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Abstract 

Water absorption in wheat flour is a crucial parameter for optimizing bread-making processes. The 

determinants of wheat flour water absorption were investigated through the analysis of 28 

compositional and technological properties of 150 wheats grown in France. A multiple linear 

regression approach was used to predict the water absorption, selecting the best model through 

successive examination of Bayesian Information Criterion, Variance Inflation Factor and minimizing the 

total number of variables.  

A model with protein content, soluble starch, damaged starch and specific viscosity from water 

extractable arabinoxylans was identified as the best trade-off between the number of variables and 

the predictive performances among all possible models. Soluble Starch, varying between 1.11 and 

6.21 g/100g flour a new criterion measured alongside water-extractable arabinoxylans content, 

varying between 0.26 and 0.86 g/100g flour, shows significant potential to predict water absorption 

compared to damaged starch. 

Keywords  

Wheat, water absorption, bread-making, lipids, arabinoxylans, damaged starch, multi-factorial 

analysis. 

Abbreviations: 

A: Arabinose 

AGP:  Arabinogalactan Peptide  

AIM:  Alcohol Insoluble Material 

AX: Arabinoxylans 
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A.X.TOT: Arabinose on Xylose ratio from Total Arabinoxylans 

AX-TOT: Total Arabinoxylans content 

A.X.WE: Arabinose on Xylose ratio from Water-Extractable Arabinoxylans 

A.X.WU: Arabinose on Xylose ratio from Water-Unextractable Arabinoxylans 

C16.TOT: Total palmitic acid C16 content 

C18.TOT: Total stearic acid C18 content 

C181n7.TOT: Total vaccenic acid C18:1n-7 content  

C181n9.TOT: Total oleic acid C18:1n-9 content 

C182n6.TOT: Total linoleic acid C18:2n-6 content 

C183n3.TOT: Total alpha-linolenic acid C183n-3 content 

C16.NS: Non-Starch palmitic acid C16 content 

C18.NS: Non-Starch stearic acid C18 content 

C181n7.NS: Non-Starch vaccenic acid C18:1n-7 content 

C181n9.NS: Non-Starch oleic acid C18:1n-9 content 

C182n6.NS: Non-Starch linoleic acid C18:2n-6 content 

C183n3.NS: Non-Starch alpha-linolenic acid C183n-3 content 

CV: Coefficient of Correlation 

D.Gluten: Dry Gluten 

EI: Elasticity Index 

FA-TOT: Total Fatty Acid  
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Gli: Gliadins 

GluI: Insoluble Glutenins 

GluS: Soluble Glutenins 

GluT: Total Glutenins 

HFN: Hagberg Falling Number 

IV.AX: Intrinsic Viscosity of Water-Extractable Arabinoxylans 

Prot: Protein content in wheat flour 

ProtG: Protein content in wheat grain 

SS: Soluble Starch content 

SD: Damaged Starch measured with iodine absorption 

SV.AX: Specific Viscosity of Water-Extractable Arabinoxylan 

TWG: Thousand Weight Grain 

UPP: Unextractable Polymeric Protein 

W: Baking Strength 

WA: Water Absorption 

WE-AX: Water-Extractable Arabinoxylan content 

W.Gluten: Wet Gluten 

WU-AX: Water-Unextractable Arabinoxylans 

X: Xylose 
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1. Introduction 

The distribution of water within the flour components is important due to its impact on gluten 

network development, which primarily governs dough properties. Even small changes in water 

content can affect significantly the dough behaviour, underscoring the importance of precise control 

over water addition during mixing. Water absorption (WA) is a key parameter for assessing wheat 

flour and is commonly determined using farinograph or similar devices to achieve a mixing consistency 

considered optimal.  

WA can vary from 53.9% to 65.5 % (Sapirstein et al., 2018) and both proteins and damaged starch 

significantly impact it. According to (Greer & Stewart, 1959), WA is positively correlated with protein 

and damaged starch contents, with these two variables collectively accounting for 90% of its variation. 

Notably, damaged starch exerts a stronger influence on water absorption, a finding supported by 

other authors (Dodds, 1971; Tara et al., 1972; Tipples et al., 1978).  Most studies also found a 

significant correlation between protein levels and damaged starch. However, Tara et al., (1972) and 

Dexter et al., (1994) reported that WA is only slightly affected by protein content. These studies are 

limited to total protein content, making no distinction between gliadin and glutenin which built the 

gluten network. Each of these fractions has different properties and impacts on the gluten-network 

(Barak et al., 2013; Dhaka & Khatkar, 2015; Park et al., 2006;), which may affect flour water 

absorption. 

WA is also influenced by other components as recently confirmed by Sapirstein et al. (2018) who 

found that water-extractable arabinoxylans (WE-AX) positively impact WA. This finding aligns with 

insights from Andersson et al. (1993), who first emphasized that the content and the composition of 

arabinoxylans (AX) play a crucial role in WA. AX are known for their influence in bread-making (Courtin 

& Delcour, 2002; Marion & Saulnier, 2020;; Zhang et al., 2019). More precisely, the water-
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unextractable fraction (WU-AX) has a high-water retention capacity (Jelaca & Hlynka, 1971; Meuser & 

Suckow, 1986), while the WE-AX fraction is recognized for its high viscosifying properties (Saulnier, 

2019). However, AX are credited with various effects on water absorption and bread-making in 

general, yet the precise impact of the variability in their amount in wheat flour remains unclear. Most 

studies on the topic artificially introduce these components into the flour at high concentrations 

(Biliaderis et al., 1995; Zhang et al., 2019) or modify them with  the addition of xylanases (Courtin & 

Delcour, 2002; Rouau et al., 1994) during the process. Studying their natural impact on WA without 

modification proves challenging due to the low concentration of AX in flours (1.3 to 2.7 % (Saulnier, 

2019), compared to the major components. 

In addition to AX, another minor component of flour, lipids, ranging from 2 to 2.5% (Pareyt et al., 

2011), have been shown to influence bread-making. In particular, lipids interact with proteins, such as 

puroindolines (Marion et al., 2003) and the gluten network where they alter disulphide bridges 

(Nishiyama & Kuninori, 1987). They also interact with starch, forming complexes with amylose 

(Morrison, 1988). Lipids could have an indirect effect on water absorption through their interactions 

with proteins and starch. 

Our hypothesis is that flour minor components explain a significant fraction of the natural variability of 

the flour water absorption, even though proteins and starch are the main contributors. The main 

objective of this work is to improve WA prediction and to ascertain the role of each flour component, 

especially how the natural variability of minor components can affect WA, which is important 

parameter for the control of the breadmaking process. To this end, 150 wheat samples (harvested in 

2020 and 2021) were characterized for their content in minor components (lipids and AX), as well as 

the detailed composition of proteins, in addition to protein and damaged starch contents, and 

classical technological parameters. Linear regressions were performed in combination with a variable 

selection methodology based on the Bayesian Information Criterium score (BIC), to identify the most 

significant variables to predict WA. 
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This work should help identifying whether assessment of lipids and AX, can provide valuable insights 

for controlling wheat flour properties.  

