P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE et al. 2013. New

handbook for standardized measurement of plant functional traits worldwide.

Australian Journal of Botany 61: 167–234.
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