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A B S T R A C T

Dimensionality reduction is an essential step in the processing of analytical chemistry data. When this reduction
is carried out by variable selection, it can enable the identification of biochemical pathways. CovSel has been
developed to meet this requirement, through a parsimonious selection of non-redundant variables. This article
presents the g-CovSel method, which modifies the CovSel algorithm to produce highly complementary groups
containing highly correlated variables. This modification requires the theoretical definition of the groups’
construction and of the deflation of the data with respect to the selected groups. Two applications, on two
extreme case studies, are presented. The first, based on near-infrared spectra related to four chemicals, dem-
onstrates the relevance of the selected groups and the method’s ability to handle highly correlated variables. The
second, based on genomic data, demonstrates the method’s ability to handle very highly multivariate data. Most
of the groups formed can be interpreted from a functional point of view, making g-CovSel a tool of choice for
biomarker identification in omics. Further work will be carried out to generalize g-CovSel to multi-block and
multi-way data.

1. Introduction

Analytical chemistry devices provide large quantities of variables,
more or less directly linked to the phenomena of interest. Some mea-
surement methods are highly indirect and provide highly correlated
variables, such as optical spectroscopy Ultra Violet (UV), Visible, Near
Infrared (NIR), Middle Infrared (MIR) [1] or liquid chromatography
(LC), gas chromatography (GC) [2]. Others are more direct and provide
less correlated variables, such as mass spectrometry (MS) [3]. What all
these techniques have in common is that they produce highly multi-
variate data. Each sample measured is represented by a vector in a very
high-dimensional vector space, which poses specific mathematical
problems [4]. Dimensionality reduction is therefore a necessary step in
any classification or regression operation [5]. A range of specialized
multivariate analysis techniques, known as chemometrics, has been
developed over the past few decades [6,7]. One of the strengths of
chemometrics is that it provides knowledge about the system under
study. In addition to validating the models produced, this feedback
makes it possible to identify the factors responsible for the phenomena
under study, such as biomarkers [7].

Chemometric analysis of data involves a phase of dimensionality
reduction, allowing the practitioner to focus on the useful part of the
measured signal, which is modeled in chemometrics as a vector subspace
related to the factors of interest. Factorial methods such as Principal
Component Analysis (PCA) [8] or Partial Least Squares (PLS) [9] yield
loadings/weights which are a basis of the useful subspace. These co-
efficients are then analyzed to trace the factors behind the variations
under study. Even more explicitly, Multivariate Curve Resolution (MCR)
can be used to recover the pure spectra of the constituent elements of a
mixture, enabling them to be identified directly [10].

Another way of reducing the size of the data is to select variables.
Although in chemometrics, variable selection is often used as a pre-
processing step to improve model performance [11], it is also very
interesting as an analysis technique on its own, with the aim of identi-
fying the physico-chemical phenomena related to the factors studied
[12]. Machine learning community offers a huge choice of variable se-
lection methods [13]. Those based on both predictors and responses are
of greater interest for chemometrics [14]. Variable Importance in Pro-
jection (VIP) [15] has been developed to quantify the importance of
each variable in a regression or classification PLS model. Applying a
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threshold (usually 1) to the calculated VIPs enables the most important
variables to be selected. Interval PLS (i-PLS) [16] proposes to subdivide
the entire spectral range into intervals, then PLS is applied individually
to each segment. This identifies the most informative regions for pre-
diction. Sparse PLS (SPLS) refers to a family of PLS algorithms that
produce loadings containing a high proportion of null values. Several
algorithms exist, all based on minimizing the L1 norm (i.e., the sum of
the absolute values) of the weights applied to the predictors and re-
sponses, as for example in Monteiro et al. [17]. Group Partial Least
Squares (G-PLS) regression [18] was developed as a special case of
S-PLS, which aims to respect predefined groups of variables. These
groups are constructed by examining the correlation maps derived from
the data to be analyzed. VIP, i-PLS and SPLS allow selecting the most
useful variables to predict the responses of interest. However, as this
selection is global, it is difficult to identify the different phenomena
causing the link between predictors and responses. CovSel has been
developed to answer this requirement, performing parsimonious selec-
tion of non-redundant variables in a predictive context [19]. As implied
by its name, the relevance of each variable is assessed by estimating the
covariance between each predictor and the responses: the variable with
the highest covariance is identified and selected first; subsequently, all
other predictors and the responses are orthogonalized with respect to
this selected variable and the process is repeated until the pre-
determined number of variables has been selected. This strategy has also
been extended to multi-block and multi-way data (SO-CovSel [20] and
N-CovSel [21], respectively). Thanks to the deflation performed by
CovSel, the selected variables are intended to be linked to different
sources of covariance between the measurements and the phenomenon
under study. CovSel is therefore a tool of choice to identify the factors
responsible for the phenomena under study.