2. Materials and methods 

2.1. PLANT MATERIAL 

A total of 150 wheat samples harvested in 2020 and 2021, originating from 67 different varieties and 

26 growing locations across France with diverse agro-pedo-climatic conditions were used to cover a 

wide range of end-use quality. Among the 67 wheat varieties, 11 are classified for biscuit applications, 

32 as 'improver wheat' with a high protein content, and the remaining varieties, which comprise the 

majority of samples, are classified for bread production. These samples were provided by Arvalis 

(Boigneville, France), Limagrain (Riom, France), and Axiane Meunerie (Val d’Arnast, France). The grains 

were milled into white flour (0.55% of ashes in average, corresponding to Euro 550 flour type and 

American all-purpose flour, containing almost exclusively grain endosperm) with an experimental mill 

(MCKA, Bülher, Switzerland) in batches of 10 kg. 

The flours were kept for 20 days at room temperature after milling and then were frozen at -20°C until 

use.  

The samples were unfrozen over night at room temperature prior to analysis. 

2.2. FLOUR AND DOUGH CLASSICAL CHARACTERIZATION 

The usual analyses of grain, including protein content (ProtG) and Hardness, were carried out using 

near-infrared spectroscopy (NIRS). The protein content was determined by NIRS according to NF EN 

15948 and the NIRS calibration for Hardness was conducted using the Particle Size Index (PSI). The 

Hagberg Falling Number (HFN) was determined using Falling Number PERTEN FN 1500 equipment 

according to ISO 3093:2009. Damaged starch measurements (SD) was measured with the SDmatic 

(SDmatic, Chopin Technologies, Villeneuve la Garenne, France) using the amperometric method 
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according to NF EN ISO 17715:2015, with results expressed in Chopin Units corrected based on 

protein and moisture content (UCDc). The Glutomatic® system (PerkinElmer, Waltham, USA) was used 

to determine Wet Gluten (W.Gluten), Dry Gluten (D.Gluten) and Gluten Index according to NF EN ISO 

21415-2). The Alveograph® (Chopin Technologies, Villeneuve la Garenne, France) was used to 

determine dough characteristics: tenacity (P), extensibility (L), tenacity to extensibility ratio (P/L), 

baking strength (W), and elasticity index (IE), according to NF EN ISO 27971. Mixolab (Chopin 

Technologies, Villeneuve la Garenne, France) was used to determine water absorption (WA), 

Development Time, Stability and Weakening degree according to NF V 03-765. The Mixolab 

equipment allows for obtaining values comparable with existing Farinograph® equipment, with a 

much smaller sample size. WA is defined as the percentage of water required for the dough to 

produce a torque of 1.1 Nm. 

2.3. ADVANCED CHARACTERIZATION OF FLOUR COMPOSITION 

 

2.3.1. Polysaccharides analysis 

Alcohol Insoluble Materials extraction 

Flour samples were prepared as Alcohol Insoluble Materials (AIMs) using an automated extraction 

method with an accelerated solvent extraction unit ASE® 350 (THERMO, CA, USA). Flour samples (2 g) 

were extracted using 80% ethanol at a flow rate of 2 mL/min in 22 mL cells of ASE® 350. The 

conditions for the ASE extraction were set at 100°C with a flow time of 20 min, followed by a rinse 

volume of 150%, and a purge time (N2) of 30 seconds. AIMs were recovered and dried at 40 °C for 

three hours and then overnight under vacuum over P2O5 before grinding with a knife grinder (IKA Tube 

Mill 100 control, IKA-werke GmbH & Co. KG, Staufen, Germany) for 30 seconds and weighing.  

Aqueous extracts 

Each AIM was weighted (1g) in 15 mL falcon tubes. Ultrapure water (4 mL) was added and the 

contents of the tube were thoroughly mixed using a vortex mixer. The tubes were then shaken 
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overnight (16h) using a circular shaker (Multi reax, Heidolph; at 1700 rpm) placed in an oven at 40°C. 

The tubes were then mixed again using a vortex and centrifuged (2200 g, 30 minutes, 25°C). The 

supernatant (2 mL) was immediately transferred to 2 mL Eppendorf. 

Determination of polysaccharides content 

Constitutive monosaccharides were analysed by gas chromatography (GC) based on (Englyst & 

Cummings, 1988) method after AIM acid hydrolysis. 

For the total carbohydrate content, 5 mg of AIM were weighed and hydrolysed with 1M H2SO4 at 

100°C for 2h. For the water-soluble carbohydrate content, AIM aqueous extracts were hydrolysed in 

the same conditions using 0.2mL of centrifuged supernatant. Inositol was used as internal standard. 

Released monosaccharides were then converted into their alditol acetate equivalents as previously 

described (Hoebler et al., 1989) and analysed by GLC on a TG-225MS column (Trace GC Ultra, 

THERMO; temperature 205 °C, carrier gas H2). Each sample was analysed in triplicate and the total 

arabinoxylan content (TOT-AX) and water-extractable arabinoxylan content (WE-AX) was calculated as 

the sum of arabinose and xylose. The arabinose content was corrected for the presence of 

arabinogalactan peptide (AGP) on the basis of an arabinose to galactose ratio of 0.7 and with the 

assumption that all of the arabinose of AGP is present in the aqueous extract (Fincher & Stone, 1974; 

Loosveld et al., 1998). The water-unextractable arabinoxylan content (WU-AX) was calculated by 

subtracting WE-AX from TOT-AX. The water-extractable glucose or soluble starch (SS) was measured 

from the AIM aqueous extracts. Note that the small fraction of water-extractable glucose originating 

from mixed-linked beta-glucan is considered negligible. Arabinose / Xylose ratio (A/X) was also 

calculated for total, water-unextractable and water-extractable arabinoxylans (respectively A.X.TOT, 

A.X.WU and A.X.WE). A/X indicates the degree of substitution of the xylan backbone with arabinose 

residues. 

Determination of polysaccharides physicochemical characteristics 
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AIM aqueous extracts (1.8 mL) were treated with 3 units of α-amylase thermostable (Bacillus sp., 

product code E-BSTAA, Megazyme) overnight at 30°C. Then, aqueous extract were filtered over 0.45 

µm membrane and injected on a high-performance size exclusion chromatography (HPSEC) system 

(OMNISEC RESOLVE-REVEAL - Malvern Panalytical- Malvern, UK) using a Viscotek AGuard precolumn 

(50 x 6 mm) and a Viscotek A4000 column (300 x 8 mm – Malvern Panalytical- Malvern, UK) 

maintained at 35°C and eluted with 50 mM sodium nitrate at a flow rate of 0.7 mL/min. 

Measurements were performed using a differential refractometer (OMNISEC REVEAL), a multi angle 

laser light scattering detector (λ = 660 nm, 44°, 60°, 76°, 90°, 108°, 124°, 140°, VISCOTEK SEC-MALLS 9) 

and a differential pressure viscometer (OMNISEC REVEAL). Detectors responses were calibrated with a 

pullulan standard having narrow molecular mass distribution (weight-average molar mass = 40,611 Da, 

number-average molar mass = 38,931 Da, IV = 23,6 mL/g at 30°C in 0.1 M sodium nitrate, refractive 

index increment dn/dc = 0.147 mL/g). Data analyses were carried out using OmniSec version 11.32 

software (Malvern Panalytical) and a dn/dc value of 0.146 mL/g was used for WE-AX (Dervilly et al., 

2000). 

The peak eluted within the range of 5.4 – 8.1 mL was integrated to calculate the concentration of 

water-extractable arabinoxylans (WEAXHPSEC) from the refractive index signal. WEAXHPSEC is highly 

correlated with WE-AX concentration determined by chemical analysis (r=0.91). SV.AX, the Differential 

Pressure (DP) measured across the capillary bridge of the viscometer was integrated within the elution 

range of 5.4-8.1. SV.AX is related to the specific viscosity ɳsp of the AIM aqueous extract, intrinsic 

viscosity of WE-AX (IV.AX) and WEAXHPSEC according to the following equations (Haney, 1985): 

ɳ𝑠𝑝  =
4SV. AX

IP − 2SV. AX
= IV. AX ∗ WEAXHPSEC 

Where IP is the inlet pressure of the viscosimeter. Since IP is almost constant and far higher than 

SV.AX, ɳsp ∝ SV.AX. Hereafter, SV.AX is considered as the specific viscosity associated with 

arabinoxylans. Due to the large number of samples and the time required for analysis, single analyses 
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were performed. To ensure repeatability and reliability, reference flour was repeatedly analyzed, 

confirming that values for SV.AX and IV.AX had a coefficient of variation (CV) of less than 5%. 

2.3.2. Lipids analysis 

Extraction of non-starch fatty acids 

Lipid were isolated with a semi-automated extraction method using accelerated solvent extraction 

unit ASE® 350 (THERMO, CA, USA). Flour samples (500 mg) were treated using hexane/propanol 

solvent (3:2, v/v) at a flow rate of 2 mL/min in 22 mL cells of ASE 350. The conditions for the ASE 

extraction were set at room temperature with a flow time of 3 min. The rinse volume at the end of the 

extraction was 100% of cell volume, and the purge time (N2) was set to 30 seconds. 

The non-starch (NS) fatty acids were recovered in the 50 mL hexane/propanol fraction after ASE 

extraction.  

Subsequently, 5 mL of the fraction was transferred into 8 mL screw cap tube and dried under reduced 

pressure at 45°C, using a Genevac (SP Scientific, Warminster, PA, USA). Three fractions in each extract 

were recovered to enable triplicate analyses. 

Determination of fatty acid content 

The non-starch (NS) and total (TOT) fatty acids content of each flour was determined by gas 

chromatography following transmethylation of lipids as described by Welch (1977). An amount of 10-

12 mg of flour samples was weighted into 8 mL screw cap tube. 2,2-dimethoxypropane (100 µL) was 

added and incubated for 30 min to chase water. Internal standard (margaric acid, 1 mg/mL) was then 

added and mixed with 2% sulphuric acid in methanol (4 mL). The tubes were sealed and heated for 

two hours using a Swing XL workstation (Chemspeed® technologies AG) to make 3 shaking every 20 

minutes during the first hour. A similar procedure was applied on dried hexane/propanol extracts but 

without the 2,2-dimethoxypropane step. 
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Ultrapure water (2 mL) and cyclohexane (1.5 mL) were added and each tube was mixed for 10 seconds 

using a vortex mixer. After cooling overnight at 4°C, 1 mL of the upper layer was withdrawn, 

transferred into vials and then 1 µL was analysed by GLC (Clarus 690 GC, PERKINELMER, temperature 

250°C, carrier gaz H2) on a DB225 J&W Scientific column, for the separation and measurement of the 

fatty acid methyl ester peak. 

The amount of fatty acids bound to starch was calculated by subtracting the amount of non-starch 

fatty acids as detected in the hexane/propanol extracts from the total fatty acid content measured in 

the flour. 

2.3.3. Proteins analysis 

Molecular size distribution of gluten proteins was studied by high-performance size exclusion 

chromatography (HPLC Alliance, Waters) as described by  (Morel et al., 2000) by performing two 

sequential extractions. Flour (160 mg) was placed in a 50 mL Nalgene centrifuge tube with 20 mL of 

extracting buffer solution (0.1 M sodium phosphate buffer solution (pH 6.9), 1% sodium dodecyl 

sulphate). Tube was shaken 80 min at 60°C (Heidolph Reax 2, setting 5) before centrifugation at 25°C, 

18,000 rpm (Beckman, JA 20, fixed-angle rotor). The supernatant was collected and 2 mL stored in 

HPLC vial at -18°C. The remaining flour pellet was dispersed in 5 mL of extracting buffer and sonicated 

at ambient temperature during 180 s at 30% of the nominal power (50 W, 20 Hz) (VibraCell 72434; 

Bioblock, Illkirch, France). The tube was centrifuged as above and 2 mL of this second extract was 

stored at -18°C. The two supernatants were injected (20 µL) onto a size exclusion column TSKgel® 

G4000- SWXL (7.5 mm × 30 cm, Tosoh) coupled to a TSKgel G2000SWxl-G4000SWxl guard column (6 

mm, 4 cm). Elution was performed at 0.7 mLl/min with 0.1 M sodium phosphate buffer solution (pH 

6.9), 0.1% SDS. The column was calibrated with seven protein standards (PSS-PROKIT, Agilent). The UV 

signal at 214 nm was recorded and expressed in g/L considering a specific extinction coefficient of 

18.51 L/g/cm for the wheat protein. The chromatogram of the first extract was integrated considering 

five fractions of increasing elution times (F1 to F5). Fractions F1 and F2, assigned to the SDS-soluble 
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glutenin polymers, comprised elution times from the void volume to 630,000 g/mol and from then to 

116,000 g/mol. Protein species in the range of 116,000 to 65,000 (F3) and 65,000 to 21,000 g/mol (F4) 

were assigned to omega and then to gamma, beta and alpha gliadins. The last eluting fraction (F5, Mw 

< 21,000 g/mol) gathered the flour water-soluble proteins. The SDS-insoluble glutenin polymers 

fraction (Fi) was obtained from the total area of the second extract chromatogram. The total, soluble 

and insoluble glutenin polymers (referred to as GluT, GluS, and GluI respectively) contents in flour, 

along with the gliadins content (Gli), and unextractable polymeric protein (UPP) were determined as 

outlined by Baudouin et al. (2020). Due to the large number of samples and the time required for 

analysis, single analyses were performed. To ensure repeatability and reliability, reference flour was 

repeatedly analyzed, confirming that measurements had a coefficient of variation (CV) of less than 

5%.  

2.4. DATA TREATMENT FOR WA PREDICTION 

2.4.1. Variable pre-selection 

The raw dataset with composition and technological data for 150 wheat samples, was reduced to 144 

due to missing data and obviously aberrant measurements for six wheat samples. 

A wide range of flour composition analyses was performed on the wheat samples, of which twenty-

four measurements were selected to compose the working dataset. The selection process basically 

removed the factors highly correlated with another. The detailed selection process is available in 

supplementary data (S1). 

Finally, the composition variables considered for the study were: 

- For proteins: Protein content (Prot), Total Glutenin content (GluT), Soluble Glutenin content 

(GluS), Unextractable Polymeric Protein (UPP), Gliadin to total Glutenin ratio (Gli.GluT) and 

Gliadin to soluble Glutenin ratio (Gli.GluS); 
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- For lipids: C16.TOT, C18.TOT, C181n7.TOT, C181n9.TOT, C182n6.TOT, C183n3.TOT 

representing the total (TOT) content of palmitic acid, stearic acid, vaccenic acid, oleic acid, 

linoleic acid and alpha-linolenic acid respectively, and C16.NS, C181n7.NS, C182n6.NS, 

C183n3.NS representing the Non-Starch (NS) content of palmitic acid, vaccenic acid, linoleic 

acid and alpha-linolenic acid respectively. 