However, in some cases, identifying one variable per factor is not
enough. This is the case in MS, for example, where a molecule is rep-
resented by a set of peaks linked to fragments or isotopes. In this case, it
is useful to have a tool that identifies groups of variables, so that each
group is linked to a molecule, or a family of molecules. Clustering of
Variables Around Latent Components (CAVALC) [22] is a method for
identifying groups of variables, so that each of these clusters is associ-
ated to a single latent variable. The latent variable associated to the
cluster may be only explicative of the variance in the grouped predictors
(i.e., a principal component) or account for the covariance of the pre-
dictors with external data or responses. However, since no deflatio-
n/orthogonalization steps are involved, there is no guarantee that the
identified group of variables are associated to different/unrelated
sources of (co-)variance.

This article presents an extension of CovSel, called g-CovSel,
designed to perform a selection of groups of variables, so that each group
is linked to a phenomenon explaining a set of responses. The first part
describes the theoretical aspects of the method. The second part presents
the datasets used to illustrate how it works. The third section discusses
the properties of g-CovSel, based on the results obtained. The article
ends with a conclusion and research prospects.

2. Theory

Let X be a matrix (N, P) of N individuals described by P descriptors
(predictor variables); let Y be a matrix (N,Q) of the same N individuals
described by Q responses (dependent variables). The aim of CovSel [19]
is to select the variables in X that best explain the variables in Y. CovSel
uses the following iteration:

1. Define the number L of variables to be selected.
2. Select the variable of X with the highest squared covariance with Y.
3. Deflate X and Y of the information present in the selected variable.
4. Continue from step 2 until the value defined in step 1 is reached.

g-CovSel is based on the same four steps, but at step 2, a group of

variables is selected, in place of one variable. Step 3 is also changed, in
order to deflate the data of the group of variables. These two steps are
detailed in the following.

2.1. Building the groups

The building of a group of variables G begins with the selection of a
single variable I, based on the same principle as CovSel, i.e., as the one
which satisfies I = argmax

i

(
xíYY

ʹxi
)
, where xi is the ith column of X.

This variable will serve as the seed for the identification of G and will
thus be called the seed. This condition ensures that g-CovSel will act as
an extension of CovSel and so that CovSel is a particular case of g-
CovSel. The variables members of G should explain Y and should be
related to the seed.

Let define two functions CR(.) and CV(.)- where (.) is used as a
placeholder for the function argument - by:

CR(xk)=R2(xI, xk) (1)

CV(xk)=
xʹ
kYY

ʹxk

xÍYYʹxI
(2)

Where R2 is the squared correlation coefficient. We have: CR(xk) ∈ [0,1],
CV(xk) ∈ [0,1],CR(xI) = 1 and CV(xI) = 1. Using CR(xk) as abscissa and
CV(xk) as ordinate, all the variables of X can be represented as points in
the square [0,1] × [0,1]. The seed is located at the upper right corner of
the square; variables in the upper part of the square are the most linked
to Y responses; variables falling in the rightmost region of the square are
the most correlated with the seed.

Thus, the group sought should reasonably contain variables with
high values of both the abscissa and the ordinate, i.e., predictors falling
close to the upper right corner. Based on this principle, two group for-
mation algorithms are proposed hereafter:

• Double threshold-based grouping (DT):

Two separate thresholds τR and τV are identified for CR(xk) and
CV(xk), respectively, so that

k∈G if CR(xk)> τR and CV(xk)> τV ; τR ∈ [0, 1] ; τV ∈ [0, 1]

• RV based grouping (RV):

All the variables k of X are sorted according to their increasing
squared distance to the seed, in the space defined by CR(xk) and CV(xk),
i.e. according to the increasing value of (1 − CR(xk))

2
+ (1 − CV(xk))

2.
Then, variables are progressively included in G, following the order
given by the sorting, and the RV coefficient between XG =

[
xI, xG,1 , xG,2 ,

⋯, xG,k
]
and Y is calculated:

RV(XG,Y)=
trace

(
XGXʹ

GYY
ʹ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

trace
(
XGXʹ

GXGXʹ
G
)
trace(YYʹYYʹ)

√ (3)

Variables are added to G as long as RV(XG,Y) increases.
The DT grouping is very simple but requires that the user have a good

idea of the correlations between the X variables. So for near-infrared
spectral data, τR can certainly take values very close to 1, such as 0.95
or more, but for less correlated data, as mass spectrometry abundances,
the value of τR is likely to be much lower. The RV grouping is more
complicated to calculate, but it adapts more easily to complex situations,
where groups of variables need to be defined according to their overall
relevance to the responses. Moreover, RV-based selection method can be
run automatically, i.e. without the need of any parameter tuning.
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2.2. Deflating the data

The role of deflation done before each new selection is to remove
from X and Y the variance carried by the selected variables. This offers a
certain guarantee that the selected groups will be as complementary as
possible. It also enables to decompose the total variance of X and Y, so
that it is possible to examine the evolution of the variance explained as a
function of the number of groups selected. In factorial methods such as
PCA and PLS, and also in CovSel, deflation of X (and/or Y) consists in
projecting X (and/or Y) orthogonally to the vector of scores calculated in
the current step. Because the score vector is one-dimensional, this
deflation consumes one dimension in Col(X). If we were to proceed in
the same way for g-CovSel, i.e. project orthogonally to all the variables
in the selected group, there would be the risk of drastically reducing the
rank of Col(X). In chemometrics applications, the total rank of Col(X)
can be limited, because there often is less individuals than variables. The
risk would be to rapidly erode the entire variance of X. It is therefore
necessary to perform a rank 1 deflation. To do this, a score vector t is
defined as follows:

• Let GK be the set of indexes of the group, and IK be the index of the
seed at step K.

• Let wi = sign
(
xT
i xIK

) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
CVi × CRi

√
if i ∈ GK and wi = 0 otherwise

•t = Xw.
•t = t

‖t‖.

Then, the deflation is done as usually by:

• X = X − t tT X.
• Y = Y − tTt Y.

3. Material and methods

A first test of g-CovSel was carried out on the well-known corn
dataset that usually serves as a reference for calibration transfer, and
which was initially provided by Mike Blackburn of Cargill. This dataset
can be accessed via Eigenvector Research at https://eigenvector.
com/resources/data-sets/. It includes reference values for protein,
starch, moisture and oil, which were evaluated onNC = 80 separate corn
samples using three NIR instruments (1100–2498 nm, PC = 700 wave-
lengths). Spectra from the M5 instrument were retained for testing g-
CovSel. To enhance the underlying peaks, second derivative of the
spectra was calculated using a Savitsky and Golay filter [23] (width =

51, polynomial degree = 3, order of derivation = 2). The corn dataset
therefore consisted of XC(80, 700), YC(80, 4). Matrix XC was column
mean centred and matrix YC was column autoscaled.

A second g-CovSel test was carried out on genomic data measured on
Eucalyptus grandis trees. These data contained 24 individuals, divided
into 4 replicates of 6 modalities. These modalities resulted from crossing
3 nutrition modalities C (control), Na (sodium addition), K (potassium
addition) with 2 levels of water stress FR (full rainfall) and RR (restricted
rainfall). The experimental design was balanced, so that each of the 6
classes K + FR, Na + FR, C + FR, K + RR, Na + RR, C + RR contained 4
individuals. Each individual was described by the expression of PE =

4890 genes. A complete description of this dataset can be found in
Ref. [24]. The two classes K+ FR and K+ RR were used to test g-CovSel.
The eucalyptus dataset therefore consisted of XE(8, 4890), YE(8, 2),
where YE contained the membership degrees of the individuals in the 2
classes. A logarithmic transformation was applied to XE. Then both
matrices XE and YE were column mean centred.

The two datasets were then processed according to the following
workflows. First, a CovSel selection was performed to get an initial idea
of the number of factors underlying the datasets, as well as a selection of
unique variables. The g-CovSel method was then applied, using the DT
method on the corn dataset and both DT and RV methods on the

eucalyptus dataset. The program used was developed in Matlab R2015b
(The Mathworks, Natick, MA, USA). Matlab source code is available for
download at https://forgemia.inra.fr/chemhouse/octave/g_covsel.

4. Results and discussion

The functioning and properties of g-CovSel are presented and dis-
cussed in this section, based on the application of the two datasets
presented above.