- For non-starch polysaccharides: Total arabinoxylan content (TOT-AX), Water-Extractable 

arabinoxylan content (WE-AX) and their respective Arabinose / Xylose ratio (A.X.TOT and 

A.X.WE), Intrinsic Viscosity of Water-Extractable Arabinoxylans (IV.AX) and Specific Viscosity of 

Water-Extractable Arabinoxylans (SV.AX) 

- For starch: damaged starch measured by iodine absorption (SD) and Soluble Starch (SS) 

 

2.4.2. Model selection 

Statistical analyses were performed with R v4.1.3. The model selection was carried out with the help 

of the regsubset function of the leaps R package. The principle consists in selecting the best multiple 

linear regression models of the form Y=β0+β1X1+β2X2+…+βnXn+ε where Y represents the flour Water 

Absorption (WA) and X1, X2, …, Xn the combination of standardized wheat variables and their 

associated coefficients β1, β2, …, βn, and ε the error.  

The best model was selected through a successive examination of three criteria (Fig. 1): 

1. Minimizing the BIC (Bayesian Information Criterion) score, which serves as a model general 

performance indicator accounting for the number of variables; 

2. A VIF (Variance Inflation Factor) value below five, ensuring a low multicollinearity level among 

the variables, in agreement with the general usage; 

3. Minimizing the total number of variables, when the two first criteria are met. The goal is to 

avoid over-learning due to an excess of variables.   
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The BIC allows ranking the possible regression models according to maximum likelihood principle, 

while penalising models with too many variables. The BIC score is defined as: 

For each model (i) separately, the BIC score is defined as: 

𝐵𝐼𝐶𝑖 =  −2 𝐿𝑜𝑔 𝐿𝑖 + 𝑝𝑖 log 𝑛  

Where 𝐿𝑖 and 𝑝𝑖  are the likelihood and the number of parameters for each model, and 𝑛 is the 

number of observations. A smaller value indicates a preferable model. 

The models were checked for multi-collinearity using the VIF function of car R package. In addition, 

the R² is provided to indicate the proportion of variance explained by the regression model.  

Finally, the predictive performance was assessed with a repeated K-fold cross validation. This method 

involves randomly partitioning the samples into k groups (folds) of equal size (when possible). (k-1) 

groups are dedicated for training the regression model, while the remaining group is used for 

validating. This procedure is repeated k times, with each iteration using a different group for 

validation. The trainControl function using the repeatedcv method from the caret library in R was 

employed to conduct 10-fold cross validation with 3 repetitions to explore alternative divisions into 10 

folds. 

3. Results and discussion 

3.1. SAMPLE VARIABILITY 

Descriptive statistics of the dataset are provided in Table. 1. The rather wide range of values and the 

variability indicate that the wheat displays various technological behaviors and compositions, which 

are sought-after characteristics for this study. 

In terms of composition, the flour protein content Prot (6.1 – 14.0 g/100 g) and grain protein content 

ProtG (8.9 – 17.6 g/100 g) are highly correlated (r=0.98), which is commonly observed. The range of 

ProtG is similar to Dexter et al.(1994) measurements with 10.8 – 18.5 g /100 g for approximately 200 
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individual farmers’ deliveries but is wider than those reported by Dowell et al. (2008) (11.4 –15.8 

g/100 g; 148 samples with a broad spectrum of bread quality) or by Sapirstein et al. (2018) (11.1 – 

15.1 g/100 g; 78 samples comprising 59 different genotypes). The range of values for Gliadin to total 

Glutenin ratio Gli.GluT (0.86 – 1.46) is wider than in Dhaka & Khatkar, (2015) who reported values 

from 0.75 to 1.16 for 15 varieties presenting distinct performances for bread-making. 

The range of values for damaged starch measured by iodine absorption SD (8.7 – 23.9 UCDc) are in 

line with Dragan et al. (2012) and Golea et al. (2023). They reported, respectively, SD values from 

19.55 to 29.05 UCDc for 18 different wheat varieties and from 1.40 to 14.60 UCDc for 66 wheat 

samples collected in different regions. 

The total arabinoxylan content AX-TOT (1.27 – 2.69 g/100 g), as well as the water-extractable fraction 

content WE-AX (0.26 – 0.86 g/100 g), are consistent with the results obtained by Gebruers et al., 

(2008) (AX-TOT: 1.35 – 2.75, WE-AX: 0.15 – 1.40; 176 different varieties) and Sapirstein et al.(2018) 

(1.08 – 1.80 g/100 g for AX-TOT and 0.23 – 0.46 g/100 g for WE-AX). Moreover, mean values for AX-

TOT (1.83 g/100 g) and WE-AX (0.5 g/100 g) are close to those reported by Selga et al., (2023) with 

197 wheat samples.  

The proportion of each fatty acids is in line with previous works (De La Roche et al., 1975; 

Prabhasankar & Haridas Rao, 1999). Palmitic acid (C16.TOT) and linoleic acid (C182n6.TOT) are the 

most abundant fatty acids in the wheat flour but C16.TOT has one of the lowest Coefficient of 

Variation (CV) among fatty acids. 

In terms of technological characteristics, range of values for W.Gluten (10.5 – 40.6 g/100g) and Dry 

Gluten (3.5 – 13.5 g/100g) was also wider than in Dhaka & Khatkar, (2015) who reported the following 

intervals:  W.Gluten: 21.5 – 35.5 g/100g, D.Gluten: 8.4 – 12.4 g/100g. The range of values for Hardness 

corresponds to what is found in the literature, by encompassing soft and hard grains (Rakszegi et al., 

2010). The range of values for the Hagberg Falling Number HFN is rather large (190 - 462 s), although 

narrower at the lower limit when compared to the results of Mangan et al.(2016) who observed 
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values below 190 s with a dataset of about the same size. These technological variables are included in 

the analysis as they take into account parameters that may have an impact on Water Absorption (WA), 

such as grain characteristics and particle size for Hardness, amylase activity for HFN, and the quality of 

the gluten network for W.Gluten and D.Gluten. Moroever, the lower bound of the range of values for 

WA (50.4 – 63%)  is  rather noteworthy, compared with results from the literature (53.9 – 65.5% in 

Sapirstein et al. (2018)).  

Alveograph parameters are excluded from the analysis as they are determined with a fixed amount of 

water added to the dough (50%). However, they are given as complementary technological variables 

to illustrate the variability of the dataset’s breadmaking potential (see Table 1). Indeed, the ranges of 

values for P/L (0.13 -2.54), W (68.10-4J – 546.10-4J) and Ie (32.8 – 73%) are equivalent to, or even 

broader than, those reported by Jødal & Larsen (2021) (P/L: 0.15 – 2.28, W: 62.10-4J – 352.10-4J, Ie: 

31.1 – 61.5) with 532 individual pressure curves.  

These results highlight the high variability of the wheat samples in term of composition and 

technological properties, and therefore the richness of the working dataset for investigating the 

potential of wheat for breadmaking. 

3.2. WHEAT COMPOSITION DETERMINANTS OF THE WATER ABSORPTION  

3.2.1. Exploring correlations in the dataset   

At first, a heatmap illustrating the correlations between all variables in the dataset was generated (Fig. 

S2). The strongest correlations of WA with composition variables are found for Proteins (Prot), 

Damaged Starch (SD) and Soluble Starch (SS); corresponding scatter plots are presented in Fig.1a, b 

and c, respectively. 

The rather high correlations of WA with Prot and SD are expected, since both are commonly used 

variables to predict WA. Damaged starch typically absorbs 2 to 4 times its weight in water, compared 

to only 0.4 times for intact granular starch. It is the primary variable associated with WA in many 

studies (Dodds, 1971; Greer & Stewart, 1959; Tara et al., 1972; Tipples et al., 1978). No direct 
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correlation was found between Prot and damaged starch (SD) (r=-0.07), in agreement with results 

previously reported by Tara et al. (1972). 

Proteins (Prot) exhibits a stronger correlation with WA (r=0.63, Fig.1a) than SD (r=0.56, Fig.1b), which 

appears in contradiction with most previous results (Dodds, 1971; Greer & Stewart, 1959; Tara et al., 

1972; Tipples et al., 1978). Surprisingly, soluble starch (SS) presents the highest correlation with WA 

(r=0.72, Fig.1c). SS is actually a measurement performed in our laboratory, and would correspond to 

the glucose originating from starch solubilized during the overnight water extraction of flour AIM 

(unpublished results). Interestingly, SS correlates much better with hardness (r=0.76, Fig.1e) than SD 

does (r=0.54, Fig.1f), despite the significant influence of hardness on damaged starch formation 

(Rakszegi et al., 2010). These results suggest that SS could serve as a reliable marker for damaged 

starch. SS and SD are correlated (r=0.7; Fig.2d) but the correlation level was lower than expected, 

meaning that they likely measure different characteristics of the damaged starch. The heatmap (Fig. 

S2) complemented with hierarchical clustering, actually groups Hardness, WA and SS, indicating a 

strong connection between them. 

In addition, to protein and damaged starch contents, correlations were observed between WA and 

other composition variables (see Fig. S2). For example,  C182n6.TOT (r=0.58), and C183n3.TOT 

(r=0.58), exhibited slightly better correlations with WA than SD. These two fatty acids are mainly 

coming from polar lipids associated to starch. 

 

3.2.2. Modelling the influence of damaged starch and of protein content on water absorption 

The effect of wheat components on WA was analyzed through multiple linear regression models. Since 

the dataset contains measurements with different units and scales, the values were first standardized 

so that to compare the relative significance of each influence. The resulting coefficients assigned to 

these variables, as well as the metrics values for model prediction, are reported in table 2. 
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The simple linear regressions between WA and composition variables SD, SS and Prot are the primary 

models, noted MSD, MSS and MProt respectively. 

M0, M0.1, M0.2, and M0.3, named usual models, are multiple linear regression models combining Prot, SD 

and SS. M0 which includes SD and Prot plays the role of benchmark, since Prot and SD are commonly 

used to predict WA. M0.2 is a version of this model, combining Prot and SS, assuming that SS is also 

representative of damaged starch. M0.1 combines the two variables related to damaged starch and 

finally, M0.3 brings the Prot, SS and SD together. 

As expected, the four usual models exhibit much better performances than the primary models as 

shown by the R² and BIC values on Table 2. Amongst the usual models, M0 and M0.3, exhibit the best 

performances (R²=0.76 and 0.78 respectively). M0.1 has the worst predictive performance, it is also the 

only models without Prot, the primary driver of WA prediction, as its regression coefficient is the 

highest in the more complete model, M0.3. With the exception of M0.3, SS demonstrates the highest 

regression coefficients among the models in which it is included, but although SS provides also the 

most effective primary model, MSS, it does not improve the model’s performances when combined 

with Prot and/or SD. Indeed, M0 (only usual model without SS) performs better than M0.2, and M0.3 

(most complete usual model) fails to improve significantly the prediction compared to M0.  

3.2.3. Modelling the influence of composition variables on water absorption 

In addition to the usual variables, Prot, SD and SS, the dataset contains measurements for protein-

related  variables (GluT, GluS, UPP, Gli.GluS, Gli.GluT, GluI), arabinoxylans-related variables (WE-AX, 

AXTOT, A.X.WE, A.X.TOT, IV.AX, SV.AX) and lipid-related variables (C16.TOT, C18.TOT, C181n7.TOT, 

C181n9.TOT, C182n6.TOT, C183n3.TOT, C16.NS, C181n7.NS, C182n6.NS, C183n3.NS), which are 

potential determinants for WA. A large number of regression model can be produced by combining all 

these variables. To select relevant models, the selection model method, based on the BIC score and 

described in section 2.4.2., has been applied and a graphical representation of the main results is 

presented in fig.2. The main guides for model selection are: 1) a small BIC value (negative index) which 
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indicates a better modelling performance, 2) a VIF score <5 to avoid strong multicollinearity amongst 

the variables, 3) a minimal number of variables when the two first criteria are met. 

Following this method, a total of nine regression models has been selected, including Mss and M0. The 

other models, numbered from M1 to M7 are arranged in ascending order based on the number of 

explanatory variables, from three variables in M1 to nine in M7 (Fig.3). In Table 2, M1 to M7 are 

categorized as composition models and all their variables are significant (p-value<0.05). Additionally, 

an extra model, Mx, is provided to illustrate the best three-variable model that complements the 

reference model M0. The recurring inclusion of variables across the selected models provides an 

indication of their relative importance as determinants for WA. Specifically, all composition models 

except Mx include Prot, SS and SV.AX as explanatory variables. 

Subsequently, SD appears in all models except M1, while the Arabinose to Xylose ratio from Water-

Extractable Arabinoxylans (A.X.WE) is present in all the models except M1 and M2. The total steatic 

acid content (C18.TOT) is absent from M1 to M3, followed in order of importance by the Non-starch 

linoleic acid content (C182n6.NS), Unextractable Polymeric Protein (UPP) and the Intrinsic Viscosity of 

Water-Extractable Arabinoxylans (IV.AX). 

Fig. 3 displays the BIC score against the number of variables for all the models. From one to three 

variables the BIC score decreases steeply, and above three variables, around a BIC score of -250, the 

decrease is moderate. The model M2 achieve an interesting trade-off between the number of 

variables and the BIC score. With four variables, M2 reaches a BIC score of -252 and a r of 0.92. 

Surprisingly, the M2 includes both SD and SS, which strengthens the idea that both measurements 

capture distinct aspects of the damaged starch and that both are determinants of WA. The 

contribution of SS is slightly higher than of SD in the composition models as indicated by the 

regression coefficients (Table 2). M2 is also a model that includes an arabinoxylan variable, via SV.AX, 

besides starch and protein. SV.AX is also included in M1, which is close to M2 in Fig.3. M1 performs 

slightly less well than M2 (R²=0.83 against R²=0.85) and represents the best three-variable model with 
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a significant improvement compared to M0.3 (R²=0.78) which includes SD instead of SV.AX. Therefore, 

SV.AX is a minor component characteristic that has clearly improved the prediction of WA. 

Fig. 4 reports the predictions of selected models computed through cross-validation. It is evident that 

M2 significantly reduces the prediction error over the full range of WA compared to M0, especially for 

low WA. The nine-variable composition model, M7, improves the prediction of high WA compared to 

M2. However, relative to the number of variables, it does not significantly improve the global 

prediction (R²CV=0.88 for M7 compared to 0.84 for M2). 