4.1. Results of CovSel on the corn and eucalyptus datasets

CovSel was first applied to both corn and eucalyptus datasets,
requesting the selection of 10 variables. Fig. 1a and b show the selected
variables on the x-axis, and the evolution of explained variances on the
y-axis. It can be seen that the two datasets behave very differently. For
corn data (Fig. 1-a), the proportion of variance explained for the X block
is significantly higher than for the Y block. In contrast, for the euca-
lyptus data (Fig. 1-b), the proportion of variance of Y is greater than that
of X. It’s well known that the variance of NIR spectra is dominated by
multiplicative and additive effects, so that the first component of a PCA
generally accounts for over 80 % of the variance. This is the phenome-
non we find here, confirmed by the fact that the first variable selected
corresponds to the extreme left of the spectra. In fact, Fig. 2 clearly
shows that this part of the spectra has a high variance. On the contrary,
as the XE variables have already been pre-sorted, there is little variance
unrelated to YE in the selected variables. In view of these graphs, it was
decided to set the number of groups to be searched at 8 for corn dataset
and at 3 for eucalyptus dataset.

Fig. 2 shows the spectra of the corn dataset, with the first eight
selected wavelengths indicated. We can see that all the selected wave-
lengths are related to physico-chemical factors, such as baseline
changes, moisture, fat, starch and protein contents.

The first three genes selected by CovSel from the eucalyptus dataset
are Eucgr.G03028, Eucgr.K03413 and Eucgr.K00207 (see the x-axis la-
bels of the graph in Fig. 1 - b). The first gene corresponds to a protein of
the Laccase/Diphenol oxidase family. These proteins are involved in the
lignin biosynthesis pathway, which is affected by the level of water re-
striction on potassium-fertilized trees [24]. The second gene selected by
CovSel corresponds to a heat stable protein with antimicrobial and
antifungal activities. This gene is involved in the Eucalyptus response to
sodium fertilization [24]. The third gene selected by CovSel is a
MADS-BOX gene. MADS-BOX are key transcription factors involved in
abiotic stress-related regulatory networks regulating development and
growth [26].

5. Results of g-CovSel on the corn dataset

Fig. 3 shows the (CR,CV) maps built by g-CovSel during the eight
first steps of the algorithm on the corn dataset. At each step of the al-
gorithm, few variables are close to the seed, situated at the upper right-
hand corner (1,1), making it easy to identify groups. These variables are
aligned on a quasi-linear and quasi-vertical structure, showing that they
are highly correlated with the group seed, but that the covariance with Y
decreases very rapidly when distancing from the seed. This is typical of
near-infrared spectral data, for which a high CR threshold and a low CV
threshold should be used. Fig. 4 shows the CV values as a function of the
wavelengths during the eight first steps of the algorithm. Note that each
curve has peaks and that the seed corresponds to the maximum of a
peak. Note again that, thanks to deflation, peaks selected at a given step
disappear from the CV curve at the next step, as do correlated peaks.
This is the case, for example, between the sixth and seventh steps. The
peak selected at the sixth step, centred at 1904 nm, disappears at the
seventh step, as does the peak centred at 1400 nm, as both these peaks
are in a zone linked to the OH bonds of water. Fig. 4 clearly shows the
benefits of building groups on a dual criterion of correlation and
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covariance. For example, in the fourth step, three peaks show co-
variances well above the 0.5 threshold: at 1904, 2264 and 2292 nm.
Taking correlation into account enables g-CovSel to place the two peaks
at 2264 and 2292 nm in the same group, which corresponds to a
wavelength zone related to starch, proteins and fat [27], and to leave
aside the peak at 1904 nm, corresponding to water [25] and which is
selected in the sixth step.

While most of the selected groups contain a single peak, the second
and fourth contain two. Let’s take a look at the second group; it contains
two peaks centred at 1876 and 1936 nm. These two CV peaks correspond
to the positive and negative peaks shown in Fig. 2. As the spectra treated
here are second derivatives of absorption spectra, the positive peak
corresponds to the left foot of the absorption peak for OH bonds in water
at 1876 nm, and the negative peak to the top of this peak at 1936 nm
[25]. This group is therefore linked to the height of the water OH bond
absorption peak, and therefore to moisture. The peak selected in the
seventh group is centred on 1904 nm, which corresponds to a zone
where the second derivative cancels out (see Fig. 2), i.e., the left in-
flection point of the water OH bond absorption peak. This group is
therefore certainly linked to the width or position of this peak, and
therefore to the state of water. This rapid analysis shows that the
selected groups correspond to different underlying physico-chemical
phenomena.