3.2.4. Including technological properties of wheat in the model 

The contributions to WA of the following technological measurements are examined in addition to the 

wheat composition: 

 Hardness, usually strongly related to damaged starch 

 Hagberg falling Number (HFN), often associated the amylase activity of the wheat grain  

 Wet gluten, W.Gluten, and dry gluten, D.Gluten, which characterize the quality of the gluten 

network  

The same model selection procedure has been applied. First, the BIC score is computed for generated 

models and results are reported in Fig. 5. It shows that HFN is not included in most models, suggesting 

that its contribution to WA is negligible. 

Following the model selection explained in section 2.4.2, several models were discarded because of 

multicollinearity, i.e. VIF >5. The eight remaining models (highlighted on Fig. 5) include the models M0, 

M1, M2 and M3 and four new models, MH, MH1, MH2 and MH3 of respectively 1, 6, 8 and 9 explanatory 

variables. These four models all incorporate hardness, MH being actually the simple linear regression 

between hardness and WA. With the exception of MH, Prot has been systematically included in all 

models, resulting in the exclusion of D.Gluten and W.Gluten due to their VIF score exceeding five 

when Prot is involved. This reflects the high correlation amongst these three variables (Fig. S2). This 

result suggests that Prot exerts a more substantial influence on WA than D.Gluten or W.Gluten. 
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Furthermore, it suggests that WA is more dependent on the quantity of protein rather than its quality 

within the gluten network. 

In agreement with the strong correlation between hardness and WA (r=0.77, S2), hardness comes out 

as a good explanatory variable for WA (Table 2). In MH1, MH2 and MH3, hardness is associated with SD 

and SS. The link between these three variables is further highlighted by the heatmap shown in Fig.S2). 

SS and SD remain important explanatory variables after Prot and before Hardness in MH1, whereas SS 

is less significant than Hardness in MH3 (Table 2). The coefficients of SS in MH1, MH2 and MH3 are lower 

than in the composition models, meaning that part of SS contribution to WA is now captured by 

Hardness. SD contribution in these models is not affected to the same extent. 

Finally, except for MH, incorporating Hardness in the models has not significantly improve the 

prediction of WA as shown in Fig. 3. Indeed, MH1 MH2 and MH3 perform only slightly better (BIC score = 

-289, and R²=0.90 for the most complete model MH3) than the composition models with the same 

number of variables, respectively M4 M6 and M7. Prediction results displayed in Fig. 5.c.d. confirm that 

M7 and MH3 perform similarly. To minimise the number of variables, the best regression model 

remains M2, including Prot, SS, SD and SV.AX. This suggests that this combination of composition 

variables offers an effective solution to predict and explain WA, while the technological criteria 

investigated did not significantly enhance the accuracy of the model predictions. 

3.2.5. Towards new predictor of WA 

The water absorption of wheat flour is a complex and multifactorial phenomenon. Thus, any model 

relying on a single explanatory variable has exhibited low predictive performances. Mss stands out as 

the most robust single-variable model with a r of 0.72 (Table 2), while the four-variable model M2, a 

good compromise between the number of variables and the predictive performance, achieve a r of 

0.92. M2 includes the Protein content (Prot) and the damaged starch measured by iodine absorption 

method (SD), two usual measurements employed for WA prediction in the domain literature. 
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However, M2 also included Soluble Starch (SS) and Specific Viscosity related to Water-Extractable 

Arabinoxylans (SV.AX), two less common variables for predicting WA. 

SS, like SD, could serve as a marker of damaged starch. Amylose is likely to be more easily leached  

from a broken granule during the water extraction of flour than from a native starch (Wang et al., 

2020). Consequently, the variation in the amount of water-soluble starch (SS) could reflect the 

proportion of broken granules, i.e., damaged starch, in the flour sample. Furthermore, SS exhibited a 

higher CV than SD, suggesting that this measurement is rather sensitive and potentially discriminant of 

the various wheat samples. Unlike SS, SD consistently exhibits VIF scores below 5 (as shown in Fig. 2 

and Fig. 5), indicating its independence from the other variables. This supports the idea that these two 

measurements explain different aspects of damaged starch. However, considering that SS reflects 

released amylose, the average level of damaged starch in our study is 10-13% (assuming amylose 

represents 25-30% of the starch), which is higher than the average values typically reported, around 

6-8% (Dodds, 1971). This discrepancy may be due to the Alcohol Insoluble Material procedure, which 

involves high-pressure ethanol treatment and additional grinding that could further damage the 

already broken granules, leading to increased solubilization of amylose and potentially amylopectin. 

Therefore, while SS is a useful indicator, it remains an indirect evaluation of damaged starch and may 

particularly overestimate higher values compared to standard measurements. Damaged starch is 

always measured indirectly, resulting in estimations that may vary between methods. Our 

findingsindicate that both measurements (SS and SD) reflect the starch state and, when used together, 

improve the prediction of flour water absorption. 

Specific viscosity (SV.AX) is a physico-chemical property of the water phase controlled by the 

concentration of Water-Extractable Arabinoxylans (WE-AX) and their intrinsic viscosity (IV-AX), which is 

related to polymer size: SV.AX ∝ WE-AX × IV.AX. While AX concentration significantly influences the 

variation in specific viscosity, the variation in their molecular size also has an impact, as illustrated in 

Fig. 6. In this figure, the impact of molecular size of WE-AX (i.e., intrinsic viscosity; IV.AX) on specific 
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viscosity (SV.AX) is shown for two samples exhibiting the same amount of WE-AX.   The inclusion of 

SV.AX in M2 confirms the findings of Sapirstein et al.(2018) regarding the contribution of water 

extractable arabinoxylans to WA, but provides clarity regarding the significance of other feature apart 

from their concentration. Interestingly, it suggests that the influence stems from soluble arabinoxylans 

rather than their insoluble counterparts (included in TOT-AX) yet known for their high-water retention 

capacity (Marion & Saulnier, 2020). The relationship between the contents of water-extractable 

arabinoxylans (WE-AX) and total arabinoxylans (TOT-AX) in the starchy endosperm varies among 

cultivars. The proportion of WE-AX can range significantly, from 20% to 40% of the total AX content. 

Variation in WE-AX content in wheat flour, although primarily influenced by genotype, is also affected 

by the environment (Marion & Saulnier, 2020). In this respect, it is not known whether environmental 

factors influence to a greater extent the WE-AX content in flour or its molecular size, which both have 

an effect on the specific viscosity of flour water extract.  

Regarding proteins, the total content Prot, appears to be sufficient for the prediction of WA, since 

further specific feature about the type of protein has not been selected in the models or has been 

discarded due to multicollinearity. Even if glutenin and gliadin fractions have different properties, their 

impact on WA is not distinguished. Moreover, the quality of the gluten network described by 

W.Gluten and D.Gluten variables does not seem to provide as much information as Prot in predicting 

WA. 

Furthermore, the model selection process in this study has not pointed any critical fatty acids, 

suggesting a minimal role of the lipids for WA. Nevertheless, C18.TOT and C182n6.NS were included in 

about 80% of the models proposed by the BIC test (Fig. 2 and Fig. 5). Surprisingly, C18.TOT, did not 

present a VIF score above 5 in any model, suggesting independence from other fatty acids variables. 

On the contrary, although C182n6.TOT and C183n3.TOT, showed good simple linear correlations with 

WA, they were not the most commonly proposed fatty acids in the models. When included, they 

consistently had a VIF score above 5. 
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Finally, SS and SV.AX can be retained as new predictors of WA. It is particularly noteworthy that SV.AX, 

representing variation in a minority component of the flour – WE-AX – stands out significantly 

alongside the majority components in explaining WA. 

4. Conclusion 

The 150 wheat samples collected in this study exhibited a wide range of compositional and 

technological characteristics, facilitating the testing of various models to predict flour Water 

Absorption (WA). A model incorporating protein content (Prot), soluble starch (SS), damaged starch 

(SD) and specific viscosity associated with water extractable arabinoxylans (SV.AX) emerged as the 

optimal balance between the number of variables and the predictive performance. This finding 

underscores that flour composition variables alone are sufficient to predict WA, without the need for 

additional technological variables. 

Moreover, our study highlights the significant role of minor components, such as AX, in influencing 

water absorption. The contribution of AX stems particularly from the water-extractable fraction (WE-

AX) and polymer size, influenced by both genotype and environmental factors captured in our sample 

set. 

Additionally, soluble starch (SS) has been identified as a novel criterion for evaluating damaged starch 

content, showing promise in predicting water absorption and complementing traditional assessment 

of damaged starch (SD). 

Further work is in progress to deepen the understanding of the impact of minor components 

variability, particularly arabinoxylans (AX) on the rheological properties of wheat flour dough during 

bread-making. Investigating their natural variability represents a relevant step in this prospect. 
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Figure captions 

Fig. 1. Simple linear regression between: a) Water Absorption (WA) and Protein content (Prot); b) WA and 

damaged starch measured by iodine absorption (SD); c) WA and Soluble Starch (SS); d) SD and SS; e) SS and 

Hardness; f) SD and Hardness. Dots are coloured transparently so that any overlapping ones can be discerned. 

Fig. 2. Results of the Bayesian Information Criterium (BIC) test with composition variables. Each row represents a 

model, each column represents a variable. The models studied, i.e without multi-collinearity are highlighted in 

blue and identified (M1, M2 …) on the right. 

Figure caption: variable included in the model; variable included in the model but  collinear with another variable 

from the model (VIF score >5) 

WEAX: Water-Extractable Arabinoxylan content; AXTOT: Total Arabinoxylan content; A.X.WE: Arabinose to Xylose ratio from WEAX; A.X.TOT: 

Arabinose to Xylose ratio from AXTOT; IV.AX: Intrinsic Viscosity of WEAX; SV.AX: Specific Viscosity of WEAX; Prot: Protein content; UPP: 

Unextractable Polymeric protein; GluT: Total Glutenin content; GluS: Soluble Glutenin content; Gli.GluT: Gliadin to GluT ratio; Gli.GluS: 
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Gliadin to GluS ratio; SS: Soluble Starch; SD: Damaged starch measured by iodine absorption; C16.TOT : Total palmitic acid C16 content; 

C18.TOT: Total stearic acid C18 content; C181n7.TOT: Total vaccenic acid C18:1n-7 content; C181n9.TOT: Total oleic acid C18:1n-9 content; 

C182n6.TOT: Total linoleic acid C18:2n-6 content; C183n3.TOT: Total alpha-linolenic acid C18:3n-3 content; C16.NS : Non-Starch palmitic acid 

C16 content; C181n7.NS: Non-Starch vaccenic acid C18:1n-7 content; C182n6.NS: Non-Starch linoleic acid C18:2n-6 content; C183n3.NS: 

Non-Starch alpha-linolenic acid C18:3n-3 content. 

Fig. 3. Comparison of the models studied for predicting WA according to their BIC values and number of variables. 

Fig. 4. Comparison of the models M0, M2, M7 and MH3 for their predicted Water Absorption (WA) by K-fold cross 

validation versus the measured WA for a single repeat of the K-fold cross validation. Dots are coloured 

transparently so that any overlapping ones can be discerned. 

M0= β0+β1Prot+β2SD;  

M2= β0+β1Prot+β2SS+β3SV.AX+β4SD;  

M7= β0+β1Prot+β2SD+β3SS+β4SV.AX+β5A.X.WE+β6C18.TOT+β7C182n6.NS+β8IV.AX+β9UPP;  

MH3= β0+β1Prot+β2SD+β3Hardness+β4SS+β5SV.AX+β6A.X. WE+ β7C16.NS+β8C18.TOT+β9UPP 

A.X.WE: Arabinose to Xylose ratio from Water-Extractable Arabinoxylans; IV.AX: Intrinsic Viscosity of Water-Extractable Arabinoxylans; SV.AX: 

Specific Viscosity of Water-Extractable Arabinoxylans; Prot: Protein content; UPP: Unextractable Polymeric protein; SS: Soluble Starch; SD: 

Damaged starch measured by iodine absorption; C18.TOT: Total stearic acid C18 content; C182n6.TOT: Total linoleic acid C18:2n-6 content; 

C16.NS : Non-Starch palmitic acid C16 content. 

Fig. 5. results of the BIC test with composition and technological quality variables. Each row represents a model, 

each column represents a variable. A model is made up of the shaded variables. The models without multi-

collinearity are highlighted and their correspondence is shown on the right.  

Figure caption: variable included in the model; variable included in the model butcollinear with another variable 

from the model (VIF score >5) 

WEAX: Water-Extractable Arabinoxylan content; AXTOT: Total Arabinoxylan content; A.X.WE: Arabinose to Xylose ratio from WEAX; A.X.TOT: 

Arabinose to Xylose ratio from AXTOT; IV.AX: Intrinsic Viscosity of WEAX; SV.AX: Specific Viscosity of WEAX; Prot: Protein content; UPP: 

Unextractable Polymeric protein; GluT: Total Glutenin content; GluS: Soluble Glutenin content; Gli.GluT: Gliadin to GluT ratio; Gli.GluS: 

Gliadin to GluS ratio; SS: Soluble Starch; SD: Damaged starch measured by iodine absorption; C16.TOT : Total palmitic acid C16 content; 

C18.TOT: Total stearic acid C18 content; C181n7.TOT: Total vaccenic acid C18:1n-7 content; C181n9.TOT: Total oleic acid C18:1n-9 content; 

C182n6.TOT: Total linoleic acid C18:2n-6 content; C183n3.TOT: Total alpha-linolenic acid C18:3n-3 content; C16.NS : Non-Starch palmitic acid 

C16 content; C181n7.NS: Non-Starch vaccenic acid C18:1n-7 content; C182n6.NS: Non-Starch linoleic acid C18:2n-6 content; C183n3.NS: 

Non-Starch alpha-linolenic acid C18:3n-3 content; W.Gluten: Wet Gluten; D.Gluten: Dry Gluten; HFN: Hagberg Falling Number. 
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Fig. 6. HPSEC Chromatograms of two samples 7 and 132 with low and high specific viscosity (SV.AX), respectively. 

The peak integration area for water-extractable arabinoxylans WEAXHPSEC is highlighted in yellow. Both samples 

have equivalent concentration of water-extractable arabinoxylans WEAXHPSEC as shown by RI signal with dotted 

lines, sample 132 have a higher intrinsic viscosity IV.AX than sample 7 resulting in higher specific viscosity as 

shown by DP signal in solid lines. SV.AX=IV.AX* WEAXHPSEC. 