In the second step of Fig. 4, we can see that the wavelength 2250 nm
has been selected to be part of the group made up of peaks at 1876 and
1936 nm. This is an artefact due to the threshold on CR or CV being too
low. Indeed, in Fig. 3, second step, we can see that the selection is a little
too wide and includes a point belonging to a structure other than the one
in the top right-hand corner of the map. However, this error did not
prevent the peaks at 2240 nm and 2292 nm from being correctly selected
in the fourth step.

Finally, we note that the groups formed are completely disjoint. This
shows that deflation has worked. In fact, the aim of deflation is to erase
the vector subspace generated by the selected variables. This means that
the variance carried by these variables becomes very low, and conse-
quently the covariance with Y. It is therefore highly unlikely that vari-
ables will belong to more than one group. However, it is conceivable
that, if the groups are unclear, the user might be obliged to use very low
thresholds, which would make the deflation process very "soft", and
open the door to this possibility. Further study will be carried out on this
aspect, in order to explore the link with the concept of interactions be-
tween factors.

In [19], it is shown that CovSel is a special case of PLS. Similarly,
since g-CovSel performs variable group selection by optimizing a
covariance criterion between X and Y, it may be relevant to compare it
with SPLS, considering that the non-null values of each sparse loading
define a variable group. To this end, corn data were processed by SPLS,
using the algorithm described in Ref. [17]. In this algorithm, sparsity is
set with a penalty term, λ varying between 1 (maximum sparsity) and
̅̅̅
P

√
(minimum sparsity), where P is the number of variables in X. A first

run, with λ = 1, selected the 1100 nm wavelength for the first loading,
which is entirely consistent with CovSel, since this variable had the
maximum covariance with Y. Successive runs were then made, with an
increasing value of λ, until the same group was obtained as the first one
selected by g-CovSel, Fig. 4, step 1. The value of λ corresponding to this
limit was λ = 0.253. Fig. 5-top shows the two groups formed by the first
two SPLS latent variables, with λ = 0.253. The first block is consistent
with that of g-CovSel, by construction. However, the second group is
made up of the peak at 2104 nm, which corresponds to the third group
selected by g-CovSel (see Fig. 4). The group consisting of the two peaks
at 1876 and 1936 nm, selected in second position by g-CovSel (Fig. 4,
step 2), has disappeared from the covariance curve of the second SPLS
step (Fig. 5-top, step 2). This indicates that the deflation performed by
SPLS at the first step was too abrupt and led to the disappearance of the
information carried by the two peaks at 1876 and 1936 nm. This shows
the value of the deflation proposed by g-CovSel, which allows the in-
formation carried by one group to be removed without altering the other

Fig. 1. Results of CovSel on corn dataset (a) and eucalyptus dataset (b). Abscissa indicates the selected variables; ordinate reports the percentage of variance
explained. For eucalyptus data (b), the "Eucgr." prefix for each gene has been omitted for clarity.

Fig. 2. Corn spectra. Vertical dashed lines show the CovSel selection. Text-
boxes indicate physico-chemical factors linked to the variables, based on [25].
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groups, thanks to the joint consideration of covariance and correlation.
Fig. 5-bottom shows the two groups formed by the first two SPLS latent
variables, with λ = 0.3. The first group now contains also the two peaks
at 1876 and 1936 nm. Referring to Fig. 3, step 1, we can see that these
two peaks, although having a fairly high normalized covariance with
(CV> 0.5), are only weakly correlated with the group seed (CR< 0.75).
The SPLS selects them because it only considers covariance. Here we see
the value of the g-CovSel algorithm, which simultaneously takes into

account the covariance with Y and the correlation with the group seed.
In order to validate the relevance of the groups selected by g-CovSel,

eight PLS2models were built using variables from G1,{G1,G2},…,{G1,…
,G8}, to predict the four responses: moisture, fat, proteins and starch. In
addition, a PLS2 model was built, using all the variables in X. A cali-
bration set of 60 samples and a test set of 20 samples were constructed
by performing a PCA on the four responses, then sorting the first vector
of scores, and taking one sample out of four for the test, and the rest for