Table list  

Table 1:  Technological characteristics and flour composition obtained from the 144 sample 

 
Technological variables 

 

WA Hardness HFN W.Gluten D.Gluten   P/L* W* Ie* 

Unit % / seconds g/100g g/100g 
 

/ 10
-4

 J % 

Min-
Max 

50.4 – 63 18 – 100 190 – 462 10.5 – 40.6 3.5 – 13.4   0.13 – 2.54 68 – 546 32.8 – 73 

Mean 55.9 66 348 26.4 8.4   0.83 229 54.7 

CV (%) 4.6 27.9 18.7 19.2 19.4   50.6 36.6 15.7 

  Flour composition variables 

  Prot UPP GluT GluS Gli.GluT 
 

Gli.GluS SS SD 

Unit g/100 g  / g/100 g  g/100 g  /   / g/100 g  UCDc 

Min-
Max 

6.1 – 14.0 0.21 – 0.60 2.48 – 5.50 1.30 - 2.77 0.86 – 1.46   1.41 – 2.71 
1.11 – 
6.21 

8.7 – 23.9 

Mean 9.4 0.46 3.87 2.07 1.08   2.01 3.22 17.5 

CV (%) 16.7 14.1 18.0 14.9 10.5   13.0 31.2 14.9 

 

AX-TOT WE-AX A.X.TOT A.X.WE IV.AX 
 

SV.AX C16.TOT C18.TOT 

Unit g/100 g g/100 g / / dL/g   mV.mL g/100 g g/100 g 

Min-
Max 

1.27 – 2.69 0.26 – 0.86 0.56 – 0.89 0.44 – 0.71 4.14 – 8.18   201 - 834 
0.24 – 
0.36 

0.008 – 
0.027 

Mean 1.83 0.50 0.72 0.60 5.86   432 0.29 0.015 

CV (%) 15.5 25.7 8.5 9.2 13.4   31.3 8.75 22.0 

 

C181n7.TOT C181n9.TOT C182n6.TOT C183n3.TOT C16.NS 
 

C181n7.NS C182n6.NS C183n3.NS 

Unit g/100 g g/100 g g/100 g g/100 g g/100 g   g/100 g g/100 g g/100 g 

Min-
Max 

0.007 – 
0.015 

0.073 – 
0.176 

0.42 – 0.89 
0.020 – 
0.070 

0.088 – 
0.158 

  
0.004 – 
0.013 

0.31 – 
0.55 

0.016 – 
0.040 

Mean 0.010 0.106 0.62 0.039 0.116   0.006 0.40 0.024 

CV (%) 14.0 18.4 15.2 25.1 12.3   18.4 12.1 15.2 

HFN: Hagberg Falling Number; W.Gluten: Wet Gluten; D.Gluten: Dry Gluten; P/L: Tenacity to extensibility ratio; W: Baking strength; Ie: 

Elasticity Index; Prot: Protein content; UPP: Unextractable Polymeric protein; GluT: Total Glutenin content; GluS: Soluble Glutenin content; 

Gli.GluT: Gliadin to GluT ratio; Gli.GluS: Gliadin to GluS ratio; SS: Soluble Starch; SD: Damaged starch measured by iodine absorption; AX-TOT: 

Total Arabinoxylan content; WE-AX: Water-Extractable Arabinoxylan content; A.X.TOT: Arabinose to Xylose ratio from AX-TOT; A.X.WE: 

Arabinose to Xylose ratio from WE-AX; IV.AX: Intrinsic Viscosity of WE-AX; SV.AX: Specific Viscosity of WE-AX; C16.TOT : Total C16 content; 

C18.TOT: Total C18 content; C181n7.TOT: Total C18:1n-7 content; C181n9.TOT: Total C18:1n-9 content; C182n6.TOT: Total C18:2n-6 
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content; C183n3.TOT: Total C18:3n-3 content; C16.NS : Non-Starch C16 content; C181n7.NS: Non-Starch C18:1n-7 content; C182n6.NS: Non-

Starch C18:2n-6 content; C183n3.NS: Non-Starch C18:3n-3 content. 

*Complementary technological variables, not used in modelling. 

 

Table 2: Summary of models tested to predict WA with standardized variables and their corresponding 

coefficients and statistical metrics for prediction. All the terms of the models are statistically 

significant (p-value<0.05). 

 
Proteins 
variables  

Starch 
variables  

Arabinoxylans 
variables  

Lipids variables 
 

  
 

Statistical metric 
values 

  Prot UPP   SD SS   
SV.A

X 
A.X.W

E 
IV.A

X 
  

C18.TO
T 

C182n6.N
S 

C16.N
S 

  
Hardnes

s 
  n* R² 

BIC 
score   

Primary models                               

MSD       
0.5
5 

                        1 0.31 -43 

MPro

t 
0.6
3 

    
 

                        1 0.40 -63 

MSS       
 

0.7
2 

                      1 0.52 -96 

Usual models                               

M0.1       
0.1
0 

0.6
6 

                      2 0.53 -92 

M0.2 
0.4
4 

    
 

0.5
8 

                      2 0.69 -156 

M0 
0.6
8 

    
0.6
0 

                        2 0.76 -192 

M0.3 
0.6
0 

    
0.4
5 

0.2
1 

                      3 0.78 -197 

Composition models                           

MX 
0.7
4 

    
0.5
7 

    0.22                   3 0.81 -218 

M1 
0.5
3 

    
 

0.6
1 

  0.38                   3 0.83 -232 

M2 
0.6
1 

    
0.2
8 

0.3
8 

  0.31                   4 0.85 -251 

M3 
0.6
4 

    
0.2
8 

0.4
1 

  0.25 -0.14                 5 0.86 -258 

M4 
0.6
1 

    
0.2
8 

0.4
0 

  0.24 -0.14     0.09           6 0.87 -261 

M5 
0.6
3 

    
0.3
4 

0.3
5 

  0.22 -0.15     0.13 -0.11         7 0.88 -268 

M6 
0.6
8 

-
0.1
0 

  
0.3
2 

0.3
6 

  0.25 -0.15     0.13 -0.12         8 0.89 -273 

M7 
0.6
5 

-
0.0
9 

  
0.3
5 

0.3
5 

  0.29 -0.14 
-

0.09 
  0.13 -0.12         9 0.89 -273 

Models 
with all 
variables 

                                    

MH                             0.77   1 0.59 -117 
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MH1 
0.5
9 

    
0.2
5 

0.3
2 

  0.23 -0.16             0.18   6 0.87 -265 

MH2 
0.5
6 

    
0.3
2 

0.2
2 

  0.19 -0.18     0.12   -0.14   0.22   8 0.90 -280 

MH3 
0.6
1 

-
0.1
2 

  
0.3
0 

0.2
3 

  0.22 -0.17     0.12   -0.15   0.24   9 0.90 -289 

*number of variables included in the model. Prot: Protein content; UPP: Unextractable Polymeric protein; SS: Soluble Starch; SD: Damaged 

starch measured by iodine absorption; SV.AX: Specific Viscosity of Water-Extractable Arabinoxylans; A.X.WE: Arabinose to Xylose ratio from 

Water-Extractable Arabinoxylans; IV.AX: Intrinsic Viscosity of Water-Extractable Arabinoxylans; C18.TOT: Total C18 content; C182n6.NS: Non-

Starch C18:2n-6 content; C16.NS : Non-Starch C16 content. 

 

Additional data 

S1:  Selection procedure of composition variables for the study 

S2: Heatmap with correlations between all variables studied to model the WA on the 144 variables 
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Highlights 

 Protein and damaged starch are major components affecting flour water absorption 

 Arabinoxylans, though minor components, significantly impact water absorption 

 Water-extractable arabinoxylan induces viscosity, impacting water absorption 

 Soluble starch is proposed as a marker for damaged starch  
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