Fig. 3. (CR,CV) maps produced par g-CovSel on the corn dataset, along the 8 first steps of the algorithm. Dotted red lines indicate the thresholds used: 0.5 on CV and
0.9 on CR. Variables selected in the groups are shown in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 4. CV spectra produced par g-CovSel on the corn dataset, along the 8 first steps of the algorithm. Dotted horizontal red lines indicate the threshold used on CV
(0.5). Variables selected in the groups are shown in red. Dotted vertical black lines indicate the group seeds. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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calibration. All the models were submitted to a two-fold cross-validation
repeated 30 times, using the same splits for all models. Fig. 6 reports the
RMSECV curves of these models, for each response in Y. Firstly, it can be
noted that, for all predicted responses, the RMSECV curve of the model
using the eight groups is very close to that of the model using all X
variables. This validates the overall relevance of the eight selected
groups. Fig. 6-a shows that the performance of the PLS2 model in pre-
dicting moisture improves markedly when the G2 and G6 groups are
added, in perfect agreement with the variables of these groups, which
are linked to water (see Fig. 4). Fig. 6-b shows that fat prediction per-
formance improves with the introduction of groups G4 and G7. Group G4
is linked to the 2220–2320 nm spectral zone, which contains several
absorption peaks related to amino acids, starch and fat [27]. Its variables
are therefore particularly useful for building a PLS2 model predicting
these compounds. Group G7 is linked to the fat absorption peak at 1725
nm [27]. The same comments on G4 can be drawn from Fig. 6-c,
regarding the protein content prediction. As far as starch prediction is
concerned (Fig. 6-d), it can be noted that almost all groups are required
to achieve a good model.

The global RMSECVs of the PLS2 model using the variables of the
eight groups and of the PLS2 model using all the variables were calcu-
lated as the quadratic mean of the four RMSECV. For both models, 13
latent variables was chosen as the optimal dimension. Table 1 summa-
rizes the prediction performances of the two models on the test set
samples. It can be noticed that the performances of the g-CovSel-PLS2
model are very close to the ones of the PLS2 model using all the vari-
ables, except for starch. In fact, the prediction of this response by NIRS is
problematic, and relies not only on isolated peaks, but also on more
global features of the spectrum, such as slopes or curvatures [28]. So it’s
not surprising that g-CovSel doesn’t produce a very powerful model for
this response.

5.1. Results of g-CovSel on the eucalyptus dataset

In this case study, g-CovSel was applied to the discrimination of the
two classes K + FR and K + RR. The eucalyptus dataset therefore con-
sisted of XE(8,4890),YE(8,2). Given the very limited number of samples,
in this case the focus was on showing that, even with very ill-conditioned
data sets, the method could anyway be able to produce reasonable and
interpretable results, comparable with those produced in the original
publication [24]. The first three groups of genes in relation to the two

classes, i.e. in relation to the difference in water treatment in the pres-
ence of potassium-rich nutrition, were sought. Both DT (tcov = tcor = 0.4)
and RV-based grouping algorithms were used. Table 2 lists the genes
making up the groups. It can be seen that the two algorithms returned
different numbers of genes in each group, but that for all groups, the
smallest selection is always included in the largest selection. This shows
good agreement on group construction between the two algorithms, but
that they diverge on group size.

Group 1 is dominated by genes from the Purple network (19 out of
22). This network was identified in Ref. [24] as significant for the K +

RR response. Note that the LightCyan network, which had also been
identified as significant for this response, is completely absent from the
g-CovSel selection. It is likely that this second network would have been
selected with lower tcov and tcor thresholds, but that the deflation of the
information carried by group 1 eliminated it. Only one Purple gene is
found in another group. There is therefore a good match between group
1 and the Purple network, showing that g-CovSel is fairly consistent with
the Weighted Gene Co-expression Network Analysis method (WGCNA)
used in Ref. [24]. Gene D01509 was selected in third position in group 1,
meaning that it is close to the group seed, and therefore very important
for K + FR vs K + RR discrimination. On the other hand, it was assigned
by WGCNA in a different network from that predominantly associated
with the other genes in group 1. We note that it had a lower number of
links to other genes (66), as detected by WGCNA, compared with the
other genes in this group (over 200). All this makes this variable suspect.
A detailed examination of the gene count shows that one sample among
the eight was an outlier, with 193 counts compared to about 15 counts
for the other individuals. If we replace the suspect value by the median
of the values presented by the other individuals in the group, g-CovSel
no longer selects this gene. The other selected genes remain unchanged,
illustrating the robustness of g-CovSel. The Eucgr.K01002 gene shows
also a disagreement between WGCNA and g-CovSel. It was selected by
g-CovSel in sixth position by both DT and RV algorithms, whereas it was
not placed in any network by WGCNA. A detailed examination of the
data for this gene shows that it was over-expressed under water stress,
and was significant for many of the factors studied in Ref. [24]. It is
highly likely that WGCNA did not select it because it only uses corre-
lation between genes, unlike g-CovSel, which also uses covariance with
the response. The Eucgr.A02802 gene was placed in group 1 by g-Cov-
Sel, while WGCNA placed it in the green network, with a low number of
counts (74). An examination of this variable for the eight individuals

Fig. 5. CV spectra produced par SPLS on the corn dataset, along the 2 first latent variables, with two sparsity levels. Top: sparsity index at 0.253, giving the same first
block as g-CovSel. Bottom: sparsity index at 0.3, giving a larger block.
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studied shows no outliers, but very low values (5 counts on average for
K+ FR and 24 for K+ RR), compared with the average value for group 1
(around 71). This leads to greater uncertainty in the calculation of
correlations by WGCNA and covariances by g-CovSel, which may
explain the divergence in ranking. The function of this gene is unknown,
but a research in Phyto Mine shows that it is linked to genes encoding
heat shock proteins, involved in the plant’s stress response.

Group 2 contains fewer genes than group 1. Six of the group’s seven

genes were selected by the DT algorithm. In other words, the RV algo-
rithm selected only one gene (Eucgr.K00207, the group seed) and
therefore failed to create a group around the seed. On the other hand,
the genes selected in group 2 do not belong to any particular network.
All genes of group 2 are linked to fertilization, whatever the stress. It is
therefore normal that they belong to different WGCNA networks. Group
2 appears to express phenomena orthogonal to those linked to group 1
(fertilization vs. stress). Further study is required to determine whether
this group has biological significance or whether the identified seed is
isolated, as suggested by the RV algorithm.

Group 3 also contains seven genes. The DT algorithm selected only
one gene (Eucgr.K00207, the group seed). This means that at this stage
of the g-CovSel run, all the genes had very low values (CV,CR) (<0.4).
This may be an indication of the limitations of the DT algorithm, which
nevertheless performed satisfactorily for groups 1 and 2. The threshold
values tcov = 0.4 and tcor = 0.4 chosen globally do not seem to be suitable
for all steps of the g-CovSel algorithm. Note that the first four genes
selected belong to the brown and blue networks, both linked to potas-
sium.

Finally, we note that the majority of the genes selected have a very

Fig. 6. Evolution of PLSR cross-validation error curves, as variable groups G1 through G8 are introduced into the model. The last curve (ALL) is for a model using all
X variables.

Table 1
Prediction results of a PLS2 using all the X variables and of PLS2 using the
variables of the eight groups defined by g-CovSel, for each response of the corn
dataset. SEP is the standard deviation of the prediction error, Bias is the mean of
the prediction error.

moisture fat protein starch

SEP PLS2 with all variables 0.062 0.071 0.064 0.213
PLS2 with the 8 groups 0.066 0.080 0.067 0.265

Bias PLS2 with all variables 0.016 0.013 0.005 0.020
PLS2 with the 8 groups 0.013 0.014 0.018 0.023
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high number of links with other genes in their network (degree>200),
showing that g-CovSel has prioritized the selection of genes that are
potentially considered to be hub genes. This clearly demonstrates the
relevance of the (CV,CR) coordinate system used.

6. Conclusion

This article proposes a new feature selection method, g-CovSel,
which extends the CovSel approach to select groups of variables.
Whereas CovSel was designed to provide a parsimonious selection of
non-redundant variables, g-CovSel proposes to enrich this selection by
creating groups around the variables that would have been selected by
CovSel. The CovSel algorithm has been modified to take into account
both the covariance of the selected variables with the response to be
predicted and the inter-group correlation. It’s the combination of these
two features that makes the g-CovSel method so novel. Two algorithms
for creating groups are proposed and illustrated on two very different
examples: infrared spectra and genomic data. The two case studies
demonstrate the relevance of the proposed theoretical framework. The
CovSel variables are found at the center of the groups formed, making g-
CovSel a generalization of CovSel. Most of the groups formed can be
interpreted from a functional point of view, making g-CovSel a tool of
choice for biomarker identification in omics. The basic g-CovSel idea of
projecting variables into a reduced space (CR,CV) has been validated,
but automatic group generation remains problematic. Indeed, the aim of
the RV algorithm is to start from the corner (1,1) of the (CR,CV) square
and to wind up, little by little, the variables close to this corner. In cases
where there are many variables close to the corner (e.g. with NIR), the

first variables will be close to the corner, and the group formation is not
problematic. In cases where few variables populate the top-left corner,
the RV algorithm will quickly jump to variables that are either in the
center of the square, or near the bottom or left borders. Further studies
will be carried out on such complex data, in order to test the limits of the
proposed clustering algorithms and propose new strategies. A user
interface will also be developed to enable domain expertise to be used to
define group sizes. Further work will also be carried out to generalize g-
CovSel to multi-block and multi-way data, e.g. following the scheme
proposed by SO-CovSel [20] and N-CovSel [21].
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Table 2
Groups selected by g-CovSel, either by DT or by RV algorithm. The Factor column indicates the significance for fertilization (F), water restriction (R), or the interaction
of the two (F*R). The Network column indicates the gene network identified by the WGCNA method. The Degree column indicates the number of gene connections in
this network.

N◦ Selected variables Gene ID Factor Network Degree

1 Eucgr.G03028 (DT + RV) Laccase/Diphenol oxidase family protein F Purple 234
Eucgr.H03155 (DT + RV) TPX2 (targeting protein for Xklp2) protein family F*R Purple 234
Eucgr.D01509 (DT + RV) HXXXD-type acyl-transferase family protein F Tan 66
Eucgr.H03662 (DT + RV) Major facilitator superfamily protein F Purple 212
Eucgr.L00251 (DT + RV) galactinol synthase 2 F*R Purple 247
Eucgr.K01002 (DT + RV) Ankyrin repeat family protein F,R NA –
Eucgr.H01247 (DT + RV) UDP-glucosyl transferase 72E1 F*R Purple 241
Eucgr.K02541 (RV) COBRA-like glycosyl-phosphatidyl inositol-anchored protein family F*R Purple 246
Eucgr.H03662 (RV) Major facilitator superfamily protein F Purple 212
Eucgr.D00406 (RV) senescence regulator F Purple 243
Eucgr.D02334 (RV) BCL-2-associated athanogene 6 F,R Purple 231
Eucgr.B02486 (RV) FASCICLIN-like arabinogalactan-protein 12 F*R Purple 246
Eucgr.C00773 (RV) Riboflavin synthase-like superfamily protein F*R Purple 232
Eucgr.L03244 (RV) galactinol synthase 2 F*R Purple 246
Eucgr.F01203 (RV) IQ-domain 10 F Purple 190
Eucgr.A02802 (RV) NA F Green 228
Eucgr.H03616 (RV) ARM repeat superfamily protein F*R Purple 237
Eucgr.E00460 (RV) Haloacid dehalogenase-like hydrolase (HAD) superfamily protein F*R Purple 246
Eucgr.E04087 (RV) S-locus lectin protein kinase family protein F Purple 244
Eucgr.H05151 (RV) NA F Purple 223
Eucgr.L03739 (RV) NA F Purple 246
Eucgr.J00951 (RV) 2-oxoglutarate and Fe(II)-dependent oxygenase superfamily protein F,R Purple 245

2 Eucgr.K03413 (DT + RV) heat stable protein 1 F Greenyellow 213
Eucgr.A01768 (DT) Cyclin D6; 1 F Brown 191
Eucgr.H01090 (DT) NA F,R Green 74
Eucgr.H03090 (DT) Integrase-type DNA-binding superfamily protein F Tan 102
Eucgr.L01034 (DT) ATP-dependent caseinolytic protease/crotonase family protein F Greenyellow 183
Eucgr.B03126 (DT) sulfotransferase 12 F Greenyellow 196
Eucgr.C02911 (DT) Phosphorylase superfamily protein F Purple 231

3 Eucgr.K00207 (DT + RV) AGAMOUS-like 20 F Brown 167
Eucgr.K00204 (RV) AGAMOUS-like 20 F Brown 213
Eucgr.K00203 (RV) AGAMOUS-like 20 F Brown 182
Eucgr.H04691 (RV) NA F Blue 261
Eucgr.G00601 (RV) vesicle-associated membrane protein 725 R Green 183
Eucgr.C02508 (RV) FAD/NAD(P)-binding oxidoreductase family protein R NA –
Eucgr.H04975 (RV) CCAAT-binding factor R NA –
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